blob: d1f36ec6338a1b9d861dc8248f7ba702d9f4b525 [file] [log] [blame]
// WARNING: lock held when returning to user space! (2)
// https://syzkaller.appspot.com/bug?id=9eafbcd9d32e89e77005c59b23c0768e7ae9c756
// status:fixed
// autogenerated by syzkaller (http://github.com/google/syzkaller)
#define _GNU_SOURCE
#include <arpa/inet.h>
#include <endian.h>
#include <errno.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/if.h>
#include <linux/if_ether.h>
#include <linux/if_tun.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <net/if_arp.h>
#include <sched.h>
#include <signal.h>
#include <stdarg.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <unistd.h>
__attribute__((noreturn)) static void doexit(int status)
{
volatile unsigned i;
syscall(__NR_exit_group, status);
for (i = 0;; i++) {
}
}
#include <errno.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
const int kFailStatus = 67;
const int kRetryStatus = 69;
static void fail(const char* msg, ...)
{
int e = errno;
va_list args;
va_start(args, msg);
vfprintf(stderr, msg, args);
va_end(args);
fprintf(stderr, " (errno %d)\n", e);
doexit((e == ENOMEM || e == EAGAIN) ? kRetryStatus : kFailStatus);
}
#define BITMASK_LEN(type, bf_len) (type)((1ull << (bf_len)) - 1)
#define BITMASK_LEN_OFF(type, bf_off, bf_len) \
(type)(BITMASK_LEN(type, (bf_len)) << (bf_off))
#define STORE_BY_BITMASK(type, addr, val, bf_off, bf_len) \
if ((bf_off) == 0 && (bf_len) == 0) { \
*(type*)(addr) = (type)(val); \
} else { \
type new_val = *(type*)(addr); \
new_val &= ~BITMASK_LEN_OFF(type, (bf_off), (bf_len)); \
new_val |= ((type)(val)&BITMASK_LEN(type, (bf_len))) << (bf_off); \
*(type*)(addr) = new_val; \
}
struct csum_inet {
uint32_t acc;
};
static void csum_inet_init(struct csum_inet* csum)
{
csum->acc = 0;
}
static void csum_inet_update(struct csum_inet* csum, const uint8_t* data,
size_t length)
{
if (length == 0)
return;
size_t i;
for (i = 0; i < length - 1; i += 2)
csum->acc += *(uint16_t*)&data[i];
if (length & 1)
csum->acc += (uint16_t)data[length - 1];
while (csum->acc > 0xffff)
csum->acc = (csum->acc & 0xffff) + (csum->acc >> 16);
}
static uint16_t csum_inet_digest(struct csum_inet* csum)
{
return ~csum->acc;
}
static void vsnprintf_check(char* str, size_t size, const char* format,
va_list args)
{
int rv;
rv = vsnprintf(str, size, format, args);
if (rv < 0)
fail("tun: snprintf failed");
if ((size_t)rv >= size)
fail("tun: string '%s...' doesn't fit into buffer", str);
}
static void snprintf_check(char* str, size_t size, const char* format, ...)
{
va_list args;
va_start(args, format);
vsnprintf_check(str, size, format, args);
va_end(args);
}
#define COMMAND_MAX_LEN 128
#define PATH_PREFIX \
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin "
#define PATH_PREFIX_LEN (sizeof(PATH_PREFIX) - 1)
static void execute_command(bool panic, const char* format, ...)
{
va_list args;
char command[PATH_PREFIX_LEN + COMMAND_MAX_LEN];
int rv;
va_start(args, format);
memcpy(command, PATH_PREFIX, PATH_PREFIX_LEN);
vsnprintf_check(command + PATH_PREFIX_LEN, COMMAND_MAX_LEN, format, args);
va_end(args);
rv = system(command);
if (rv) {
if (panic)
fail("command '%s' failed: %d", &command[0], rv);
}
}
static int tunfd = -1;
static int tun_frags_enabled;
#define SYZ_TUN_MAX_PACKET_SIZE 1000
#define TUN_IFACE "syz_tun"
#define LOCAL_MAC "aa:aa:aa:aa:aa:aa"
#define REMOTE_MAC "aa:aa:aa:aa:aa:bb"
#define LOCAL_IPV4 "172.20.20.170"
#define REMOTE_IPV4 "172.20.20.187"
#define LOCAL_IPV6 "fe80::aa"
#define REMOTE_IPV6 "fe80::bb"
#define IFF_NAPI 0x0010
#define IFF_NAPI_FRAGS 0x0020
static void initialize_tun(void)
{
tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK);
if (tunfd == -1) {
printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n");
printf("otherwise fuzzing or reproducing might not work as intended\n");
return;
}
const int kTunFd = 252;
if (dup2(tunfd, kTunFd) < 0)
fail("dup2(tunfd, kTunFd) failed");
close(tunfd);
tunfd = kTunFd;
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ);
ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_NAPI | IFF_NAPI_FRAGS;
if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) {
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0)
fail("tun: ioctl(TUNSETIFF) failed");
}
if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0)
fail("tun: ioctl(TUNGETIFF) failed");
tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0;
execute_command(1, "sysctl -w net.ipv6.conf.%s.accept_dad=0", TUN_IFACE);
execute_command(1, "sysctl -w net.ipv6.conf.%s.router_solicitations=0",
TUN_IFACE);
execute_command(1, "ip link set dev %s address %s", TUN_IFACE, LOCAL_MAC);
execute_command(1, "ip addr add %s/24 dev %s", LOCAL_IPV4, TUN_IFACE);
execute_command(1, "ip -6 addr add %s/120 dev %s", LOCAL_IPV6, TUN_IFACE);
execute_command(1, "ip neigh add %s lladdr %s dev %s nud permanent",
REMOTE_IPV4, REMOTE_MAC, TUN_IFACE);
execute_command(1, "ip -6 neigh add %s lladdr %s dev %s nud permanent",
REMOTE_IPV6, REMOTE_MAC, TUN_IFACE);
execute_command(1, "ip link set dev %s up", TUN_IFACE);
}
#define DEV_IPV4 "172.20.20.%d"
#define DEV_IPV6 "fe80::%02hx"
#define DEV_MAC "aa:aa:aa:aa:aa:%02hx"
static void initialize_netdevices(void)
{
unsigned i;
const char* devtypes[] = {"ip6gretap", "bridge", "vcan", "bond", "team"};
const char* devnames[] = {"lo",
"sit0",
"bridge0",
"vcan0",
"tunl0",
"gre0",
"gretap0",
"ip_vti0",
"ip6_vti0",
"ip6tnl0",
"ip6gre0",
"ip6gretap0",
"erspan0",
"bond0",
"veth0",
"veth1",
"team0",
"veth0_to_bridge",
"veth1_to_bridge",
"veth0_to_bond",
"veth1_to_bond",
"veth0_to_team",
"veth1_to_team"};
const char* devmasters[] = {"bridge", "bond", "team"};
for (i = 0; i < sizeof(devtypes) / (sizeof(devtypes[0])); i++)
execute_command(0, "ip link add dev %s0 type %s", devtypes[i], devtypes[i]);
execute_command(0, "ip link add type veth");
for (i = 0; i < sizeof(devmasters) / (sizeof(devmasters[0])); i++) {
execute_command(
0, "ip link add name %s_slave_0 type veth peer name veth0_to_%s",
devmasters[i], devmasters[i]);
execute_command(
0, "ip link add name %s_slave_1 type veth peer name veth1_to_%s",
devmasters[i], devmasters[i]);
execute_command(0, "ip link set %s_slave_0 master %s0", devmasters[i],
devmasters[i]);
execute_command(0, "ip link set %s_slave_1 master %s0", devmasters[i],
devmasters[i]);
execute_command(0, "ip link set veth0_to_%s up", devmasters[i]);
execute_command(0, "ip link set veth1_to_%s up", devmasters[i]);
}
execute_command(0, "ip link set bridge_slave_0 up");
execute_command(0, "ip link set bridge_slave_1 up");
for (i = 0; i < sizeof(devnames) / (sizeof(devnames[0])); i++) {
char addr[32];
snprintf_check(addr, sizeof(addr), DEV_IPV4, i + 10);
execute_command(0, "ip -4 addr add %s/24 dev %s", addr, devnames[i]);
snprintf_check(addr, sizeof(addr), DEV_IPV6, i + 10);
execute_command(0, "ip -6 addr add %s/120 dev %s", addr, devnames[i]);
snprintf_check(addr, sizeof(addr), DEV_MAC, i + 10);
execute_command(0, "ip link set dev %s address %s", devnames[i], addr);
execute_command(0, "ip link set dev %s up", devnames[i]);
}
}
#define MAX_FRAGS 4
struct vnet_fragmentation {
uint32_t full;
uint32_t count;
uint32_t frags[MAX_FRAGS];
};
static uintptr_t syz_emit_ethernet(uintptr_t a0, uintptr_t a1, uintptr_t a2)
{
if (tunfd < 0)
return (uintptr_t)-1;
uint32_t length = a0;
char* data = (char*)a1;
struct vnet_fragmentation* frags = (struct vnet_fragmentation*)a2;
struct iovec vecs[MAX_FRAGS + 1];
uint32_t nfrags = 0;
if (!tun_frags_enabled || frags == NULL) {
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = length;
nfrags++;
} else {
bool full = true;
uint32_t i, count = 0;
full = frags->full;
count = frags->count;
if (count > MAX_FRAGS)
count = MAX_FRAGS;
for (i = 0; i < count && length != 0; i++) {
uint32_t size = 0;
size = frags->frags[i];
if (size > length)
size = length;
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = size;
nfrags++;
data += size;
length -= size;
}
if (length != 0 && (full || nfrags == 0)) {
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = length;
nfrags++;
}
}
return writev(tunfd, vecs, nfrags);
}
static void loop();
static void sandbox_common()
{
prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
setpgrp();
setsid();
struct rlimit rlim;
rlim.rlim_cur = rlim.rlim_max = 160 << 20;
setrlimit(RLIMIT_AS, &rlim);
rlim.rlim_cur = rlim.rlim_max = 8 << 20;
setrlimit(RLIMIT_MEMLOCK, &rlim);
rlim.rlim_cur = rlim.rlim_max = 136 << 20;
setrlimit(RLIMIT_FSIZE, &rlim);
rlim.rlim_cur = rlim.rlim_max = 1 << 20;
setrlimit(RLIMIT_STACK, &rlim);
rlim.rlim_cur = rlim.rlim_max = 0;
setrlimit(RLIMIT_CORE, &rlim);
if (unshare(CLONE_NEWNS)) {
}
if (unshare(CLONE_NEWIPC)) {
}
if (unshare(0x02000000)) {
}
if (unshare(CLONE_NEWUTS)) {
}
if (unshare(CLONE_SYSVSEM)) {
}
}
static int do_sandbox_none(void)
{
if (unshare(CLONE_NEWPID)) {
}
int pid = fork();
if (pid < 0)
fail("sandbox fork failed");
if (pid)
return pid;
sandbox_common();
if (unshare(CLONE_NEWNET)) {
}
initialize_tun();
initialize_netdevices();
loop();
doexit(1);
}
uint64_t r[1] = {0xffffffffffffffff};
void loop()
{
long res = 0;
memcpy((void*)0x20000000, "\xcd\xbf\x0e\x00\x00\x84", 6);
*(uint8_t*)0x20000006 = -1;
*(uint8_t*)0x20000007 = -1;
*(uint8_t*)0x20000008 = -1;
*(uint8_t*)0x20000009 = -1;
*(uint8_t*)0x2000000a = -1;
*(uint8_t*)0x2000000b = -1;
*(uint16_t*)0x2000000c = htobe16(0x86dd);
STORE_BY_BITMASK(uint8_t, 0x2000000e, 0, 0, 4);
STORE_BY_BITMASK(uint8_t, 0x2000000e, 6, 4, 4);
memcpy((void*)0x2000000f, "\x02\x29\x0f", 3);
*(uint16_t*)0x20000012 = htobe16(0x38);
*(uint8_t*)0x20000014 = 0x3a;
*(uint8_t*)0x20000015 = 0;
*(uint8_t*)0x20000016 = 0xfe;
*(uint8_t*)0x20000017 = 0x80;
*(uint8_t*)0x20000018 = 0;
*(uint8_t*)0x20000019 = 0;
*(uint8_t*)0x2000001a = 0;
*(uint8_t*)0x2000001b = 0;
*(uint8_t*)0x2000001c = 0;
*(uint8_t*)0x2000001d = 0;
*(uint8_t*)0x2000001e = 0;
*(uint8_t*)0x2000001f = 0;
*(uint8_t*)0x20000020 = 0;
*(uint8_t*)0x20000021 = 0;
*(uint8_t*)0x20000022 = 0;
*(uint8_t*)0x20000023 = 0;
*(uint8_t*)0x20000024 = 0;
*(uint8_t*)0x20000025 = 0;
*(uint8_t*)0x20000026 = -1;
*(uint8_t*)0x20000027 = 2;
*(uint8_t*)0x20000028 = 0;
*(uint8_t*)0x20000029 = 0;
*(uint8_t*)0x2000002a = 0;
*(uint8_t*)0x2000002b = 0;
*(uint8_t*)0x2000002c = 0;
*(uint8_t*)0x2000002d = 0;
*(uint8_t*)0x2000002e = 0;
*(uint8_t*)0x2000002f = 0;
*(uint8_t*)0x20000030 = 0;
*(uint8_t*)0x20000031 = 0;
*(uint8_t*)0x20000032 = 0;
*(uint8_t*)0x20000033 = 0;
*(uint8_t*)0x20000034 = 0;
*(uint8_t*)0x20000035 = 1;
*(uint8_t*)0x20000036 = 2;
*(uint8_t*)0x20000037 = 0;
*(uint16_t*)0x20000038 = 0;
*(uint32_t*)0x2000003a = htobe32(0);
STORE_BY_BITMASK(uint8_t, 0x2000003e, 0, 0, 4);
STORE_BY_BITMASK(uint8_t, 0x2000003e, 6, 4, 4);
memcpy((void*)0x2000003f, "\x94\x33\xdf", 3);
*(uint16_t*)0x20000042 = htobe16(0);
*(uint8_t*)0x20000044 = 0x3a;
*(uint8_t*)0x20000045 = 0;
*(uint64_t*)0x20000046 = htobe64(0);
*(uint64_t*)0x2000004e = htobe64(1);
*(uint8_t*)0x20000056 = 0xfe;
*(uint8_t*)0x20000057 = 0x80;
*(uint8_t*)0x20000058 = 0;
*(uint8_t*)0x20000059 = 0;
*(uint8_t*)0x2000005a = 0;
*(uint8_t*)0x2000005b = 0;
*(uint8_t*)0x2000005c = 0;
*(uint8_t*)0x2000005d = 0;
*(uint8_t*)0x2000005e = 0;
*(uint8_t*)0x2000005f = 0;
*(uint8_t*)0x20000060 = 0;
*(uint8_t*)0x20000061 = 0;
*(uint8_t*)0x20000062 = 0;
*(uint8_t*)0x20000063 = 0;
*(uint8_t*)0x20000064 = 0;
*(uint8_t*)0x20000065 = 0;
memcpy((void*)0x20000066, "\x80\x00\x00\xe7\x7f\x00\x04\x00", 8);
struct csum_inet csum_1;
csum_inet_init(&csum_1);
csum_inet_update(&csum_1, (const uint8_t*)0x20000016, 16);
csum_inet_update(&csum_1, (const uint8_t*)0x20000026, 16);
uint32_t csum_1_chunk_2 = 0x38000000;
csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_2, 4);
uint32_t csum_1_chunk_3 = 0x3a000000;
csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_3, 4);
csum_inet_update(&csum_1, (const uint8_t*)0x20000036, 56);
*(uint16_t*)0x20000038 = csum_inet_digest(&csum_1);
syz_emit_ethernet(0x6e, 0x20000000, 0);
res = syscall(__NR_socket, 0xa, 1, 0);
if (res != -1)
r[0] = res;
*(uint8_t*)0x200001c0 = 0xfe;
*(uint8_t*)0x200001c1 = 0x80;
*(uint8_t*)0x200001c2 = 0;
*(uint8_t*)0x200001c3 = 0;
*(uint8_t*)0x200001c4 = 0;
*(uint8_t*)0x200001c5 = 0;
*(uint8_t*)0x200001c6 = 0;
*(uint8_t*)0x200001c7 = 0;
*(uint8_t*)0x200001c8 = 0;
*(uint8_t*)0x200001c9 = 0;
*(uint8_t*)0x200001ca = 0;
*(uint8_t*)0x200001cb = 0;
*(uint8_t*)0x200001cc = 0;
*(uint8_t*)0x200001cd = 0;
*(uint8_t*)0x200001ce = 0;
*(uint8_t*)0x200001cf = 0;
*(uint64_t*)0x200001d0 = htobe64(0);
*(uint64_t*)0x200001d8 = htobe64(1);
*(uint8_t*)0x200001e0 = -1;
*(uint8_t*)0x200001e1 = 1;
*(uint8_t*)0x200001e2 = 0;
*(uint8_t*)0x200001e3 = 0;
*(uint8_t*)0x200001e4 = 0;
*(uint8_t*)0x200001e5 = 0;
*(uint8_t*)0x200001e6 = 0;
*(uint8_t*)0x200001e7 = 0;
*(uint8_t*)0x200001e8 = 0;
*(uint8_t*)0x200001e9 = 0;
*(uint8_t*)0x200001ea = 0;
*(uint8_t*)0x200001eb = 0;
*(uint8_t*)0x200001ec = 0;
*(uint8_t*)0x200001ed = 0;
*(uint8_t*)0x200001ee = 0;
*(uint8_t*)0x200001ef = 1;
*(uint32_t*)0x200001f0 = 0;
*(uint16_t*)0x200001f4 = 0xfffa;
*(uint16_t*)0x200001f6 = 0;
*(uint32_t*)0x200001f8 = 0;
*(uint64_t*)0x20000200 = 0;
*(uint32_t*)0x20000208 = 0x81000100;
*(uint32_t*)0x2000020c = 0;
syscall(__NR_ioctl, r[0], 0x890c, 0x200001c0);
}
int main()
{
syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
int pid = do_sandbox_none();
int status = 0;
while (waitpid(pid, &status, __WALL) != pid) {
}
return 0;
}