blob: 3b9a8bd4f63080bb1cc0e2d5a08248f02d03ac7c [file] [log] [blame]
/*
* Harmony chipset driver
*
* This is a sound driver for ASP's and Lasi's Harmony sound chip
* and is unlikely to be used for anything other than on a HP PA-RISC.
*
* Harmony is found in HP 712s, 715/new and many other GSC based machines.
* On older 715 machines you'll find the technically identical chip
* called 'Vivace'. Both Harmony and Vivace are supported by this driver.
*
* this ALSA driver is based on OSS driver by:
* Copyright 2000 (c) Linuxcare Canada, Alex deVries <alex@linuxcare.com>
* Copyright 2000-2002 (c) Helge Deller <deller@gmx.de>
* Copyright 2001 (c) Matthieu Delahaye <delahaym@esiee.fr>
*
* TODO:
* - use generic DMA interface and ioremap()/iounmap()
* - capture is still untested (and probaby non-working)
* - spin locks
* - implement non-consistent DMA pages
* - implement gain meter
* - module parameters
* - correct cleaning sequence
* - better error checking
* - try to have a better quality.
*
*/
/*
* Harmony chipset 'modus operandi'.
* - This chipset is found in some HP 32bit workstations, like 712, or B132 class.
* most of controls are done through registers. Register are found at a fixed offset
* from the hard physical adress, given in struct dev by register_parisc_driver.
*
* Playback and recording use 4kb pages (dma or not, depending on the machine).
*
* Most of PCM playback & capture is done through interrupt. When harmony needs
* a new buffer to put recorded data or read played PCM, it sends an interrupt.
* Bits 2 and 10 of DSTATUS register are '1' when harmony needs respectively
* a new page for recording and playing.
* Interrupt are disabled/enabled by writing to bit 32 of DSTATUS.
* Adresses of next page to be played is put in PNXTADD register, next page
* to be recorded is put in RNXTADD. There is 2 read-only registers, PCURADD and
* RCURADD that provides adress of current page.
*
* Harmony has no way to control full duplex or half duplex mode. It means
* that we always need to provide adresses of playback and capture data, even
* when this is not needed. That's why we statically alloc one graveyard
* buffer (to put recorded data in play-only mode) and a silence buffer.
*
* Bitrate, number of channels and data format are controlled with
* the CNTL register.
*
* Mixer work is done through one register (GAINCTL). Only input gain,
* output attenuation and general attenuation control is provided. There is
* also controls for enabling/disabling internal speaker and line
* input.
*
* Buffers used by this driver are all DMA consistent.
*/
#include <linux/delay.h>
#include <sound/driver.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/wait.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#include <sound/initval.h>
#include <sound/info.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/parisc-device.h>
MODULE_AUTHOR("Laurent Canet <canetl@esiee.fr>");
MODULE_DESCRIPTION("ALSA Harmony sound driver");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{ALSA,Harmony soundcard}}");
#undef DEBUG
#ifdef DEBUG
# define DPRINTK printk
#else
# define DPRINTK(x,...)
#endif
#define PFX "harmony: "
#define MAX_PCM_DEVICES 1
#define MAX_PCM_SUBSTREAMS 4
#define MAX_MIDI_DEVICES 0
#define HARMONY_BUF_SIZE 4096
#define MAX_BUFS 10
#define MAX_BUFFER_SIZE (MAX_BUFS * HARMONY_BUF_SIZE)
/* number of silence & graveyard buffers */
#define GRAVEYARD_BUFS 3
#define SILENCE_BUFS 3
#define HARMONY_CNTL_C 0x80000000
#define HARMONY_DSTATUS_PN 0x00000200
#define HARMONY_DSTATUS_RN 0x00000002
#define HARMONY_DSTATUS_IE 0x80000000
#define HARMONY_DF_16BIT_LINEAR 0x00000000
#define HARMONY_DF_8BIT_ULAW 0x00000001
#define HARMONY_DF_8BIT_ALAW 0x00000002
#define HARMONY_SS_MONO 0x00000000
#define HARMONY_SS_STEREO 0x00000001
/*
* Channels Mask in mixer register
* try some "reasonable" default gain values
*/
#define HARMONY_GAIN_TOTAL_SILENCE 0x00F00FFF
/* the following should be enough (mixer is
* very sensible on harmony)
*/
#define HARMONY_GAIN_DEFAULT 0x0F2FF082
/* useless since only one card is supported ATM */
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE;
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for Harmony device.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for Harmony device.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable Harmony device.");
/* Register offset (from base hpa) */
#define REG_ID 0x00
#define REG_RESET 0x04
#define REG_CNTL 0x08
#define REG_GAINCTL 0x0C
#define REG_PNXTADD 0x10
#define REG_PCURADD 0x14
#define REG_RNXTADD 0x18
#define REG_RCURADD 0x1C
#define REG_DSTATUS 0x20
#define REG_OV 0x24
#define REG_PIO 0x28
#define REG_DIAG 0x3C
/*
* main harmony structure
*/
typedef struct snd_card_harmony {
/* spinlocks (To be done) */
spinlock_t mixer_lock;
spinlock_t control_lock;
/* parameters */
int irq;
unsigned long hpa;
int id;
int rev;
u32 current_gain;
int data_format; /* HARMONY_DF_xx_BIT_xxx */
int sample_rate; /* HARMONY_SR_xx_KHZ */
int stereo_select; /* HARMONY_SS_MONO or HARMONY_SS_STEREO */
int format_initialized;
unsigned long ply_buffer;
int ply_buf;
int ply_count;
int ply_size;
int ply_stopped;
int ply_total;
unsigned long cap_buffer;
int cap_buf;
int cap_count;
int cap_size;
int cap_stopped;
int cap_total;
struct parisc_device *pa_dev;
struct snd_dma_device dma_dev;
/* the graveyard buffer is used as recording buffer when playback,
* because harmony always want a buffer to put recorded data */
struct snd_dma_buffer graveyard_dma;
int graveyard_count;
/* same thing for silence buffer */
struct snd_dma_buffer silence_dma;
int silence_count;
/* alsa stuff */
snd_card_t *card;
snd_pcm_t *pcm;
snd_pcm_substream_t *playback_substream;
snd_pcm_substream_t *capture_substream;
snd_info_entry_t *proc_entry;
} snd_card_harmony_t;
static snd_card_t *snd_harmony_cards[SNDRV_CARDS] = SNDRV_DEFAULT_PTR;
/* wait to be out of control mode */
static inline void snd_harmony_wait_cntl(snd_card_harmony_t *harmony)
{
int timeout = 5000;
while ( (gsc_readl(harmony->hpa+REG_CNTL) & HARMONY_CNTL_C) && --timeout)
{
/* Wait */ ;
}
if (timeout == 0) DPRINTK(KERN_DEBUG PFX "Error: wait cntl timeouted\n");
}
/*
* sample rate routines
*/
static unsigned int snd_card_harmony_rates[] = {
5125, 6615, 8000, 9600,
11025, 16000, 18900, 22050,
27428, 32000, 33075, 37800,
44100, 48000
};
static snd_pcm_hw_constraint_list_t hw_constraint_rates = {
.count = ARRAY_SIZE(snd_card_harmony_rates),
.list = snd_card_harmony_rates,
.mask = 0,
};
#define HARMONY_SR_8KHZ 0x08
#define HARMONY_SR_16KHZ 0x09
#define HARMONY_SR_27KHZ 0x0A
#define HARMONY_SR_32KHZ 0x0B
#define HARMONY_SR_48KHZ 0x0E
#define HARMONY_SR_9KHZ 0x0F
#define HARMONY_SR_5KHZ 0x10
#define HARMONY_SR_11KHZ 0x11
#define HARMONY_SR_18KHZ 0x12
#define HARMONY_SR_22KHZ 0x13
#define HARMONY_SR_37KHZ 0x14
#define HARMONY_SR_44KHZ 0x15
#define HARMONY_SR_33KHZ 0x16
#define HARMONY_SR_6KHZ 0x17
/* bits corresponding to the entries of snd_card_harmony_rates */
static unsigned int rate_bits[14] = {
HARMONY_SR_5KHZ, HARMONY_SR_6KHZ, HARMONY_SR_8KHZ,
HARMONY_SR_9KHZ, HARMONY_SR_11KHZ, HARMONY_SR_16KHZ,
HARMONY_SR_18KHZ, HARMONY_SR_22KHZ, HARMONY_SR_27KHZ,
HARMONY_SR_32KHZ, HARMONY_SR_33KHZ, HARMONY_SR_37KHZ,
HARMONY_SR_44KHZ, HARMONY_SR_48KHZ
};
/* snd_card_harmony_rate_bits
* @rate: index of current data rate in list
* returns: harmony hex code for registers
*/
static unsigned int snd_card_harmony_rate_bits(int rate)
{
unsigned int idx;
for (idx = 0; idx < ARRAY_SIZE(snd_card_harmony_rates); idx++)
if (snd_card_harmony_rates[idx] == rate)
return rate_bits[idx];
return HARMONY_SR_44KHZ; /* fallback */
}
/*
* update controls (data format, sample rate, number of channels)
* according to value supplied in data structure
*/
void snd_harmony_update_control(snd_card_harmony_t *harmony)
{
u32 default_cntl;
/* Set CNTL */
default_cntl = (HARMONY_CNTL_C | /* The C bit */
(harmony->data_format << 6) | /* Set the data format */
(harmony->stereo_select << 5) | /* Stereo select */
(harmony->sample_rate)); /* Set sample rate */
/* initialize CNTL */
snd_harmony_wait_cntl(harmony);
gsc_writel(default_cntl, harmony->hpa+REG_CNTL);
}
/*
* interruption controls routines
*/
static void snd_harmony_disable_interrupts(snd_card_harmony_t *chip)
{
snd_harmony_wait_cntl(chip);
gsc_writel(0, chip->hpa+REG_DSTATUS);
}
static void snd_harmony_enable_interrupts(snd_card_harmony_t *chip)
{
snd_harmony_wait_cntl(chip);
gsc_writel(HARMONY_DSTATUS_IE, chip->hpa+REG_DSTATUS);
}
/*
* interruption routine:
* The interrupt routine must provide adresse of next physical pages
* used by harmony
*/
static int snd_card_harmony_interrupt(int irq, void *dev, struct pt_regs *regs)
{
snd_card_harmony_t *harmony = (snd_card_harmony_t *)dev;
u32 dstatus = 0;
unsigned long hpa = harmony->hpa;
/* Turn off interrupts */
snd_harmony_disable_interrupts(harmony);
/* wait for control to free */
snd_harmony_wait_cntl(harmony);
/* Read dstatus and pcuradd (the current address) */
dstatus = gsc_readl(hpa+REG_DSTATUS);
/* Check if this is a request to get the next play buffer */
if (dstatus & HARMONY_DSTATUS_PN) {
if (harmony->playback_substream) {
harmony->ply_buf += harmony->ply_count;
harmony->ply_buf %= harmony->ply_size;
gsc_writel(harmony->ply_buffer + harmony->ply_buf,
hpa+REG_PNXTADD);
snd_pcm_period_elapsed(harmony->playback_substream);
harmony->ply_total++;
} else {
gsc_writel(harmony->silence_dma.addr +
(HARMONY_BUF_SIZE*harmony->silence_count),
hpa+REG_PNXTADD);
harmony->silence_count++;
harmony->silence_count %= SILENCE_BUFS;
}
}
/* Check if we're being asked to fill in a recording buffer */
if (dstatus & HARMONY_DSTATUS_RN) {
if (harmony->capture_substream) {
harmony->cap_buf += harmony->cap_count;
harmony->cap_buf %= harmony->cap_size;
gsc_writel(harmony->cap_buffer + harmony->cap_buf,
hpa+REG_RNXTADD);
snd_pcm_period_elapsed(harmony->capture_substream);
harmony->cap_total++;
} else {
/* graveyard buffer */
gsc_writel(harmony->graveyard_dma.addr +
(HARMONY_BUF_SIZE*harmony->graveyard_count),
hpa+REG_RNXTADD);
harmony->graveyard_count++;
harmony->graveyard_count %= GRAVEYARD_BUFS;
}
}
snd_harmony_enable_interrupts(harmony);
return IRQ_HANDLED;
}
/*
* proc entry
* this proc file will give some debugging info
*/
static void snd_harmony_proc_read(snd_info_entry_t *entry, snd_info_buffer_t *buffer)
{
snd_card_harmony_t *harmony = (snd_card_harmony_t *)entry->private_data;
snd_iprintf(buffer, "LASI Harmony driver\nLaurent Canet <canetl@esiee.fr>\n\n");
snd_iprintf(buffer, "IRQ %d, hpa %lx, id %d rev %d\n",
harmony->irq, harmony->hpa,
harmony->id, harmony->rev);
snd_iprintf(buffer, "Current gain %lx\n", (unsigned long) harmony->current_gain);
snd_iprintf(buffer, "\tsample rate=%d\n", harmony->sample_rate);
snd_iprintf(buffer, "\tstereo select=%d\n", harmony->stereo_select);
snd_iprintf(buffer, "\tbitperchan=%d\n\n", harmony->data_format);
snd_iprintf(buffer, "Play status:\n");
snd_iprintf(buffer, "\tstopped %d\n", harmony->ply_stopped);
snd_iprintf(buffer, "\tbuffer %lx, count %d\n", harmony->ply_buffer, harmony->ply_count);
snd_iprintf(buffer, "\tbuf %d size %d\n\n", harmony->ply_buf, harmony->ply_size);
snd_iprintf(buffer, "Capture status:\n");
snd_iprintf(buffer, "\tstopped %d\n", harmony->cap_stopped);
snd_iprintf(buffer, "\tbuffer %lx, count %d\n", harmony->cap_buffer, harmony->cap_count);
snd_iprintf(buffer, "\tbuf %d, size %d\n\n", harmony->cap_buf, harmony->cap_size);
snd_iprintf(buffer, "Funny stats: total played=%d, recorded=%d\n\n", harmony->ply_total, harmony->cap_total);
snd_iprintf(buffer, "Register:\n");
snd_iprintf(buffer, "\tgainctl: %lx\n", (unsigned long) gsc_readl(harmony->hpa+REG_GAINCTL));
snd_iprintf(buffer, "\tcntl: %lx\n", (unsigned long) gsc_readl(harmony->hpa+REG_CNTL));
snd_iprintf(buffer, "\tid: %lx\n", (unsigned long) gsc_readl(harmony->hpa+REG_ID));
snd_iprintf(buffer, "\tpcuradd: %lx\n", (unsigned long) gsc_readl(harmony->hpa+REG_PCURADD));
snd_iprintf(buffer, "\trcuradd: %lx\n", (unsigned long) gsc_readl(harmony->hpa+REG_RCURADD));
snd_iprintf(buffer, "\tpnxtadd: %lx\n", (unsigned long) gsc_readl(harmony->hpa+REG_PNXTADD));
snd_iprintf(buffer, "\trnxtadd: %lx\n", (unsigned long) gsc_readl(harmony->hpa+REG_RNXTADD));
snd_iprintf(buffer, "\tdstatus: %lx\n", (unsigned long) gsc_readl(harmony->hpa+REG_DSTATUS));
snd_iprintf(buffer, "\tov: %lx\n\n", (unsigned long) gsc_readl(harmony->hpa+REG_OV));
}
static void __devinit snd_harmony_proc_init(snd_card_harmony_t *harmony)
{
snd_info_entry_t *entry;
if (! snd_card_proc_new(harmony->card, "harmony", &entry))
snd_info_set_text_ops(entry, harmony, 2048, snd_harmony_proc_read);
}
/*
* PCM Stuff
*/
static int snd_card_harmony_playback_ioctl(snd_pcm_substream_t * substream,
unsigned int cmd,
void *arg)
{
return snd_pcm_lib_ioctl(substream, cmd, arg);
}
static int snd_card_harmony_capture_ioctl(snd_pcm_substream_t * substream,
unsigned int cmd,
void *arg)
{
return snd_pcm_lib_ioctl(substream, cmd, arg);
}
static int snd_card_harmony_playback_trigger(snd_pcm_substream_t * substream,
int cmd)
{
snd_card_harmony_t *harmony = snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_STOP:
if (harmony->ply_stopped)
return -EBUSY;
harmony->ply_stopped = 1;
snd_harmony_disable_interrupts(harmony);
break;
case SNDRV_PCM_TRIGGER_START:
if (!harmony->ply_stopped)
return -EBUSY;
harmony->ply_stopped = 0;
/* write the location of the first buffer to play */
gsc_writel(harmony->ply_buffer, harmony->hpa+REG_PNXTADD);
snd_harmony_enable_interrupts(harmony);
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_SUSPEND:
DPRINTK(KERN_INFO PFX "received unimplemented trigger: %d\n", cmd);
default:
return -EINVAL;
}
return 0;
}
static int snd_card_harmony_capture_trigger(snd_pcm_substream_t * substream,
int cmd)
{
snd_card_harmony_t *harmony = snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_STOP:
if (harmony->cap_stopped)
return -EBUSY;
harmony->cap_stopped = 1;
snd_harmony_disable_interrupts(harmony);
break;
case SNDRV_PCM_TRIGGER_START:
if (!harmony->cap_stopped)
return -EBUSY;
harmony->cap_stopped = 0;
snd_harmony_enable_interrupts(harmony);
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_SUSPEND:
DPRINTK(KERN_INFO PFX "Received unimplemented trigger: %d\n", cmd);
default:
return -EINVAL;
}
return 0;
}
/* set data format */
static int snd_harmony_set_data_format(snd_card_harmony_t *harmony, int pcm_format)
{
int old_format = harmony->data_format;
int new_format = old_format;
switch (pcm_format) {
case SNDRV_PCM_FORMAT_S16_BE:
new_format = HARMONY_DF_16BIT_LINEAR;
break;
case SNDRV_PCM_FORMAT_A_LAW:
new_format = HARMONY_DF_8BIT_ALAW;
break;
case SNDRV_PCM_FORMAT_MU_LAW:
new_format = HARMONY_DF_8BIT_ULAW;
break;
}
/* re-initialize silence buffer if needed */
if (old_format != new_format)
snd_pcm_format_set_silence(pcm_format, harmony->silence_dma.area,
(HARMONY_BUF_SIZE * SILENCE_BUFS * 8) / snd_pcm_format_width(pcm_format));
return new_format;
}
static int snd_card_harmony_playback_prepare(snd_pcm_substream_t * substream)
{
snd_card_harmony_t *harmony = snd_pcm_substream_chip(substream);
snd_pcm_runtime_t *runtime = substream->runtime;
harmony->ply_size = snd_pcm_lib_buffer_bytes(substream);
harmony->ply_count = snd_pcm_lib_period_bytes(substream);
harmony->ply_buf = 0;
harmony->ply_stopped = 1;
/* initialize given sample rate */
harmony->sample_rate = snd_card_harmony_rate_bits(runtime->rate);
/* data format */
harmony->data_format = snd_harmony_set_data_format(harmony, runtime->format);
/* number of channels */
if (runtime->channels == 2)
harmony->stereo_select = HARMONY_SS_STEREO;
else
harmony->stereo_select = HARMONY_SS_MONO;
DPRINTK(KERN_INFO PFX "Playback_prepare, sr=%d(%x), df=%x, ss=%x hpa=%lx\n", runtime->rate,
harmony->sample_rate, harmony->data_format, harmony->stereo_select, harmony->hpa);
snd_harmony_update_control(harmony);
harmony->format_initialized = 1;
harmony->ply_buffer = runtime->dma_addr;
return 0;
}
static int snd_card_harmony_capture_prepare(snd_pcm_substream_t * substream)
{
snd_pcm_runtime_t *runtime = substream->runtime;
snd_card_harmony_t *harmony = snd_pcm_substream_chip(substream);
harmony->cap_size = snd_pcm_lib_buffer_bytes(substream);
harmony->cap_count = snd_pcm_lib_period_bytes(substream);
harmony->cap_count = 0;
harmony->cap_stopped = 1;
/* initialize given sample rate */
harmony->sample_rate = snd_card_harmony_rate_bits(runtime->rate);
/* data format */
harmony->data_format = snd_harmony_set_data_format(harmony, runtime->format);
/* number of channels */
if (runtime->channels == 1)
harmony->stereo_select = HARMONY_SS_MONO;
else if (runtime->channels == 2)
harmony->stereo_select = HARMONY_SS_STEREO;
snd_harmony_update_control(harmony);
harmony->format_initialized = 1;
harmony->cap_buffer = runtime->dma_addr;
return 0;
}
static snd_pcm_uframes_t snd_card_harmony_capture_pointer(snd_pcm_substream_t * substream)
{
snd_pcm_runtime_t *runtime = substream->runtime;
snd_card_harmony_t *harmony = snd_pcm_substream_chip(substream);
unsigned long rcuradd;
int recorded;
if (harmony->cap_stopped) return 0;
if (harmony->capture_substream == NULL) return 0;
rcuradd = gsc_readl(harmony->hpa+REG_RCURADD);
recorded = (rcuradd - harmony->cap_buffer);
recorded %= harmony->cap_size;
return bytes_to_frames(runtime, recorded);
}
/*
*/
static snd_pcm_uframes_t snd_card_harmony_playback_pointer(snd_pcm_substream_t * substream)
{
snd_pcm_runtime_t *runtime = substream->runtime;
snd_card_harmony_t *harmony = snd_pcm_substream_chip(substream);
int played;
long int pcuradd = gsc_readl(harmony->hpa+REG_PCURADD);
if ((harmony->ply_stopped) || (harmony->playback_substream == NULL)) return 0;
if ((harmony->ply_buffer == 0) || (harmony->ply_size == 0)) return 0;
played = (pcuradd - harmony->ply_buffer);
printk(KERN_DEBUG PFX "Pointer is %lx-%lx = %d\n", pcuradd, harmony->ply_buffer, played);
if (pcuradd > harmony->ply_buffer + harmony->ply_size) return 0;
return bytes_to_frames(runtime, played);
}
static snd_pcm_hardware_t snd_card_harmony_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_JOINT_DUPLEX |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BLOCK_TRANSFER),
.formats = (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_BE |
SNDRV_PCM_FMTBIT_A_LAW | SNDRV_PCM_FMTBIT_MU_LAW),
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 5500,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = MAX_BUFFER_SIZE,
.period_bytes_min = HARMONY_BUF_SIZE,
.period_bytes_max = HARMONY_BUF_SIZE,
.periods_min = 1,
.periods_max = MAX_BUFS,
.fifo_size = 0,
};
static snd_pcm_hardware_t snd_card_harmony_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_JOINT_DUPLEX |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BLOCK_TRANSFER),
.formats = (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_BE |
SNDRV_PCM_FMTBIT_A_LAW | SNDRV_PCM_FMTBIT_MU_LAW),
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 5500,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = MAX_BUFFER_SIZE,
.period_bytes_min = HARMONY_BUF_SIZE,
.period_bytes_max = HARMONY_BUF_SIZE,
.periods_min = 1,
.periods_max = MAX_BUFS,
.fifo_size = 0,
};
static int snd_card_harmony_playback_open(snd_pcm_substream_t * substream)
{
snd_card_harmony_t *harmony = snd_pcm_substream_chip(substream);
snd_pcm_runtime_t *runtime = substream->runtime;
int err;
harmony->playback_substream = substream;
runtime->hw = snd_card_harmony_playback;
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraint_rates);
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
return 0;
}
static int snd_card_harmony_capture_open(snd_pcm_substream_t * substream)
{
snd_card_harmony_t *harmony = snd_pcm_substream_chip(substream);
snd_pcm_runtime_t *runtime = substream->runtime;
int err;
harmony->capture_substream = substream;
runtime->hw = snd_card_harmony_capture;
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraint_rates);
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
return 0;
}
static int snd_card_harmony_playback_close(snd_pcm_substream_t * substream)
{
snd_card_harmony_t *harmony = snd_pcm_substream_chip(substream);
harmony->playback_substream = NULL;
harmony->ply_size = 0;
harmony->ply_buf = 0;
harmony->ply_buffer = 0;
harmony->ply_count = 0;
harmony->ply_stopped = 1;
harmony->format_initialized = 0;
return 0;
}
static int snd_card_harmony_capture_close(snd_pcm_substream_t * substream)
{
snd_card_harmony_t *harmony = snd_pcm_substream_chip(substream);
harmony->capture_substream = NULL;
harmony->cap_size = 0;
harmony->cap_buf = 0;
harmony->cap_buffer = 0;
harmony->cap_count = 0;
harmony->cap_stopped = 1;
harmony->format_initialized = 0;
return 0;
}
static int snd_card_harmony_hw_params(snd_pcm_substream_t *substream,
snd_pcm_hw_params_t * hw_params)
{
int err;
snd_card_harmony_t *harmony = snd_pcm_substream_chip(substream);
err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
if (err > 0 && harmony->dma_dev.type == SNDRV_DMA_TYPE_CONTINUOUS)
substream->runtime->dma_addr = __pa(substream->runtime->dma_area);
DPRINTK(KERN_INFO PFX "HW Params returned %d, dma_addr %lx\n", err,
(unsigned long)substream->runtime->dma_addr);
return err;
}
static int snd_card_harmony_hw_free(snd_pcm_substream_t *substream)
{
snd_pcm_lib_free_pages(substream);
return 0;
}
static snd_pcm_ops_t snd_card_harmony_playback_ops = {
.open = snd_card_harmony_playback_open,
.close = snd_card_harmony_playback_close,
.ioctl = snd_card_harmony_playback_ioctl,
.hw_params = snd_card_harmony_hw_params,
.hw_free = snd_card_harmony_hw_free,
.prepare = snd_card_harmony_playback_prepare,
.trigger = snd_card_harmony_playback_trigger,
.pointer = snd_card_harmony_playback_pointer,
};
static snd_pcm_ops_t snd_card_harmony_capture_ops = {
.open = snd_card_harmony_capture_open,
.close = snd_card_harmony_capture_close,
.ioctl = snd_card_harmony_capture_ioctl,
.hw_params = snd_card_harmony_hw_params,
.hw_free = snd_card_harmony_hw_free,
.prepare = snd_card_harmony_capture_prepare,
.trigger = snd_card_harmony_capture_trigger,
.pointer = snd_card_harmony_capture_pointer,
};
static int snd_card_harmony_pcm_init(snd_card_harmony_t *harmony)
{
snd_pcm_t *pcm;
int err;
/* Request that IRQ */
if (request_irq(harmony->irq, snd_card_harmony_interrupt, 0 ,"harmony", harmony)) {
printk(KERN_ERR PFX "Error requesting irq %d.\n", harmony->irq);
return -EFAULT;
}
snd_harmony_disable_interrupts(harmony);
if ((err = snd_pcm_new(harmony->card, "Harmony", 0, 1, 1, &pcm)) < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_card_harmony_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_card_harmony_capture_ops);
pcm->private_data = harmony;
pcm->info_flags = 0;
strcpy(pcm->name, "Harmony");
harmony->pcm = pcm;
/* initialize graveyard buffer */
harmony->dma_dev.type = SNDRV_DMA_TYPE_DEV;
harmony->dma_dev.dev = &harmony->pa_dev->dev;
err = snd_dma_alloc_pages(harmony->dma_dev.type,
harmony->dma_dev.dev,
HARMONY_BUF_SIZE*GRAVEYARD_BUFS,
&harmony->graveyard_dma);
if (err == -ENOMEM) {
/* use continuous buffers */
harmony->dma_dev.type = SNDRV_DMA_TYPE_CONTINUOUS;
harmony->dma_dev.dev = snd_dma_continuous_data(GFP_KERNEL);
err = snd_dma_alloc_pages(harmony->dma_dev.type,
harmony->dma_dev.dev,
HARMONY_BUF_SIZE*GRAVEYARD_BUFS,
&harmony->graveyard_dma);
}
if (err < 0) {
printk(KERN_ERR PFX "can't allocate graveyard buffer\n");
return err;
}
harmony->graveyard_count = 0;
/* initialize silence buffers */
err = snd_dma_alloc_pages(harmony->dma_dev.type,
harmony->dma_dev.dev,
HARMONY_BUF_SIZE*SILENCE_BUFS,
&harmony->silence_dma);
if (err < 0) {
printk(KERN_ERR PFX "can't allocate silence buffer\n");
return err;
}
harmony->silence_count = 0;
if (harmony->dma_dev.type == SNDRV_DMA_TYPE_CONTINUOUS) {
harmony->graveyard_dma.addr = __pa(harmony->graveyard_dma.area);
harmony->silence_dma.addr = __pa(harmony->silence_dma.area);
}
harmony->ply_stopped = harmony->cap_stopped = 1;
harmony->playback_substream = NULL;
harmony->capture_substream = NULL;
harmony->graveyard_count = 0;
err = snd_pcm_lib_preallocate_pages_for_all(pcm, harmony->dma_dev.type,
harmony->dma_dev.dev,
MAX_BUFFER_SIZE, MAX_BUFFER_SIZE);
if (err < 0) {
printk(KERN_ERR PFX "buffer allocation error %d\n", err);
// return err;
}
return 0;
}
/*
* mixer routines
*/
static void snd_harmony_set_new_gain(snd_card_harmony_t *harmony)
{
DPRINTK(KERN_INFO PFX "Setting new gain %x at %lx\n", harmony->current_gain, harmony->hpa+REG_GAINCTL);
/* Wait until we're out of control mode */
snd_harmony_wait_cntl(harmony);
gsc_writel(harmony->current_gain, harmony->hpa+REG_GAINCTL);
}
#define HARMONY_VOLUME(xname, left_shift, right_shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_harmony_mixercontrol_info, \
.get = snd_harmony_volume_get, .put = snd_harmony_volume_put, \
.private_value = ((left_shift) | ((right_shift) << 8) | ((mask) << 16) | ((invert) << 24)) }
static int snd_harmony_mixercontrol_info(snd_kcontrol_t * kcontrol, snd_ctl_elem_info_t * uinfo)
{
int mask = (kcontrol->private_value >> 16) & 0xff;
int left_shift = (kcontrol->private_value) & 0xff;
int right_shift = (kcontrol->private_value >> 8) & 0xff;
uinfo->type = (mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER);
uinfo->count = (left_shift == right_shift) ? 1 : 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_harmony_volume_get(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
snd_card_harmony_t *harmony = snd_kcontrol_chip(kcontrol);
int shift_left = (kcontrol->private_value) & 0xff;
int shift_right = (kcontrol->private_value >> 8) & 0xff;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
unsigned long flags;
int left, right;
spin_lock_irqsave(&harmony->mixer_lock, flags);
left = (harmony->current_gain >> shift_left) & mask;
right = (harmony->current_gain >> shift_right) & mask;
if (invert) {
left = mask - left;
right = mask - right;
}
ucontrol->value.integer.value[0] = left;
ucontrol->value.integer.value[1] = right;
spin_unlock_irqrestore(&harmony->mixer_lock, flags);
return 0;
}
static int snd_harmony_volume_put(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
snd_card_harmony_t *harmony = snd_kcontrol_chip(kcontrol);
int shift_left = (kcontrol->private_value) & 0xff;
int shift_right = (kcontrol->private_value >> 8) & 0xff;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
unsigned long flags;
int left, right;
int old_gain = harmony->current_gain;
left = ucontrol->value.integer.value[0] & mask;
right = ucontrol->value.integer.value[1] & mask;
if (invert) {
left = mask - left;
right = mask - right;
}
spin_lock_irqsave(&harmony->mixer_lock, flags);
harmony->current_gain = harmony->current_gain & ~( (mask << shift_right) | (mask << shift_left));
harmony->current_gain = harmony->current_gain | ((left << shift_left) | (right << shift_right) );
snd_harmony_set_new_gain(harmony);
spin_unlock_irqrestore(&harmony->mixer_lock, flags);
return (old_gain - harmony->current_gain);
}
#define HARMONY_CONTROLS (sizeof(snd_harmony_controls)/sizeof(snd_kcontrol_new_t))
static snd_kcontrol_new_t snd_harmony_controls[] = {
HARMONY_VOLUME("PCM Capture Volume", 12, 16, 0x0f, 0),
HARMONY_VOLUME("Master Volume", 20, 20, 0x0f, 1),
HARMONY_VOLUME("PCM Playback Volume", 6, 0, 0x3f, 1),
};
static void __init snd_harmony_reset_codec(snd_card_harmony_t *harmony)
{
snd_harmony_wait_cntl(harmony);
gsc_writel(1, harmony->hpa+REG_RESET);
mdelay(50); /* wait 50 ms */
gsc_writel(0, harmony->hpa+REG_RESET);
}
/*
* Mute all the output and reset Harmony.
*/
static void __init snd_harmony_mixer_reset(snd_card_harmony_t *harmony)
{
harmony->current_gain = HARMONY_GAIN_TOTAL_SILENCE;
snd_harmony_set_new_gain(harmony);
snd_harmony_reset_codec(harmony);
harmony->current_gain = HARMONY_GAIN_DEFAULT;
snd_harmony_set_new_gain(harmony);
}
static int __init snd_card_harmony_mixer_init(snd_card_harmony_t *harmony)
{
snd_card_t *card = harmony->card;
int idx, err;
snd_assert(harmony != NULL, return -EINVAL);
strcpy(card->mixername, "Harmony Gain control interface");
for (idx = 0; idx < HARMONY_CONTROLS; idx++) {
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_harmony_controls[idx], harmony))) < 0)
return err;
}
snd_harmony_mixer_reset(harmony);
return 0;
}
static int snd_card_harmony_create(snd_card_t *card, struct parisc_device *pa_dev, snd_card_harmony_t *harmony)
{
u32 cntl;
harmony->card = card;
harmony->pa_dev = pa_dev;
/* Set the HPA of harmony */
harmony->hpa = pa_dev->hpa;
harmony->irq = pa_dev->irq;
if (!harmony->irq) {
printk(KERN_ERR PFX "no irq found\n");
return -ENODEV;
}
/* Grab the ID and revision from the device */
harmony->id = (gsc_readl(harmony->hpa+REG_ID)&0x00ff0000) >> 16;
if ((harmony->id | 1) != 0x15) {
printk(KERN_WARNING PFX "wrong harmony id 0x%02x\n", harmony->id);
return -EBUSY;
}
cntl = gsc_readl(harmony->hpa+REG_CNTL);
harmony->rev = (cntl>>20) & 0xff;
printk(KERN_INFO "Lasi Harmony Audio driver h/w id %i, rev. %i at 0x%lx, IRQ %i\n", harmony->id, harmony->rev, pa_dev->hpa, harmony->irq);
/* Make sure the control bit isn't set, although I don't think it
ever is. */
if (cntl & HARMONY_CNTL_C) {
printk(KERN_WARNING PFX "CNTL busy\n");
harmony->hpa = 0;
return -EBUSY;
}
return 0;
}
static int __init snd_card_harmony_probe(struct parisc_device *pa_dev)
{
static int dev;
snd_card_harmony_t *chip;
snd_card_t *card;
int err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
snd_harmony_cards[dev] = snd_card_new(index[dev], id[dev], THIS_MODULE,
sizeof(snd_card_harmony_t));
card = snd_harmony_cards[dev];
if (card == NULL)
return -ENOMEM;
chip = (struct snd_card_harmony *)card->private_data;
spin_lock_init(&chip->control_lock);
spin_lock_init(&chip->mixer_lock);
if ((err = snd_card_harmony_create(card, pa_dev, chip)) < 0) {
printk(KERN_ERR PFX "Creation failed\n");
snd_card_free(card);
return err;
}
if ((err = snd_card_harmony_pcm_init(chip)) < 0) {
printk(KERN_ERR PFX "PCM Init failed\n");
snd_card_free(card);
return err;
}
if ((err = snd_card_harmony_mixer_init(chip)) < 0) {
printk(KERN_ERR PFX "Mixer init failed\n");
snd_card_free(card);
return err;
}
snd_harmony_proc_init(chip);
strcpy(card->driver, "Harmony");
strcpy(card->shortname, "ALSA driver for LASI Harmony");
sprintf(card->longname, "%s at h/w, id %i, rev. %i hpa 0x%lx, IRQ %i\n",card->shortname, chip->id, chip->rev, pa_dev->hpa, chip->irq);
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
printk(KERN_DEBUG PFX "Successfully registered harmony pcm backend & mixer %d\n", dev);
dev++;
return 0;
}
static struct parisc_device_id snd_card_harmony_devicetbl[] = {
{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007A }, /* Bushmaster/Flounder */
{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007B }, /* 712/715 Audio */
{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007E }, /* Pace Audio */
{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007F }, /* Outfield / Coral II */
{ 0, }
};
MODULE_DEVICE_TABLE(parisc, snd_card_harmony_devicetbl);
/*
* bloc device parisc. c'est une structure qui definit un device
* que l'on trouve sur parisc.
* On y trouve les differents numeros HVERSION correspondant au device
* en question (ce qui permet a l'inventory de l'identifier) et la fonction
* d'initialisation du chose
*/
static struct parisc_driver snd_card_harmony_driver = {
.name = "Lasi ALSA Harmony",
.id_table = snd_card_harmony_devicetbl,
.probe = snd_card_harmony_probe,
};
static int __init alsa_card_harmony_init(void)
{
int err;
if ((err = register_parisc_driver(&snd_card_harmony_driver)) < 0) {
printk(KERN_ERR "Harmony soundcard not found or device busy\n");
return err;
}
return 0;
}
static void __exit alsa_card_harmony_exit(void)
{
int idx;
snd_card_harmony_t *harmony;
for (idx = 0; idx < SNDRV_CARDS; idx++)
{
if (snd_harmony_cards[idx] != NULL)
{
DPRINTK(KERN_INFO PFX "Freeing card %d\n", idx);
harmony = snd_harmony_cards[idx]->private_data;
free_irq(harmony->irq, harmony);
printk(KERN_INFO PFX "Card unloaded %d, irq=%d\n", idx, harmony->irq);
snd_card_free(snd_harmony_cards[idx]);
}
}
if (unregister_parisc_driver(&snd_card_harmony_driver) < 0)
printk(KERN_ERR PFX "Failed to unregister Harmony driver\n");
}
module_init(alsa_card_harmony_init)
module_exit(alsa_card_harmony_exit)