| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * Macros and functions to access KVM PTEs (also known as SPTEs) |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2020 Red Hat, Inc. and/or its affiliates. |
| */ |
| |
| |
| #include <linux/kvm_host.h> |
| #include "mmu.h" |
| #include "mmu_internal.h" |
| #include "x86.h" |
| #include "spte.h" |
| |
| #include <asm/e820/api.h> |
| |
| u64 __read_mostly shadow_nx_mask; |
| u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ |
| u64 __read_mostly shadow_user_mask; |
| u64 __read_mostly shadow_accessed_mask; |
| u64 __read_mostly shadow_dirty_mask; |
| u64 __read_mostly shadow_mmio_value; |
| u64 __read_mostly shadow_mmio_access_mask; |
| u64 __read_mostly shadow_present_mask; |
| u64 __read_mostly shadow_me_mask; |
| u64 __read_mostly shadow_acc_track_mask; |
| |
| u64 __read_mostly shadow_nonpresent_or_rsvd_mask; |
| u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; |
| |
| u8 __read_mostly shadow_phys_bits; |
| |
| static u64 generation_mmio_spte_mask(u64 gen) |
| { |
| u64 mask; |
| |
| WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); |
| BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK); |
| |
| mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK; |
| mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK; |
| return mask; |
| } |
| |
| u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) |
| { |
| u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; |
| u64 mask = generation_mmio_spte_mask(gen); |
| u64 gpa = gfn << PAGE_SHIFT; |
| |
| access &= shadow_mmio_access_mask; |
| mask |= shadow_mmio_value | access; |
| mask |= gpa | shadow_nonpresent_or_rsvd_mask; |
| mask |= (gpa & shadow_nonpresent_or_rsvd_mask) |
| << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; |
| |
| return mask; |
| } |
| |
| static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) |
| { |
| if (pfn_valid(pfn)) |
| return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && |
| /* |
| * Some reserved pages, such as those from NVDIMM |
| * DAX devices, are not for MMIO, and can be mapped |
| * with cached memory type for better performance. |
| * However, the above check misconceives those pages |
| * as MMIO, and results in KVM mapping them with UC |
| * memory type, which would hurt the performance. |
| * Therefore, we check the host memory type in addition |
| * and only treat UC/UC-/WC pages as MMIO. |
| */ |
| (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); |
| |
| return !e820__mapped_raw_any(pfn_to_hpa(pfn), |
| pfn_to_hpa(pfn + 1) - 1, |
| E820_TYPE_RAM); |
| } |
| |
| int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level, |
| gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative, |
| bool can_unsync, bool host_writable, bool ad_disabled, |
| u64 *new_spte) |
| { |
| u64 spte = 0; |
| int ret = 0; |
| |
| if (ad_disabled) |
| spte |= SPTE_AD_DISABLED_MASK; |
| else if (kvm_vcpu_ad_need_write_protect(vcpu)) |
| spte |= SPTE_AD_WRPROT_ONLY_MASK; |
| |
| /* |
| * For the EPT case, shadow_present_mask is 0 if hardware |
| * supports exec-only page table entries. In that case, |
| * ACC_USER_MASK and shadow_user_mask are used to represent |
| * read access. See FNAME(gpte_access) in paging_tmpl.h. |
| */ |
| spte |= shadow_present_mask; |
| if (!speculative) |
| spte |= spte_shadow_accessed_mask(spte); |
| |
| if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && |
| is_nx_huge_page_enabled()) { |
| pte_access &= ~ACC_EXEC_MASK; |
| } |
| |
| if (pte_access & ACC_EXEC_MASK) |
| spte |= shadow_x_mask; |
| else |
| spte |= shadow_nx_mask; |
| |
| if (pte_access & ACC_USER_MASK) |
| spte |= shadow_user_mask; |
| |
| if (level > PG_LEVEL_4K) |
| spte |= PT_PAGE_SIZE_MASK; |
| if (tdp_enabled) |
| spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn, |
| kvm_is_mmio_pfn(pfn)); |
| |
| if (host_writable) |
| spte |= SPTE_HOST_WRITEABLE; |
| else |
| pte_access &= ~ACC_WRITE_MASK; |
| |
| if (!kvm_is_mmio_pfn(pfn)) |
| spte |= shadow_me_mask; |
| |
| spte |= (u64)pfn << PAGE_SHIFT; |
| |
| if (pte_access & ACC_WRITE_MASK) { |
| spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; |
| |
| /* |
| * Optimization: for pte sync, if spte was writable the hash |
| * lookup is unnecessary (and expensive). Write protection |
| * is responsibility of mmu_get_page / kvm_sync_page. |
| * Same reasoning can be applied to dirty page accounting. |
| */ |
| if (!can_unsync && is_writable_pte(old_spte)) |
| goto out; |
| |
| if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { |
| pgprintk("%s: found shadow page for %llx, marking ro\n", |
| __func__, gfn); |
| ret |= SET_SPTE_WRITE_PROTECTED_PT; |
| pte_access &= ~ACC_WRITE_MASK; |
| spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); |
| } |
| } |
| |
| if (pte_access & ACC_WRITE_MASK) |
| spte |= spte_shadow_dirty_mask(spte); |
| |
| if (speculative) |
| spte = mark_spte_for_access_track(spte); |
| |
| out: |
| *new_spte = spte; |
| return ret; |
| } |
| |
| u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) |
| { |
| u64 spte; |
| |
| spte = __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | |
| shadow_user_mask | shadow_x_mask | shadow_me_mask; |
| |
| if (ad_disabled) |
| spte |= SPTE_AD_DISABLED_MASK; |
| else |
| spte |= shadow_accessed_mask; |
| |
| return spte; |
| } |
| |
| u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn) |
| { |
| u64 new_spte; |
| |
| new_spte = old_spte & ~PT64_BASE_ADDR_MASK; |
| new_spte |= (u64)new_pfn << PAGE_SHIFT; |
| |
| new_spte &= ~PT_WRITABLE_MASK; |
| new_spte &= ~SPTE_HOST_WRITEABLE; |
| |
| new_spte = mark_spte_for_access_track(new_spte); |
| |
| return new_spte; |
| } |
| |
| static u8 kvm_get_shadow_phys_bits(void) |
| { |
| /* |
| * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected |
| * in CPU detection code, but the processor treats those reduced bits as |
| * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at |
| * the physical address bits reported by CPUID. |
| */ |
| if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) |
| return cpuid_eax(0x80000008) & 0xff; |
| |
| /* |
| * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with |
| * custom CPUID. Proceed with whatever the kernel found since these features |
| * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). |
| */ |
| return boot_cpu_data.x86_phys_bits; |
| } |
| |
| u64 mark_spte_for_access_track(u64 spte) |
| { |
| if (spte_ad_enabled(spte)) |
| return spte & ~shadow_accessed_mask; |
| |
| if (is_access_track_spte(spte)) |
| return spte; |
| |
| /* |
| * Making an Access Tracking PTE will result in removal of write access |
| * from the PTE. So, verify that we will be able to restore the write |
| * access in the fast page fault path later on. |
| */ |
| WARN_ONCE((spte & PT_WRITABLE_MASK) && |
| !spte_can_locklessly_be_made_writable(spte), |
| "kvm: Writable SPTE is not locklessly dirty-trackable\n"); |
| |
| WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << |
| SHADOW_ACC_TRACK_SAVED_BITS_SHIFT), |
| "kvm: Access Tracking saved bit locations are not zero\n"); |
| |
| spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) << |
| SHADOW_ACC_TRACK_SAVED_BITS_SHIFT; |
| spte &= ~shadow_acc_track_mask; |
| |
| return spte; |
| } |
| |
| void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask) |
| { |
| BUG_ON((u64)(unsigned)access_mask != access_mask); |
| WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)); |
| WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); |
| shadow_mmio_value = mmio_value | SPTE_MMIO_MASK; |
| shadow_mmio_access_mask = access_mask; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); |
| |
| /* |
| * Sets the shadow PTE masks used by the MMU. |
| * |
| * Assumptions: |
| * - Setting either @accessed_mask or @dirty_mask requires setting both |
| * - At least one of @accessed_mask or @acc_track_mask must be set |
| */ |
| void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, |
| u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, |
| u64 acc_track_mask, u64 me_mask) |
| { |
| BUG_ON(!dirty_mask != !accessed_mask); |
| BUG_ON(!accessed_mask && !acc_track_mask); |
| BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK); |
| |
| shadow_user_mask = user_mask; |
| shadow_accessed_mask = accessed_mask; |
| shadow_dirty_mask = dirty_mask; |
| shadow_nx_mask = nx_mask; |
| shadow_x_mask = x_mask; |
| shadow_present_mask = p_mask; |
| shadow_acc_track_mask = acc_track_mask; |
| shadow_me_mask = me_mask; |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); |
| |
| void kvm_mmu_reset_all_pte_masks(void) |
| { |
| u8 low_phys_bits; |
| |
| shadow_user_mask = 0; |
| shadow_accessed_mask = 0; |
| shadow_dirty_mask = 0; |
| shadow_nx_mask = 0; |
| shadow_x_mask = 0; |
| shadow_present_mask = 0; |
| shadow_acc_track_mask = 0; |
| |
| shadow_phys_bits = kvm_get_shadow_phys_bits(); |
| |
| /* |
| * If the CPU has 46 or less physical address bits, then set an |
| * appropriate mask to guard against L1TF attacks. Otherwise, it is |
| * assumed that the CPU is not vulnerable to L1TF. |
| * |
| * Some Intel CPUs address the L1 cache using more PA bits than are |
| * reported by CPUID. Use the PA width of the L1 cache when possible |
| * to achieve more effective mitigation, e.g. if system RAM overlaps |
| * the most significant bits of legal physical address space. |
| */ |
| shadow_nonpresent_or_rsvd_mask = 0; |
| low_phys_bits = boot_cpu_data.x86_phys_bits; |
| if (boot_cpu_has_bug(X86_BUG_L1TF) && |
| !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= |
| 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) { |
| low_phys_bits = boot_cpu_data.x86_cache_bits |
| - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; |
| shadow_nonpresent_or_rsvd_mask = |
| rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); |
| } |
| |
| shadow_nonpresent_or_rsvd_lower_gfn_mask = |
| GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); |
| } |