blob: 2b9bbcd230b9b21d0614576ac235adc8a074175d [file] [log] [blame]
/*
* q_sfq.c SFQ.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <math.h>
#include "utils.h"
#include "tc_util.h"
#include "tc_red.h"
static void explain(void)
{
fprintf(stderr,
"Usage: ... sfq [ limit NUMBER ] [ perturb SECS ] [ quantum BYTES ]\n"
" [ divisor NUMBER ] [ flows NUMBER] [ depth NUMBER ]\n"
" [ headdrop ]\n"
" [ redflowlimit BYTES ] [ min BYTES ] [ max BYTES ]\n"
" [ avpkt BYTES ] [ burst PACKETS ] [ probability P ]\n"
" [ ecn ] [ harddrop ]\n");
}
static int sfq_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n, const char *dev)
{
int ok = 0, red = 0;
struct tc_sfq_qopt_v1 opt = {};
unsigned int burst = 0;
int wlog;
unsigned int avpkt = 1000;
double probability = 0.02;
while (argc > 0) {
if (strcmp(*argv, "quantum") == 0) {
NEXT_ARG();
if (get_size(&opt.v0.quantum, *argv)) {
fprintf(stderr, "Illegal \"limit\"\n");
return -1;
}
ok++;
} else if (strcmp(*argv, "perturb") == 0) {
NEXT_ARG();
if (get_integer(&opt.v0.perturb_period, *argv, 0)) {
fprintf(stderr, "Illegal \"perturb\"\n");
return -1;
}
ok++;
} else if (strcmp(*argv, "limit") == 0) {
NEXT_ARG();
if (get_u32(&opt.v0.limit, *argv, 0)) {
fprintf(stderr, "Illegal \"limit\"\n");
return -1;
}
if (opt.v0.limit < 2) {
fprintf(stderr, "Illegal \"limit\", must be > 1\n");
return -1;
}
ok++;
} else if (strcmp(*argv, "divisor") == 0) {
NEXT_ARG();
if (get_u32(&opt.v0.divisor, *argv, 0)) {
fprintf(stderr, "Illegal \"divisor\"\n");
return -1;
}
ok++;
} else if (strcmp(*argv, "flows") == 0) {
NEXT_ARG();
if (get_u32(&opt.v0.flows, *argv, 0)) {
fprintf(stderr, "Illegal \"flows\"\n");
return -1;
}
ok++;
} else if (strcmp(*argv, "depth") == 0) {
NEXT_ARG();
if (get_u32(&opt.depth, *argv, 0)) {
fprintf(stderr, "Illegal \"flows\"\n");
return -1;
}
ok++;
} else if (strcmp(*argv, "headdrop") == 0) {
opt.headdrop = 1;
ok++;
} else if (strcmp(*argv, "redflowlimit") == 0) {
NEXT_ARG();
if (get_u32(&opt.limit, *argv, 0)) {
fprintf(stderr, "Illegal \"redflowlimit\"\n");
return -1;
}
red++;
} else if (strcmp(*argv, "min") == 0) {
NEXT_ARG();
if (get_u32(&opt.qth_min, *argv, 0)) {
fprintf(stderr, "Illegal \"min\"\n");
return -1;
}
red++;
} else if (strcmp(*argv, "max") == 0) {
NEXT_ARG();
if (get_u32(&opt.qth_max, *argv, 0)) {
fprintf(stderr, "Illegal \"max\"\n");
return -1;
}
red++;
} else if (strcmp(*argv, "burst") == 0) {
NEXT_ARG();
if (get_unsigned(&burst, *argv, 0)) {
fprintf(stderr, "Illegal \"burst\"\n");
return -1;
}
red++;
} else if (strcmp(*argv, "avpkt") == 0) {
NEXT_ARG();
if (get_size(&avpkt, *argv)) {
fprintf(stderr, "Illegal \"avpkt\"\n");
return -1;
}
red++;
} else if (strcmp(*argv, "probability") == 0) {
NEXT_ARG();
if (sscanf(*argv, "%lg", &probability) != 1) {
fprintf(stderr, "Illegal \"probability\"\n");
return -1;
}
red++;
} else if (strcmp(*argv, "ecn") == 0) {
opt.flags |= TC_RED_ECN;
red++;
} else if (strcmp(*argv, "harddrop") == 0) {
opt.flags |= TC_RED_HARDDROP;
red++;
} else if (strcmp(*argv, "help") == 0) {
explain();
return -1;
} else {
fprintf(stderr, "What is \"%s\"?\n", *argv);
explain();
return -1;
}
argc--; argv++;
}
if (red) {
if (!opt.limit) {
fprintf(stderr, "Required parameter (redflowlimit) is missing\n");
return -1;
}
/* Compute default min/max thresholds based on
Sally Floyd's recommendations:
http://www.icir.org/floyd/REDparameters.txt
*/
if (!opt.qth_max)
opt.qth_max = opt.limit / 4;
if (!opt.qth_min)
opt.qth_min = opt.qth_max / 3;
if (!burst)
burst = (2 * opt.qth_min + opt.qth_max) / (3 * avpkt);
if (opt.qth_max > opt.limit) {
fprintf(stderr, "\"max\" is larger than \"limit\"\n");
return -1;
}
if (opt.qth_min >= opt.qth_max) {
fprintf(stderr, "\"min\" is not smaller than \"max\"\n");
return -1;
}
wlog = tc_red_eval_ewma(opt.qth_min, burst, avpkt);
if (wlog < 0) {
fprintf(stderr, "SFQ: failed to calculate EWMA constant.\n");
return -1;
}
if (wlog >= 10)
fprintf(stderr, "SFQ: WARNING. Burst %u seems to be too large.\n", burst);
opt.Wlog = wlog;
wlog = tc_red_eval_P(opt.qth_min, opt.qth_max, probability);
if (wlog < 0) {
fprintf(stderr, "SFQ: failed to calculate probability.\n");
return -1;
}
opt.Plog = wlog;
opt.max_P = probability * pow(2, 32);
}
if (ok || red)
addattr_l(n, 1024, TCA_OPTIONS, &opt, sizeof(opt));
return 0;
}
static int sfq_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
struct tc_sfq_qopt *qopt;
struct tc_sfq_qopt_v1 *qopt_ext = NULL;
SPRINT_BUF(b1);
SPRINT_BUF(b2);
SPRINT_BUF(b3);
if (opt == NULL)
return 0;
if (RTA_PAYLOAD(opt) < sizeof(*qopt))
return -1;
if (RTA_PAYLOAD(opt) >= sizeof(*qopt_ext))
qopt_ext = RTA_DATA(opt);
qopt = RTA_DATA(opt);
print_uint(PRINT_ANY, "limit", "limit %up ", qopt->limit);
print_uint(PRINT_JSON, "quantum", NULL, qopt->quantum);
print_string(PRINT_FP, NULL, "quantum %s ",
sprint_size(qopt->quantum, b1));
if (qopt_ext && qopt_ext->depth)
print_uint(PRINT_ANY, "depth", "depth %u ", qopt_ext->depth);
if (qopt_ext && qopt_ext->headdrop)
print_bool(PRINT_ANY, "headdrop", "headdrop ", true);
if (show_details)
print_uint(PRINT_ANY, "flows", "flows %u ", qopt->flows);
print_uint(PRINT_ANY, "divisor", "divisor %u ", qopt->divisor);
if (qopt->perturb_period)
print_int(PRINT_ANY, "perturb", "perturb %dsec ",
qopt->perturb_period);
if (qopt_ext && qopt_ext->qth_min) {
print_uint(PRINT_ANY, "ewma", "ewma %u ", qopt_ext->Wlog);
print_uint(PRINT_JSON, "min", NULL, qopt_ext->qth_min);
print_string(PRINT_FP, NULL, "min %s ",
sprint_size(qopt_ext->qth_min, b2));
print_uint(PRINT_JSON, "max", NULL, qopt_ext->qth_max);
print_string(PRINT_FP, NULL, "max %s ",
sprint_size(qopt_ext->qth_max, b3));
print_float(PRINT_ANY, "probability", "probability %lg ",
qopt_ext->max_P / pow(2, 32));
tc_red_print_flags(qopt_ext->flags);
if (show_stats) {
print_nl();
print_uint(PRINT_ANY, "prob_mark", " prob_mark %u",
qopt_ext->stats.prob_mark);
print_uint(PRINT_ANY, "prob_mark_head",
" prob_mark_head %u",
qopt_ext->stats.prob_mark_head);
print_uint(PRINT_ANY, "prob_drop", " prob_drop %u",
qopt_ext->stats.prob_drop);
print_nl();
print_uint(PRINT_ANY, "forced_mark",
" forced_mark %u",
qopt_ext->stats.forced_mark);
print_uint(PRINT_ANY, "forced_mark_head",
" forced_mark_head %u",
qopt_ext->stats.forced_mark_head);
print_uint(PRINT_ANY, "forced_drop", " forced_drop %u",
qopt_ext->stats.forced_drop);
}
}
return 0;
}
static int sfq_print_xstats(struct qdisc_util *qu, FILE *f,
struct rtattr *xstats)
{
struct tc_sfq_xstats *st;
if (xstats == NULL)
return 0;
if (RTA_PAYLOAD(xstats) < sizeof(*st))
return -1;
st = RTA_DATA(xstats);
print_int(PRINT_ANY, "allot", " allot %d", st->allot);
return 0;
}
struct qdisc_util sfq_qdisc_util = {
.id = "sfq",
.parse_qopt = sfq_parse_opt,
.print_qopt = sfq_print_opt,
.print_xstats = sfq_print_xstats,
};