blob: 37913fd27af7c84d08a727b5dc2f330c3c12ec81 [file] [log] [blame]
// KASAN: use-after-free Read in v4l2_ioctl
// https://syzkaller.appspot.com/bug?id=ba05259158f35e969fff5418080482392e23ccf9
// status:dup
// autogenerated by syzkaller (https://github.com/google/syzkaller)
#define _GNU_SOURCE
#include <dirent.h>
#include <endian.h>
#include <errno.h>
#include <fcntl.h>
#include <setjmp.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mount.h>
#include <sys/prctl.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include <linux/usb/ch9.h>
unsigned long long procid;
static __thread int skip_segv;
static __thread jmp_buf segv_env;
static void segv_handler(int sig, siginfo_t* info, void* ctx)
{
uintptr_t addr = (uintptr_t)info->si_addr;
const uintptr_t prog_start = 1 << 20;
const uintptr_t prog_end = 100 << 20;
if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) &&
(addr < prog_start || addr > prog_end)) {
_longjmp(segv_env, 1);
}
exit(sig);
}
static void install_segv_handler(void)
{
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = SIG_IGN;
syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8);
syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8);
memset(&sa, 0, sizeof(sa));
sa.sa_sigaction = segv_handler;
sa.sa_flags = SA_NODEFER | SA_SIGINFO;
sigaction(SIGSEGV, &sa, NULL);
sigaction(SIGBUS, &sa, NULL);
}
#define NONFAILING(...) \
{ \
__atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \
if (_setjmp(segv_env) == 0) { \
__VA_ARGS__; \
} \
__atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \
}
static void sleep_ms(uint64_t ms)
{
usleep(ms * 1000);
}
static uint64_t current_time_ms(void)
{
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts))
exit(1);
return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000;
}
static bool write_file(const char* file, const char* what, ...)
{
char buf[1024];
va_list args;
va_start(args, what);
vsnprintf(buf, sizeof(buf), what, args);
va_end(args);
buf[sizeof(buf) - 1] = 0;
int len = strlen(buf);
int fd = open(file, O_WRONLY | O_CLOEXEC);
if (fd == -1)
return false;
if (write(fd, buf, len) != len) {
int err = errno;
close(fd);
errno = err;
return false;
}
close(fd);
return true;
}
#define USB_MAX_EP_NUM 32
struct usb_device_index {
struct usb_device_descriptor* dev;
struct usb_config_descriptor* config;
unsigned config_length;
struct usb_interface_descriptor* iface;
struct usb_endpoint_descriptor* eps[USB_MAX_EP_NUM];
unsigned eps_num;
};
static bool parse_usb_descriptor(char* buffer, size_t length,
struct usb_device_index* index)
{
if (length <
sizeof(*index->dev) + sizeof(*index->config) + sizeof(*index->iface))
return false;
index->dev = (struct usb_device_descriptor*)buffer;
index->config = (struct usb_config_descriptor*)(buffer + sizeof(*index->dev));
index->config_length = length - sizeof(*index->dev);
index->iface =
(struct usb_interface_descriptor*)(buffer + sizeof(*index->dev) +
sizeof(*index->config));
index->eps_num = 0;
size_t offset = 0;
while (true) {
if (offset == length)
break;
if (offset + 1 < length)
break;
uint8_t length = buffer[offset];
uint8_t type = buffer[offset + 1];
if (type == USB_DT_ENDPOINT) {
index->eps[index->eps_num] =
(struct usb_endpoint_descriptor*)(buffer + offset);
index->eps_num++;
}
if (index->eps_num == USB_MAX_EP_NUM)
break;
offset += length;
}
return true;
}
enum usb_fuzzer_event_type {
USB_FUZZER_EVENT_INVALID,
USB_FUZZER_EVENT_CONNECT,
USB_FUZZER_EVENT_DISCONNECT,
USB_FUZZER_EVENT_SUSPEND,
USB_FUZZER_EVENT_RESUME,
USB_FUZZER_EVENT_CONTROL,
};
struct usb_fuzzer_event {
uint32_t type;
uint32_t length;
char data[0];
};
struct usb_fuzzer_init {
uint64_t speed;
const char* driver_name;
const char* device_name;
};
struct usb_fuzzer_ep_io {
uint16_t ep;
uint16_t flags;
uint32_t length;
char data[0];
};
#define USB_FUZZER_IOCTL_INIT _IOW('U', 0, struct usb_fuzzer_init)
#define USB_FUZZER_IOCTL_RUN _IO('U', 1)
#define USB_FUZZER_IOCTL_EP0_READ _IOWR('U', 2, struct usb_fuzzer_event)
#define USB_FUZZER_IOCTL_EP0_WRITE _IOW('U', 3, struct usb_fuzzer_ep_io)
#define USB_FUZZER_IOCTL_EP_ENABLE _IOW('U', 4, struct usb_endpoint_descriptor)
#define USB_FUZZER_IOCTL_EP_WRITE _IOW('U', 6, struct usb_fuzzer_ep_io)
#define USB_FUZZER_IOCTL_CONFIGURE _IO('U', 8)
#define USB_FUZZER_IOCTL_VBUS_DRAW _IOW('U', 9, uint32_t)
int usb_fuzzer_open()
{
return open("/sys/kernel/debug/usb-fuzzer", O_RDWR);
}
int usb_fuzzer_init(int fd, uint32_t speed, const char* driver,
const char* device)
{
struct usb_fuzzer_init arg;
arg.speed = speed;
arg.driver_name = driver;
arg.device_name = device;
return ioctl(fd, USB_FUZZER_IOCTL_INIT, &arg);
}
int usb_fuzzer_run(int fd)
{
return ioctl(fd, USB_FUZZER_IOCTL_RUN, 0);
}
int usb_fuzzer_ep0_read(int fd, struct usb_fuzzer_event* event)
{
return ioctl(fd, USB_FUZZER_IOCTL_EP0_READ, event);
}
int usb_fuzzer_ep0_write(int fd, struct usb_fuzzer_ep_io* io)
{
return ioctl(fd, USB_FUZZER_IOCTL_EP0_WRITE, io);
}
int usb_fuzzer_ep_write(int fd, struct usb_fuzzer_ep_io* io)
{
return ioctl(fd, USB_FUZZER_IOCTL_EP_WRITE, io);
}
int usb_fuzzer_ep_enable(int fd, struct usb_endpoint_descriptor* desc)
{
return ioctl(fd, USB_FUZZER_IOCTL_EP_ENABLE, desc);
}
int usb_fuzzer_configure(int fd)
{
return ioctl(fd, USB_FUZZER_IOCTL_CONFIGURE, 0);
}
int usb_fuzzer_vbus_draw(int fd, uint32_t power)
{
return ioctl(fd, USB_FUZZER_IOCTL_VBUS_DRAW, power);
}
#define USB_MAX_PACKET_SIZE 1024
struct usb_fuzzer_control_event {
struct usb_fuzzer_event inner;
struct usb_ctrlrequest ctrl;
};
struct usb_fuzzer_ep_io_data {
struct usb_fuzzer_ep_io inner;
char data[USB_MAX_PACKET_SIZE];
};
struct vusb_connect_string_descriptor {
uint32_t len;
char* str;
} __attribute__((packed));
struct vusb_connect_descriptors {
uint32_t qual_len;
char* qual;
uint32_t bos_len;
char* bos;
uint32_t strs_len;
struct vusb_connect_string_descriptor strs[0];
} __attribute__((packed));
static volatile long syz_usb_connect(volatile long a0, volatile long a1,
volatile long a2, volatile long a3)
{
int64_t speed = a0;
int64_t dev_len = a1;
char* dev = (char*)a2;
struct vusb_connect_descriptors* conn_descs =
(struct vusb_connect_descriptors*)a3;
if (!dev)
return -1;
struct usb_device_index index;
memset(&index, 0, sizeof(index));
int rv = parse_usb_descriptor(dev, dev_len, &index);
if (!rv)
return -1;
int fd = usb_fuzzer_open();
if (fd < 0)
return -1;
char device[32];
sprintf(&device[0], "dummy_udc.%llu", procid);
rv = usb_fuzzer_init(fd, speed, "dummy_udc", &device[0]);
if (rv < 0)
return -1;
rv = usb_fuzzer_run(fd);
if (rv < 0)
return -1;
bool done = false;
while (!done) {
char* response_data = NULL;
uint32_t response_length = 0;
unsigned ep;
uint8_t str_idx;
struct usb_fuzzer_control_event event;
event.inner.type = 0;
event.inner.length = sizeof(event.ctrl);
rv = usb_fuzzer_ep0_read(fd, (struct usb_fuzzer_event*)&event);
if (rv < 0)
return -1;
if (event.inner.type != USB_FUZZER_EVENT_CONTROL)
continue;
switch (event.ctrl.bRequestType & USB_TYPE_MASK) {
case USB_TYPE_STANDARD:
switch (event.ctrl.bRequest) {
case USB_REQ_GET_DESCRIPTOR:
switch (event.ctrl.wValue >> 8) {
case USB_DT_DEVICE:
response_data = (char*)index.dev;
response_length = sizeof(*index.dev);
goto reply;
case USB_DT_CONFIG:
response_data = (char*)index.config;
response_length = index.config_length;
goto reply;
case USB_DT_STRING:
str_idx = (uint8_t)event.ctrl.wValue;
if (str_idx >= conn_descs->strs_len)
goto reply;
response_data = conn_descs->strs[str_idx].str;
response_length = conn_descs->strs[str_idx].len;
goto reply;
case USB_DT_BOS:
response_data = conn_descs->bos;
response_length = conn_descs->bos_len;
goto reply;
case USB_DT_DEVICE_QUALIFIER:
response_data = conn_descs->qual;
response_length = conn_descs->qual_len;
goto reply;
default:
exit(1);
continue;
}
break;
case USB_REQ_SET_CONFIGURATION:
rv = usb_fuzzer_vbus_draw(fd, index.config->bMaxPower);
if (rv < 0)
return -1;
rv = usb_fuzzer_configure(fd);
if (rv < 0)
return -1;
for (ep = 0; ep < index.eps_num; ep++) {
rv = usb_fuzzer_ep_enable(fd, index.eps[ep]);
if (rv < 0)
exit(1);
}
done = true;
goto reply;
default:
exit(1);
continue;
}
break;
default:
exit(1);
continue;
}
struct usb_fuzzer_ep_io_data response;
reply:
response.inner.ep = 0;
response.inner.flags = 0;
if (response_length > sizeof(response.data))
response_length = 0;
response.inner.length = response_length;
if (response_data)
memcpy(&response.data[0], response_data, response_length);
if (event.ctrl.wLength < response.inner.length)
response.inner.length = event.ctrl.wLength;
usb_fuzzer_ep0_write(fd, (struct usb_fuzzer_ep_io*)&response);
}
sleep_ms(200);
return fd;
}
struct vusb_descriptor {
uint8_t req_type;
uint8_t desc_type;
uint32_t len;
char data[0];
} __attribute__((packed));
struct vusb_descriptors {
uint32_t len;
struct vusb_descriptor* generic;
struct vusb_descriptor* descs[0];
} __attribute__((packed));
struct vusb_response {
uint8_t type;
uint8_t req;
uint32_t len;
char data[0];
} __attribute__((packed));
struct vusb_responses {
uint32_t len;
struct vusb_response* generic;
struct vusb_response* resps[0];
} __attribute__((packed));
static volatile long syz_usb_control_io(volatile long a0, volatile long a1,
volatile long a2)
{
int fd = a0;
struct vusb_descriptors* descs = (struct vusb_descriptors*)a1;
struct vusb_responses* resps = (struct vusb_responses*)a2;
struct usb_fuzzer_control_event event;
event.inner.type = 0;
event.inner.length = sizeof(event.ctrl);
int rv = usb_fuzzer_ep0_read(fd, (struct usb_fuzzer_event*)&event);
if (rv < 0)
return -1;
if (event.inner.type != USB_FUZZER_EVENT_CONTROL)
return -1;
uint8_t req = event.ctrl.bRequest;
uint8_t req_type = event.ctrl.bRequestType & USB_TYPE_MASK;
uint8_t desc_type = event.ctrl.wValue >> 8;
char* response_data = NULL;
uint32_t response_length = 0;
if (req == USB_REQ_GET_DESCRIPTOR) {
int i;
int descs_num = (descs->len - offsetof(struct vusb_descriptors, descs)) /
sizeof(descs->descs[0]);
for (i = 0; i < descs_num; i++) {
struct vusb_descriptor* desc = descs->descs[i];
if (!desc)
continue;
if (desc->req_type == req_type && desc->desc_type == desc_type) {
response_length = desc->len;
if (response_length != 0)
response_data = &desc->data[0];
goto reply;
}
}
if (descs->generic) {
response_data = &descs->generic->data[0];
response_length = descs->generic->len;
goto reply;
}
} else {
int i;
int resps_num = (resps->len - offsetof(struct vusb_responses, resps)) /
sizeof(resps->resps[0]);
for (i = 0; i < resps_num; i++) {
struct vusb_response* resp = resps->resps[i];
if (!resp)
continue;
if (resp->type == req_type && resp->req == req) {
response_length = resp->len;
if (response_length != 0)
response_data = &resp->data[0];
goto reply;
}
}
if (resps->generic) {
response_data = &resps->generic->data[0];
response_length = resps->generic->len;
goto reply;
}
}
return -1;
struct usb_fuzzer_ep_io_data response;
reply:
response.inner.ep = 0;
response.inner.flags = 0;
if (response_length > sizeof(response.data))
response_length = 0;
response.inner.length = response_length;
if (response_data)
memcpy(&response.data[0], response_data, response_length);
if (event.ctrl.wLength < response.inner.length)
response.inner.length = event.ctrl.wLength;
usb_fuzzer_ep0_write(fd, (struct usb_fuzzer_ep_io*)&response);
sleep_ms(200);
return 0;
}
static void kill_and_wait(int pid, int* status)
{
kill(-pid, SIGKILL);
kill(pid, SIGKILL);
int i;
for (i = 0; i < 100; i++) {
if (waitpid(-1, status, WNOHANG | __WALL) == pid)
return;
usleep(1000);
}
DIR* dir = opendir("/sys/fs/fuse/connections");
if (dir) {
for (;;) {
struct dirent* ent = readdir(dir);
if (!ent)
break;
if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0)
continue;
char abort[300];
snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort",
ent->d_name);
int fd = open(abort, O_WRONLY);
if (fd == -1) {
continue;
}
if (write(fd, abort, 1) < 0) {
}
close(fd);
}
closedir(dir);
} else {
}
while (waitpid(-1, status, __WALL) != pid) {
}
}
#define SYZ_HAVE_SETUP_TEST 1
static void setup_test()
{
prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
setpgrp();
write_file("/proc/self/oom_score_adj", "1000");
}
static void execute_one(void);
#define WAIT_FLAGS __WALL
static void loop(void)
{
int iter;
for (iter = 0;; iter++) {
int pid = fork();
if (pid < 0)
exit(1);
if (pid == 0) {
setup_test();
execute_one();
exit(0);
}
int status = 0;
uint64_t start = current_time_ms();
for (;;) {
if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid)
break;
sleep_ms(1);
if (current_time_ms() - start < 5 * 1000)
continue;
kill_and_wait(pid, &status);
break;
}
}
}
uint64_t r[1] = {0xffffffffffffffff};
void execute_one(void)
{
long res = 0;
NONFAILING(*(uint8_t*)0x20000000 = 0x12);
NONFAILING(*(uint8_t*)0x20000001 = 1);
NONFAILING(*(uint16_t*)0x20000002 = 0);
NONFAILING(*(uint8_t*)0x20000004 = 0xac);
NONFAILING(*(uint8_t*)0x20000005 = 0xf1);
NONFAILING(*(uint8_t*)0x20000006 = 0xfb);
NONFAILING(*(uint8_t*)0x20000007 = 8);
NONFAILING(*(uint16_t*)0x20000008 = 0x10c4);
NONFAILING(*(uint16_t*)0x2000000a = 0x818a);
NONFAILING(*(uint16_t*)0x2000000c = 0x3710);
NONFAILING(*(uint8_t*)0x2000000e = 0);
NONFAILING(*(uint8_t*)0x2000000f = 0);
NONFAILING(*(uint8_t*)0x20000010 = 0);
NONFAILING(*(uint8_t*)0x20000011 = 1);
NONFAILING(*(uint8_t*)0x20000012 = 9);
NONFAILING(*(uint8_t*)0x20000013 = 2);
NONFAILING(*(uint16_t*)0x20000014 = 0x12);
NONFAILING(*(uint8_t*)0x20000016 = 1);
NONFAILING(*(uint8_t*)0x20000017 = 0);
NONFAILING(*(uint8_t*)0x20000018 = 0);
NONFAILING(*(uint8_t*)0x20000019 = 0);
NONFAILING(*(uint8_t*)0x2000001a = 0);
NONFAILING(*(uint8_t*)0x2000001b = 9);
NONFAILING(*(uint8_t*)0x2000001c = 4);
NONFAILING(*(uint8_t*)0x2000001d = 0xd2);
NONFAILING(*(uint8_t*)0x2000001e = 0);
NONFAILING(*(uint8_t*)0x2000001f = 0);
NONFAILING(*(uint8_t*)0x20000020 = 3);
NONFAILING(*(uint8_t*)0x20000021 = 0);
NONFAILING(*(uint8_t*)0x20000022 = 0);
NONFAILING(*(uint8_t*)0x20000023 = 0);
res = syz_usb_connect(8, 0x24, 0x20000000, 0);
if (res != -1)
r[0] = res;
NONFAILING(*(uint32_t*)0x20000780 = 0x54);
NONFAILING(*(uint64_t*)0x20000784 = 0x20000500);
NONFAILING(*(uint8_t*)0x20000500 = 0);
NONFAILING(*(uint8_t*)0x20000501 = 0);
NONFAILING(*(uint32_t*)0x20000502 = 3);
NONFAILING(memcpy((void*)0x20000506, "\x01\xe0\x05", 3));
NONFAILING(*(uint64_t*)0x2000078c = 0);
NONFAILING(*(uint64_t*)0x20000794 = 0);
NONFAILING(*(uint64_t*)0x2000079c = 0);
NONFAILING(*(uint64_t*)0x200007a4 = 0);
NONFAILING(*(uint64_t*)0x200007ac = 0);
NONFAILING(*(uint64_t*)0x200007b4 = 0);
NONFAILING(*(uint64_t*)0x200007bc = 0);
NONFAILING(*(uint64_t*)0x200007c4 = 0);
NONFAILING(*(uint64_t*)0x200007cc = 0);
syz_usb_control_io(r[0], 0, 0x20000780);
}
int main(void)
{
syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
install_segv_handler();
for (procid = 0; procid < 6; procid++) {
if (fork() == 0) {
loop();
}
}
sleep(1000000);
return 0;
}