blob: 4f531374009fd15c0c583a5d973401f7a38a9db9 [file] [log] [blame]
/*
* sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c.
*
* Copyright (C) 2000 VA Linux Co
* Copyright (C) 2000 Don Dugger <n0ano@valinux.com>
* Copyright (C) 1999 Arun Sharma <arun.sharma@intel.com>
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 2000-2002 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* These routines maintain argument size conversion between 32bit and 64bit
* environment.
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sysctl.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/signal.h>
#include <linux/utime.h>
#include <linux/resource.h>
#include <linux/times.h>
#include <linux/utsname.h>
#include <linux/timex.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/sem.h>
#include <linux/msg.h>
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/slab.h>
#include <linux/uio.h>
#include <linux/nfs_fs.h>
#include <linux/smb_fs.h>
#include <linux/smb_mount.h>
#include <linux/ncp_fs.h>
#include <linux/quota.h>
#include <linux/quotacompat.h>
#include <linux/module.h>
#include <linux/sunrpc/svc.h>
#include <linux/nfsd/nfsd.h>
#include <linux/nfsd/cache.h>
#include <linux/nfsd/xdr.h>
#include <linux/nfsd/syscall.h>
#include <linux/poll.h>
#include <linux/personality.h>
#include <linux/stat.h>
#include <linux/ipc.h>
#include <asm/types.h>
#include <asm/uaccess.h>
#include <asm/semaphore.h>
#include <net/scm.h>
#include <net/sock.h>
#include <asm/ia32.h>
#define DEBUG 0
#if DEBUG
# define DBG(fmt...) printk(KERN_DEBUG fmt)
#else
# define DBG(fmt...)
#endif
#define A(__x) ((unsigned long)(__x))
#define AA(__x) ((unsigned long)(__x))
#define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1)))
#define NAME_OFFSET(de) ((int) ((de)->d_name - (char *) (de)))
#define OFFSET4K(a) ((a) & 0xfff)
#define PAGE_START(addr) ((addr) & PAGE_MASK)
#define PAGE_OFF(addr) ((addr) & ~PAGE_MASK)
#define MINSIGSTKSZ_IA32 2048
extern asmlinkage long sys_execve (char *, char **, char **, struct pt_regs *);
extern asmlinkage long sys_mprotect (unsigned long, size_t, unsigned long);
extern asmlinkage long sys_munmap (unsigned long, size_t);
extern unsigned long arch_get_unmapped_area (struct file *, unsigned long, unsigned long,
unsigned long, unsigned long);
/* forward declaration: */
asmlinkage long sys32_mprotect (unsigned int, unsigned int, int);
asmlinkage unsigned long sys_brk(unsigned long);
/*
* Anything that modifies or inspects ia32 user virtual memory must hold this semaphore
* while doing so.
*/
/* XXX make per-mm: */
static DECLARE_MUTEX(ia32_mmap_sem);
static int
nargs (unsigned int arg, char **ap, int max)
{
unsigned int addr;
int n, err;
if (!arg)
return 0;
n = 0;
do {
err = get_user(addr, (unsigned int *)A(arg));
if (err)
return err;
if (n > max)
return -E2BIG;
if (ap)
*ap++ = (char *) A(addr);
arg += sizeof(unsigned int);
n++;
if (n >= (MAX_ARG_PAGES * PAGE_SIZE) / sizeof(char *))
return -E2BIG;
} while (addr);
return n - 1;
}
asmlinkage long
sys32_execve (char *filename, unsigned int argv, unsigned int envp,
int dummy3, int dummy4, int dummy5, int dummy6, int dummy7,
int stack)
{
struct pt_regs *regs = (struct pt_regs *)&stack;
unsigned long old_map_base, old_task_size, tssd;
char **av, **ae;
int na, ne, len;
long r;
/* Allocates upto 2x MAX_ARG_PAGES */
na = nargs(argv, NULL, (MAX_ARG_PAGES*PAGE_SIZE) / sizeof(char *) - 1);
if (na < 0)
return na;
ne = nargs(envp, NULL, (MAX_ARG_PAGES*PAGE_SIZE) / sizeof(char *) - 1 );
if (ne < 0)
return ne;
len = (na + ne + 2) * sizeof(*av);
av = kmalloc(len, GFP_KERNEL);
if (!av)
return -ENOMEM;
ae = av + na + 1;
av[na] = NULL;
ae[ne] = NULL;
r = nargs(argv, av, na);
if (r < 0)
goto out;
r = nargs(envp, ae, ne);
if (r < 0)
goto out;
old_map_base = current->thread.map_base;
old_task_size = current->thread.task_size;
tssd = ia64_get_kr(IA64_KR_TSSD);
/* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */
current->thread.map_base = DEFAULT_MAP_BASE;
current->thread.task_size = DEFAULT_TASK_SIZE;
ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
set_fs(KERNEL_DS);
r = sys_execve(filename, av, ae, regs);
if (r < 0) {
/* oops, execve failed, switch back to old values... */
ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE);
ia64_set_kr(IA64_KR_TSSD, tssd);
current->thread.map_base = old_map_base;
current->thread.task_size = old_task_size;
set_fs(USER_DS); /* establish new task-size as the address-limit */
}
out:
kfree(av);
return r;
}
static inline int
putstat (struct stat32 *ubuf, struct stat *kbuf)
{
int err;
if (clear_user(ubuf, sizeof(*ubuf)))
return 1;
err = __put_user(kbuf->st_dev, &ubuf->st_dev);
err |= __put_user(kbuf->st_ino, &ubuf->st_ino);
err |= __put_user(kbuf->st_mode, &ubuf->st_mode);
err |= __put_user(kbuf->st_nlink, &ubuf->st_nlink);
err |= __put_user(kbuf->st_uid, &ubuf->st_uid);
err |= __put_user(kbuf->st_gid, &ubuf->st_gid);
err |= __put_user(kbuf->st_rdev, &ubuf->st_rdev);
err |= __put_user(kbuf->st_size, &ubuf->st_size);
err |= __put_user(kbuf->st_atime, &ubuf->st_atime);
err |= __put_user(kbuf->st_mtime, &ubuf->st_mtime);
err |= __put_user(kbuf->st_ctime, &ubuf->st_ctime);
err |= __put_user(kbuf->st_blksize, &ubuf->st_blksize);
err |= __put_user(kbuf->st_blocks, &ubuf->st_blocks);
return err;
}
extern asmlinkage long sys_newstat (char * filename, struct stat * statbuf);
asmlinkage long
sys32_newstat (char *filename, struct stat32 *statbuf)
{
char *name;
int ret;
struct stat s;
mm_segment_t old_fs = get_fs();
name = getname(filename);
if (IS_ERR(name))
return PTR_ERR(name);
set_fs(KERNEL_DS);
ret = sys_newstat(name, &s);
set_fs(old_fs);
putname(name);
if (putstat(statbuf, &s))
return -EFAULT;
return ret;
}
extern asmlinkage long sys_newlstat(char * filename, struct stat * statbuf);
asmlinkage long
sys32_newlstat (char *filename, struct stat32 *statbuf)
{
char *name;
mm_segment_t old_fs = get_fs();
struct stat s;
int ret;
name = getname(filename);
if (IS_ERR(name))
return PTR_ERR(name);
set_fs(KERNEL_DS);
ret = sys_newlstat(name, &s);
set_fs(old_fs);
putname(name);
if (putstat(statbuf, &s))
return -EFAULT;
return ret;
}
extern asmlinkage long sys_newfstat(unsigned int fd, struct stat * statbuf);
asmlinkage long
sys32_newfstat (unsigned int fd, struct stat32 *statbuf)
{
mm_segment_t old_fs = get_fs();
struct stat s;
int ret;
set_fs(KERNEL_DS);
ret = sys_newfstat(fd, &s);
set_fs(old_fs);
if (putstat(statbuf, &s))
return -EFAULT;
return ret;
}
#if PAGE_SHIFT > IA32_PAGE_SHIFT
static int
get_page_prot (struct vm_area_struct *vma, unsigned long addr)
{
int prot = 0;
if (!vma || vma->vm_start > addr)
return 0;
if (vma->vm_flags & VM_READ)
prot |= PROT_READ;
if (vma->vm_flags & VM_WRITE)
prot |= PROT_WRITE;
if (vma->vm_flags & VM_EXEC)
prot |= PROT_EXEC;
return prot;
}
/*
* Map a subpage by creating an anonymous page that contains the union of the old page and
* the subpage.
*/
static unsigned long
mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags,
loff_t off)
{
void *page = NULL;
struct inode *inode;
unsigned long ret = 0;
struct vm_area_struct *vma = find_vma(current->mm, start);
int old_prot = get_page_prot(vma, start);
DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n",
file, start, end, prot, flags, off);
/* Optimize the case where the old mmap and the new mmap are both anonymous */
if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) {
if (clear_user((void *) start, end - start)) {
ret = -EFAULT;
goto out;
}
goto skip_mmap;
}
page = (void *) get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
if (old_prot)
copy_from_user(page, (void *) PAGE_START(start), PAGE_SIZE);
down_write(&current->mm->mmap_sem);
{
ret = do_mmap(0, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE,
flags | MAP_FIXED | MAP_ANONYMOUS, 0);
}
up_write(&current->mm->mmap_sem);
if (IS_ERR((void *) ret))
goto out;
if (old_prot) {
/* copy back the old page contents. */
if (PAGE_OFF(start))
copy_to_user((void *) PAGE_START(start), page, PAGE_OFF(start));
if (PAGE_OFF(end))
copy_to_user((void *) end, page + PAGE_OFF(end),
PAGE_SIZE - PAGE_OFF(end));
}
if (!(flags & MAP_ANONYMOUS)) {
/* read the file contents */
inode = file->f_dentry->d_inode;
if (!inode->i_fop || !file->f_op->read
|| ((*file->f_op->read)(file, (char *) start, end - start, &off) < 0))
{
ret = -EINVAL;
goto out;
}
}
skip_mmap:
if (!(prot & PROT_WRITE))
ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot);
out:
if (page)
free_page((unsigned long) page);
return ret;
}
static unsigned long
emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags,
loff_t off)
{
unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0;
struct inode *inode;
loff_t poff;
end = start + len;
pstart = PAGE_START(start);
pend = PAGE_ALIGN(end);
if (flags & MAP_FIXED) {
if (start > pstart) {
if (flags & MAP_SHARED)
printk(KERN_INFO
"%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n",
current->comm, current->pid, start);
ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags,
off);
if (IS_ERR((void *) ret))
return ret;
pstart += PAGE_SIZE;
if (pstart >= pend)
return start; /* done */
}
if (end < pend) {
if (flags & MAP_SHARED)
printk(KERN_INFO
"%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n",
current->comm, current->pid, end);
ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags,
(off + len) - PAGE_OFF(end));
if (IS_ERR((void *) ret))
return ret;
pend -= PAGE_SIZE;
if (pstart >= pend)
return start; /* done */
}
} else {
/*
* If a start address was specified, use it if the entire rounded out area
* is available.
*/
if (start && !pstart)
fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */
tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags);
if (tmp != pstart) {
pstart = tmp;
start = pstart + PAGE_OFF(off); /* make start congruent with off */
end = start + len;
pend = PAGE_ALIGN(end);
}
}
poff = off + (pstart - start); /* note: (pstart - start) may be negative */
is_congruent = (flags & MAP_ANONYMOUS) || (PAGE_OFF(poff) == 0);
if ((flags & MAP_SHARED) && !is_congruent)
printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap "
"(addr=0x%lx,off=0x%llx)\n", current->comm, current->pid, start, off);
DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend,
is_congruent ? "congruent" : "not congruent", poff);
down_write(&current->mm->mmap_sem);
{
if (!(flags & MAP_ANONYMOUS) && is_congruent)
ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff);
else
ret = do_mmap(0, pstart, pend - pstart,
prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE),
flags | MAP_FIXED | MAP_ANONYMOUS, 0);
}
up_write(&current->mm->mmap_sem);
if (IS_ERR((void *) ret))
return ret;
if (!is_congruent) {
/* read the file contents */
inode = file->f_dentry->d_inode;
if (!inode->i_fop || !file->f_op->read
|| ((*file->f_op->read)(file, (char *) pstart, pend - pstart, &poff) < 0))
{
sys_munmap(pstart, pend - pstart);
return -EINVAL;
}
if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0)
return -EINVAL;
}
return start;
}
#endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
static inline unsigned int
get_prot32 (unsigned int prot)
{
if (prot & PROT_WRITE)
/* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */
prot |= PROT_READ | PROT_WRITE | PROT_EXEC;
else if (prot & (PROT_READ | PROT_EXEC))
/* on x86, there is no distinction between PROT_READ and PROT_EXEC */
prot |= (PROT_READ | PROT_EXEC);
return prot;
}
unsigned long
ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags,
loff_t offset)
{
DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n",
file, addr, len, prot, flags, offset);
if (file && (!file->f_op || !file->f_op->mmap))
return -ENODEV;
len = IA32_PAGE_ALIGN(len);
if (len == 0)
return addr;
if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len)
{
if (flags & MAP_FIXED)
return -ENOMEM;
else
return -EINVAL;
}
if (OFFSET4K(offset))
return -EINVAL;
prot = get_prot32(prot);
#if PAGE_SHIFT > IA32_PAGE_SHIFT
down(&ia32_mmap_sem);
{
addr = emulate_mmap(file, addr, len, prot, flags, offset);
}
up(&ia32_mmap_sem);
#else
down_write(&current->mm->mmap_sem);
{
addr = do_mmap(file, addr, len, prot, flags, offset);
}
up_write(&current->mm->mmap_sem);
#endif
DBG("ia32_do_mmap: returning 0x%lx\n", addr);
return addr;
}
/*
* Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these
* system calls used a memory block for parameter passing..
*/
struct mmap_arg_struct {
unsigned int addr;
unsigned int len;
unsigned int prot;
unsigned int flags;
unsigned int fd;
unsigned int offset;
};
asmlinkage long
sys32_mmap (struct mmap_arg_struct *arg)
{
struct mmap_arg_struct a;
struct file *file = NULL;
unsigned long addr;
int flags;
if (copy_from_user(&a, arg, sizeof(a)))
return -EFAULT;
if (OFFSET4K(a.offset))
return -EINVAL;
flags = a.flags;
flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
if (!(flags & MAP_ANONYMOUS)) {
file = fget(a.fd);
if (!file)
return -EBADF;
}
addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset);
if (file)
fput(file);
return addr;
}
asmlinkage long
sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags,
unsigned int fd, unsigned int pgoff)
{
struct file *file = NULL;
unsigned long retval;
flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
if (!(flags & MAP_ANONYMOUS)) {
file = fget(fd);
if (!file)
return -EBADF;
}
retval = ia32_do_mmap(file, addr, len, prot, flags,
(unsigned long) pgoff << IA32_PAGE_SHIFT);
if (file)
fput(file);
return retval;
}
asmlinkage long
sys32_munmap (unsigned int start, unsigned int len)
{
unsigned int end = start + len;
long ret;
#if PAGE_SHIFT <= IA32_PAGE_SHIFT
ret = sys_munmap(start, end - start);
#else
if (start >= end)
return -EINVAL;
start = PAGE_ALIGN(start);
end = PAGE_START(end);
if (start >= end)
return 0;
down(&ia32_mmap_sem);
{
ret = sys_munmap(start, end - start);
}
up(&ia32_mmap_sem);
#endif
return ret;
}
#if PAGE_SHIFT > IA32_PAGE_SHIFT
/*
* When mprotect()ing a partial page, we set the permission to the union of the old
* settings and the new settings. In other words, it's only possible to make access to a
* partial page less restrictive.
*/
static long
mprotect_subpage (unsigned long address, int new_prot)
{
int old_prot;
struct vm_area_struct *vma;
if (new_prot == PROT_NONE)
return 0; /* optimize case where nothing changes... */
vma = find_vma(current->mm, address);
old_prot = get_page_prot(vma, address);
return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot);
}
#endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
asmlinkage long
sys32_mprotect (unsigned int start, unsigned int len, int prot)
{
unsigned long end = start + len;
#if PAGE_SHIFT > IA32_PAGE_SHIFT
long retval = 0;
#endif
prot = get_prot32(prot);
#if PAGE_SHIFT <= IA32_PAGE_SHIFT
return sys_mprotect(start, end - start, prot);
#else
if (OFFSET4K(start))
return -EINVAL;
end = IA32_PAGE_ALIGN(end);
if (end < start)
return -EINVAL;
down(&ia32_mmap_sem);
{
if (PAGE_OFF(start)) {
/* start address is 4KB aligned but not page aligned. */
retval = mprotect_subpage(PAGE_START(start), prot);
if (retval < 0)
goto out;
start = PAGE_ALIGN(start);
if (start >= end)
goto out; /* retval is already zero... */
}
if (PAGE_OFF(end)) {
/* end address is 4KB aligned but not page aligned. */
retval = mprotect_subpage(PAGE_START(end), prot);
if (retval < 0)
goto out;
end = PAGE_START(end);
}
retval = sys_mprotect(start, end - start, prot);
}
out:
up(&ia32_mmap_sem);
return retval;
#endif
}
asmlinkage long
sys32_pipe (int *fd)
{
int retval;
int fds[2];
retval = do_pipe(fds);
if (retval)
goto out;
if (copy_to_user(fd, fds, sizeof(fds)))
retval = -EFAULT;
out:
return retval;
}
static inline int
put_statfs (struct statfs32 *ubuf, struct statfs *kbuf)
{
int err;
if (!access_ok(VERIFY_WRITE, ubuf, sizeof(*ubuf)))
return -EFAULT;
err = __put_user(kbuf->f_type, &ubuf->f_type);
err |= __put_user(kbuf->f_bsize, &ubuf->f_bsize);
err |= __put_user(kbuf->f_blocks, &ubuf->f_blocks);
err |= __put_user(kbuf->f_bfree, &ubuf->f_bfree);
err |= __put_user(kbuf->f_bavail, &ubuf->f_bavail);
err |= __put_user(kbuf->f_files, &ubuf->f_files);
err |= __put_user(kbuf->f_ffree, &ubuf->f_ffree);
err |= __put_user(kbuf->f_namelen, &ubuf->f_namelen);
err |= __put_user(kbuf->f_fsid.val[0], &ubuf->f_fsid.val[0]);
err |= __put_user(kbuf->f_fsid.val[1], &ubuf->f_fsid.val[1]);
return err;
}
extern asmlinkage long sys_statfs(const char * path, struct statfs * buf);
asmlinkage long
sys32_statfs (const char *path, struct statfs32 *buf)
{
const char *name;
int ret;
struct statfs s;
mm_segment_t old_fs = get_fs();
name = getname(path);
if (IS_ERR(name))
return PTR_ERR(name);
set_fs(KERNEL_DS);
ret = sys_statfs(name, &s);
set_fs(old_fs);
putname(name);
if (put_statfs(buf, &s))
return -EFAULT;
return ret;
}
extern asmlinkage long sys_fstatfs(unsigned int fd, struct statfs * buf);
asmlinkage long
sys32_fstatfs (unsigned int fd, struct statfs32 *buf)
{
int ret;
struct statfs s;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_fstatfs(fd, &s);
set_fs(old_fs);
if (put_statfs(buf, &s))
return -EFAULT;
return ret;
}
struct timeval32
{
int tv_sec, tv_usec;
};
struct itimerval32
{
struct timeval32 it_interval;
struct timeval32 it_value;
};
static inline long
get_tv32 (struct timeval *o, struct timeval32 *i)
{
return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
(__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec)));
}
static inline long
put_tv32 (struct timeval32 *o, struct timeval *i)
{
return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
(__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec)));
}
static inline long
get_it32 (struct itimerval *o, struct itimerval32 *i)
{
return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
(__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) |
__get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) |
__get_user(o->it_value.tv_sec, &i->it_value.tv_sec) |
__get_user(o->it_value.tv_usec, &i->it_value.tv_usec)));
}
static inline long
put_it32 (struct itimerval32 *o, struct itimerval *i)
{
return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
(__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) |
__put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) |
__put_user(i->it_value.tv_sec, &o->it_value.tv_sec) |
__put_user(i->it_value.tv_usec, &o->it_value.tv_usec)));
}
extern int do_getitimer (int which, struct itimerval *value);
asmlinkage long
sys32_getitimer (int which, struct itimerval32 *it)
{
struct itimerval kit;
int error;
error = do_getitimer(which, &kit);
if (!error && put_it32(it, &kit))
error = -EFAULT;
return error;
}
extern int do_setitimer (int which, struct itimerval *, struct itimerval *);
asmlinkage long
sys32_setitimer (int which, struct itimerval32 *in, struct itimerval32 *out)
{
struct itimerval kin, kout;
int error;
if (in) {
if (get_it32(&kin, in))
return -EFAULT;
} else
memset(&kin, 0, sizeof(kin));
error = do_setitimer(which, &kin, out ? &kout : NULL);
if (error || !out)
return error;
if (put_it32(out, &kout))
return -EFAULT;
return 0;
}
asmlinkage unsigned long
sys32_alarm (unsigned int seconds)
{
struct itimerval it_new, it_old;
unsigned int oldalarm;
it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
it_new.it_value.tv_sec = seconds;
it_new.it_value.tv_usec = 0;
do_setitimer(ITIMER_REAL, &it_new, &it_old);
oldalarm = it_old.it_value.tv_sec;
/* ehhh.. We can't return 0 if we have an alarm pending.. */
/* And we'd better return too much than too little anyway */
if (it_old.it_value.tv_usec)
oldalarm++;
return oldalarm;
}
/* Translations due to time_t size differences. Which affects all
sorts of things, like timeval and itimerval. */
struct utimbuf_32 {
int atime;
int mtime;
};
extern asmlinkage long sys_utimes(char * filename, struct timeval * utimes);
extern asmlinkage long sys_gettimeofday (struct timeval *tv, struct timezone *tz);
asmlinkage long
sys32_utime (char *filename, struct utimbuf_32 *times32)
{
mm_segment_t old_fs = get_fs();
struct timeval tv[2], *tvp;
long ret;
if (times32) {
if (get_user(tv[0].tv_sec, &times32->atime))
return -EFAULT;
tv[0].tv_usec = 0;
if (get_user(tv[1].tv_sec, &times32->mtime))
return -EFAULT;
tv[1].tv_usec = 0;
set_fs(KERNEL_DS);
tvp = tv;
} else
tvp = NULL;
ret = sys_utimes(filename, tvp);
set_fs(old_fs);
return ret;
}
extern struct timezone sys_tz;
extern int do_sys_settimeofday (struct timeval *tv, struct timezone *tz);
asmlinkage long
sys32_gettimeofday (struct timeval32 *tv, struct timezone *tz)
{
if (tv) {
struct timeval ktv;
do_gettimeofday(&ktv);
if (put_tv32(tv, &ktv))
return -EFAULT;
}
if (tz) {
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
return -EFAULT;
}
return 0;
}
asmlinkage long
sys32_settimeofday (struct timeval32 *tv, struct timezone *tz)
{
struct timeval ktv;
struct timezone ktz;
if (tv) {
if (get_tv32(&ktv, tv))
return -EFAULT;
}
if (tz) {
if (copy_from_user(&ktz, tz, sizeof(ktz)))
return -EFAULT;
}
return do_sys_settimeofday(tv ? &ktv : NULL, tz ? &ktz : NULL);
}
struct getdents32_callback {
struct linux32_dirent * current_dir;
struct linux32_dirent * previous;
int count;
int error;
};
struct readdir32_callback {
struct old_linux32_dirent * dirent;
int count;
};
static int
filldir32 (void *__buf, const char *name, int namlen, loff_t offset, ino_t ino,
unsigned int d_type)
{
struct linux32_dirent * dirent;
struct getdents32_callback * buf = (struct getdents32_callback *) __buf;
int reclen = ROUND_UP(NAME_OFFSET(dirent) + namlen + 1, 4);
buf->error = -EINVAL; /* only used if we fail.. */
if (reclen > buf->count)
return -EINVAL;
buf->error = -EFAULT; /* only used if we fail.. */
dirent = buf->previous;
if (dirent)
if (put_user(offset, &dirent->d_off))
return -EFAULT;
dirent = buf->current_dir;
buf->previous = dirent;
if (put_user(ino, &dirent->d_ino)
|| put_user(reclen, &dirent->d_reclen)
|| copy_to_user(dirent->d_name, name, namlen)
|| put_user(0, dirent->d_name + namlen))
return -EFAULT;
((char *) dirent) += reclen;
buf->current_dir = dirent;
buf->count -= reclen;
return 0;
}
asmlinkage long
sys32_getdents (unsigned int fd, struct linux32_dirent *dirent, unsigned int count)
{
struct file * file;
struct linux32_dirent * lastdirent;
struct getdents32_callback buf;
int error;
error = -EBADF;
file = fget(fd);
if (!file)
goto out;
buf.current_dir = dirent;
buf.previous = NULL;
buf.count = count;
buf.error = 0;
error = vfs_readdir(file, filldir32, &buf);
if (error < 0)
goto out_putf;
error = buf.error;
lastdirent = buf.previous;
if (lastdirent) {
error = -EINVAL;
if (put_user(file->f_pos, &lastdirent->d_off))
goto out_putf;
error = count - buf.count;
}
out_putf:
fput(file);
out:
return error;
}
static int
fillonedir32 (void * __buf, const char * name, int namlen, loff_t offset, ino_t ino,
unsigned int d_type)
{
struct readdir32_callback * buf = (struct readdir32_callback *) __buf;
struct old_linux32_dirent * dirent;
if (buf->count)
return -EINVAL;
buf->count++;
dirent = buf->dirent;
if (put_user(ino, &dirent->d_ino)
|| put_user(offset, &dirent->d_offset)
|| put_user(namlen, &dirent->d_namlen)
|| copy_to_user(dirent->d_name, name, namlen)
|| put_user(0, dirent->d_name + namlen))
return -EFAULT;
return 0;
}
asmlinkage long
sys32_readdir (unsigned int fd, void *dirent, unsigned int count)
{
int error;
struct file * file;
struct readdir32_callback buf;
error = -EBADF;
file = fget(fd);
if (!file)
goto out;
buf.count = 0;
buf.dirent = dirent;
error = vfs_readdir(file, fillonedir32, &buf);
if (error >= 0)
error = buf.count;
fput(file);
out:
return error;
}
/*
* We can actually return ERESTARTSYS instead of EINTR, but I'd
* like to be certain this leads to no problems. So I return
* EINTR just for safety.
*
* Update: ERESTARTSYS breaks at least the xview clock binary, so
* I'm trying ERESTARTNOHAND which restart only when you want to.
*/
#define MAX_SELECT_SECONDS \
((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1)
#define ROUND_UP_TIME(x,y) (((x)+(y)-1)/(y))
asmlinkage long
sys32_select (int n, fd_set *inp, fd_set *outp, fd_set *exp, struct timeval32 *tvp32)
{
fd_set_bits fds;
char *bits;
long timeout;
int ret, size;
timeout = MAX_SCHEDULE_TIMEOUT;
if (tvp32) {
time_t sec, usec;
ret = -EFAULT;
if (get_user(sec, &tvp32->tv_sec) || get_user(usec, &tvp32->tv_usec))
goto out_nofds;
ret = -EINVAL;
if (sec < 0 || usec < 0)
goto out_nofds;
if ((unsigned long) sec < MAX_SELECT_SECONDS) {
timeout = ROUND_UP_TIME(usec, 1000000/HZ);
timeout += sec * (unsigned long) HZ;
}
}
ret = -EINVAL;
if (n < 0)
goto out_nofds;
if (n > current->files->max_fdset)
n = current->files->max_fdset;
/*
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
* since we used fdset we need to allocate memory in units of
* long-words.
*/
ret = -ENOMEM;
size = FDS_BYTES(n);
bits = kmalloc(6 * size, GFP_KERNEL);
if (!bits)
goto out_nofds;
fds.in = (unsigned long *) bits;
fds.out = (unsigned long *) (bits + size);
fds.ex = (unsigned long *) (bits + 2*size);
fds.res_in = (unsigned long *) (bits + 3*size);
fds.res_out = (unsigned long *) (bits + 4*size);
fds.res_ex = (unsigned long *) (bits + 5*size);
if ((ret = get_fd_set(n, inp, fds.in)) ||
(ret = get_fd_set(n, outp, fds.out)) ||
(ret = get_fd_set(n, exp, fds.ex)))
goto out;
zero_fd_set(n, fds.res_in);
zero_fd_set(n, fds.res_out);
zero_fd_set(n, fds.res_ex);
ret = do_select(n, &fds, &timeout);
if (tvp32 && !(current->personality & STICKY_TIMEOUTS)) {
time_t sec = 0, usec = 0;
if (timeout) {
sec = timeout / HZ;
usec = timeout % HZ;
usec *= (1000000/HZ);
}
if (put_user(sec, &tvp32->tv_sec) || put_user(usec, &tvp32->tv_usec)) {
ret = -EFAULT;
goto out;
}
}
if (ret < 0)
goto out;
if (!ret) {
ret = -ERESTARTNOHAND;
if (signal_pending(current))
goto out;
ret = 0;
}
set_fd_set(n, inp, fds.res_in);
set_fd_set(n, outp, fds.res_out);
set_fd_set(n, exp, fds.res_ex);
out:
kfree(bits);
out_nofds:
return ret;
}
struct sel_arg_struct {
unsigned int n;
unsigned int inp;
unsigned int outp;
unsigned int exp;
unsigned int tvp;
};
asmlinkage long
sys32_old_select (struct sel_arg_struct *arg)
{
struct sel_arg_struct a;
if (copy_from_user(&a, arg, sizeof(a)))
return -EFAULT;
return sys32_select(a.n, (fd_set *) A(a.inp), (fd_set *) A(a.outp), (fd_set *) A(a.exp),
(struct timeval32 *) A(a.tvp));
}
extern asmlinkage long sys_nanosleep (struct timespec *rqtp, struct timespec *rmtp);
asmlinkage long
sys32_nanosleep (struct timespec32 *rqtp, struct timespec32 *rmtp)
{
struct timespec t;
int ret;
mm_segment_t old_fs = get_fs();
if (get_user (t.tv_sec, &rqtp->tv_sec) || get_user (t.tv_nsec, &rqtp->tv_nsec))
return -EFAULT;
set_fs(KERNEL_DS);
ret = sys_nanosleep(&t, rmtp ? &t : NULL);
set_fs(old_fs);
if (rmtp && ret == -EINTR) {
if (put_user(t.tv_sec, &rmtp->tv_sec) || put_user(t.tv_nsec, &rmtp->tv_nsec))
return -EFAULT;
}
return ret;
}
struct iovec32 { unsigned int iov_base; int iov_len; };
asmlinkage ssize_t sys_readv (unsigned long,const struct iovec *,unsigned long);
asmlinkage ssize_t sys_writev (unsigned long,const struct iovec *,unsigned long);
static struct iovec *
get_iovec32 (struct iovec32 *iov32, struct iovec *iov_buf, u32 count, int type)
{
int i;
u32 buf, len;
struct iovec *ivp, *iov;
/* Get the "struct iovec" from user memory */
if (!count)
return 0;
if (verify_area(VERIFY_READ, iov32, sizeof(struct iovec32)*count))
return NULL;
if (count > UIO_MAXIOV)
return NULL;
if (count > UIO_FASTIOV) {
iov = kmalloc(count*sizeof(struct iovec), GFP_KERNEL);
if (!iov)
return NULL;
} else
iov = iov_buf;
ivp = iov;
for (i = 0; i < count; i++) {
if (__get_user(len, &iov32->iov_len) || __get_user(buf, &iov32->iov_base)) {
if (iov != iov_buf)
kfree(iov);
return NULL;
}
if (verify_area(type, (void *)A(buf), len)) {
if (iov != iov_buf)
kfree(iov);
return((struct iovec *)0);
}
ivp->iov_base = (void *)A(buf);
ivp->iov_len = (__kernel_size_t) len;
iov32++;
ivp++;
}
return iov;
}
asmlinkage long
sys32_readv (int fd, struct iovec32 *vector, u32 count)
{
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov;
long ret;
mm_segment_t old_fs = get_fs();
iov = get_iovec32(vector, iovstack, count, VERIFY_WRITE);
if (!iov)
return -EFAULT;
set_fs(KERNEL_DS);
ret = sys_readv(fd, iov, count);
set_fs(old_fs);
if (iov != iovstack)
kfree(iov);
return ret;
}
asmlinkage long
sys32_writev (int fd, struct iovec32 *vector, u32 count)
{
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov;
long ret;
mm_segment_t old_fs = get_fs();
iov = get_iovec32(vector, iovstack, count, VERIFY_READ);
if (!iov)
return -EFAULT;
set_fs(KERNEL_DS);
ret = sys_writev(fd, iov, count);
set_fs(old_fs);
if (iov != iovstack)
kfree(iov);
return ret;
}
#define RLIM_INFINITY32 0x7fffffff
#define RESOURCE32(x) ((x > RLIM_INFINITY32) ? RLIM_INFINITY32 : x)
struct rlimit32 {
unsigned int rlim_cur;
unsigned int rlim_max;
};
extern asmlinkage long sys_getrlimit (unsigned int resource, struct rlimit *rlim);
asmlinkage long
sys32_old_getrlimit (unsigned int resource, struct rlimit32 *rlim)
{
mm_segment_t old_fs = get_fs();
struct rlimit r;
int ret;
set_fs(KERNEL_DS);
ret = sys_getrlimit(resource, &r);
set_fs(old_fs);
if (!ret) {
ret = put_user(RESOURCE32(r.rlim_cur), &rlim->rlim_cur);
ret |= put_user(RESOURCE32(r.rlim_max), &rlim->rlim_max);
}
return ret;
}
asmlinkage long
sys32_getrlimit (unsigned int resource, struct rlimit32 *rlim)
{
mm_segment_t old_fs = get_fs();
struct rlimit r;
int ret;
set_fs(KERNEL_DS);
ret = sys_getrlimit(resource, &r);
set_fs(old_fs);
if (!ret) {
if (r.rlim_cur >= 0xffffffff)
r.rlim_cur = 0xffffffff;
if (r.rlim_max >= 0xffffffff)
r.rlim_max = 0xffffffff;
ret = put_user(r.rlim_cur, &rlim->rlim_cur);
ret |= put_user(r.rlim_max, &rlim->rlim_max);
}
return ret;
}
extern asmlinkage long sys_setrlimit (unsigned int resource, struct rlimit *rlim);
asmlinkage long
sys32_setrlimit (unsigned int resource, struct rlimit32 *rlim)
{
struct rlimit r;
int ret;
mm_segment_t old_fs = get_fs();
if (resource >= RLIM_NLIMITS)
return -EINVAL;
if (get_user(r.rlim_cur, &rlim->rlim_cur) || get_user(r.rlim_max, &rlim->rlim_max))
return -EFAULT;
if (r.rlim_cur == RLIM_INFINITY32)
r.rlim_cur = RLIM_INFINITY;
if (r.rlim_max == RLIM_INFINITY32)
r.rlim_max = RLIM_INFINITY;
set_fs(KERNEL_DS);
ret = sys_setrlimit(resource, &r);
set_fs(old_fs);
return ret;
}
/*
* Declare the IA32 version of the msghdr
*/
struct msghdr32 {
unsigned int msg_name; /* Socket name */
int msg_namelen; /* Length of name */
unsigned int msg_iov; /* Data blocks */
unsigned int msg_iovlen; /* Number of blocks */
unsigned int msg_control; /* Per protocol magic (eg BSD file descriptor passing) */
unsigned int msg_controllen; /* Length of cmsg list */
unsigned msg_flags;
};
struct cmsghdr32 {
__kernel_size_t32 cmsg_len;
int cmsg_level;
int cmsg_type;
};
/* Bleech... */
#define __CMSG32_NXTHDR(ctl, len, cmsg, cmsglen) __cmsg32_nxthdr((ctl),(len),(cmsg),(cmsglen))
#define CMSG32_NXTHDR(mhdr, cmsg, cmsglen) cmsg32_nxthdr((mhdr), (cmsg), (cmsglen))
#define CMSG32_ALIGN(len) ( ((len)+sizeof(int)-1) & ~(sizeof(int)-1) )
#define CMSG32_DATA(cmsg) \
((void *)((char *)(cmsg) + CMSG32_ALIGN(sizeof(struct cmsghdr32))))
#define CMSG32_SPACE(len) \
(CMSG32_ALIGN(sizeof(struct cmsghdr32)) + CMSG32_ALIGN(len))
#define CMSG32_LEN(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + (len))
#define __CMSG32_FIRSTHDR(ctl,len) \
((len) >= sizeof(struct cmsghdr32) ? (struct cmsghdr32 *)(ctl) : (struct cmsghdr32 *)NULL)
#define CMSG32_FIRSTHDR(msg) __CMSG32_FIRSTHDR((msg)->msg_control, (msg)->msg_controllen)
#define CMSG32_OK(ucmlen, ucmsg, mhdr) \
((ucmlen) >= sizeof(struct cmsghdr32) && \
(ucmlen) <= (unsigned long) \
((mhdr)->msg_controllen - \
((char *)(ucmsg) - (char *)(mhdr)->msg_control)))
static inline struct cmsghdr32 *
__cmsg32_nxthdr (void *ctl, __kernel_size_t size, struct cmsghdr32 *cmsg, int cmsg_len)
{
struct cmsghdr32 * ptr;
ptr = (struct cmsghdr32 *)(((unsigned char *) cmsg) + CMSG32_ALIGN(cmsg_len));
if ((unsigned long)((char*)(ptr+1) - (char *) ctl) > size)
return NULL;
return ptr;
}
static inline struct cmsghdr32 *
cmsg32_nxthdr (struct msghdr *msg, struct cmsghdr32 *cmsg, int cmsg_len)
{
return __cmsg32_nxthdr(msg->msg_control, msg->msg_controllen, cmsg, cmsg_len);
}
static inline int
get_msghdr32 (struct msghdr *mp, struct msghdr32 *mp32)
{
int ret;
unsigned int i;
if (!access_ok(VERIFY_READ, mp32, sizeof(*mp32)))
return -EFAULT;
ret = __get_user(i, &mp32->msg_name);
mp->msg_name = (void *)A(i);
ret |= __get_user(mp->msg_namelen, &mp32->msg_namelen);
ret |= __get_user(i, &mp32->msg_iov);
mp->msg_iov = (struct iovec *)A(i);
ret |= __get_user(mp->msg_iovlen, &mp32->msg_iovlen);
ret |= __get_user(i, &mp32->msg_control);
mp->msg_control = (void *)A(i);
ret |= __get_user(mp->msg_controllen, &mp32->msg_controllen);
ret |= __get_user(mp->msg_flags, &mp32->msg_flags);
return ret ? -EFAULT : 0;
}
/*
* There is a lot of hair here because the alignment rules (and thus placement) of cmsg
* headers and length are different for 32-bit apps. -DaveM
*/
static int
get_cmsghdr32 (struct msghdr *kmsg, unsigned char *stackbuf, struct sock *sk, size_t *bufsize)
{
struct cmsghdr *kcmsg, *kcmsg_base;
__kernel_size_t kcmlen, tmp;
__kernel_size_t32 ucmlen;
struct cmsghdr32 *ucmsg;
long err;
kcmlen = 0;
kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf;
ucmsg = CMSG32_FIRSTHDR(kmsg);
while (ucmsg != NULL) {
if (get_user(ucmlen, &ucmsg->cmsg_len))
return -EFAULT;
/* Catch bogons. */
if (!CMSG32_OK(ucmlen, ucmsg, kmsg))
return -EINVAL;
tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) +
CMSG_ALIGN(sizeof(struct cmsghdr)));
tmp = CMSG_ALIGN(tmp);
kcmlen += tmp;
ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen);
}
if (kcmlen == 0)
return -EINVAL;
/*
* The kcmlen holds the 64-bit version of the control length. It may not be
* modified as we do not stick it into the kmsg until we have successfully copied
* over all of the data from the user.
*/
if (kcmlen > *bufsize) {
*bufsize = kcmlen;
kcmsg_base = kcmsg = sock_kmalloc(sk, kcmlen, GFP_KERNEL);
}
if (kcmsg == NULL)
return -ENOBUFS;
/* Now copy them over neatly. */
memset(kcmsg, 0, kcmlen);
ucmsg = CMSG32_FIRSTHDR(kmsg);
while (ucmsg != NULL) {
err = get_user(ucmlen, &ucmsg->cmsg_len);
tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) +
CMSG_ALIGN(sizeof(struct cmsghdr)));
kcmsg->cmsg_len = tmp;
err |= get_user(kcmsg->cmsg_level, &ucmsg->cmsg_level);
err |= get_user(kcmsg->cmsg_type, &ucmsg->cmsg_type);
/* Copy over the data. */
err |= copy_from_user(CMSG_DATA(kcmsg), CMSG32_DATA(ucmsg),
(ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))));
if (err)
goto out_free_efault;
/* Advance. */
kcmsg = (struct cmsghdr *)((char *)kcmsg + tmp);
ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen);
}
/* Ok, looks like we made it. Hook it up and return success. */
kmsg->msg_control = kcmsg_base;
kmsg->msg_controllen = kcmlen;
return 0;
out_free_efault:
if (kcmsg_base != (struct cmsghdr *)stackbuf)
sock_kfree_s(sk, kcmsg_base, kcmlen);
return -EFAULT;
}
/*
* Verify & re-shape IA32 iovec. The caller must ensure that the
* iovec is big enough to hold the re-shaped message iovec.
*
* Save time not doing verify_area. copy_*_user will make this work
* in any case.
*
* Don't need to check the total size for overflow (cf net/core/iovec.c),
* 32-bit sizes can't overflow a 64-bit count.
*/
static inline int
verify_iovec32 (struct msghdr *m, struct iovec *iov, char *address, int mode)
{
int size, err, ct;
struct iovec32 *iov32;
if (m->msg_namelen) {
if (mode == VERIFY_READ) {
err = move_addr_to_kernel(m->msg_name, m->msg_namelen, address);
if (err < 0)
goto out;
}
m->msg_name = address;
} else
m->msg_name = NULL;
err = -EFAULT;
size = m->msg_iovlen * sizeof(struct iovec32);
if (copy_from_user(iov, m->msg_iov, size))
goto out;
m->msg_iov = iov;
err = 0;
iov32 = (struct iovec32 *)iov;
for (ct = m->msg_iovlen; ct-- > 0; ) {
iov[ct].iov_len = (__kernel_size_t)iov32[ct].iov_len;
iov[ct].iov_base = (void *) A(iov32[ct].iov_base);
err += iov[ct].iov_len;
}
out:
return err;
}
static void
put_cmsg32(struct msghdr *kmsg, int level, int type, int len, void *data)
{
struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control;
struct cmsghdr32 cmhdr;
int cmlen = CMSG32_LEN(len);
if(cm == NULL || kmsg->msg_controllen < sizeof(*cm)) {
kmsg->msg_flags |= MSG_CTRUNC;
return;
}
if(kmsg->msg_controllen < cmlen) {
kmsg->msg_flags |= MSG_CTRUNC;
cmlen = kmsg->msg_controllen;
}
cmhdr.cmsg_level = level;
cmhdr.cmsg_type = type;
cmhdr.cmsg_len = cmlen;
if(copy_to_user(cm, &cmhdr, sizeof cmhdr))
return;
if(copy_to_user(CMSG32_DATA(cm), data,
cmlen - sizeof(struct cmsghdr32)))
return;
cmlen = CMSG32_SPACE(len);
kmsg->msg_control += cmlen;
kmsg->msg_controllen -= cmlen;
}
static void
scm_detach_fds32 (struct msghdr *kmsg, struct scm_cookie *scm)
{
struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control;
int fdmax = (kmsg->msg_controllen - sizeof(struct cmsghdr32))
/ sizeof(int);
int fdnum = scm->fp->count;
struct file **fp = scm->fp->fp;
int *cmfptr;
int err = 0, i;
if (fdnum < fdmax)
fdmax = fdnum;
for (i = 0, cmfptr = (int *) CMSG32_DATA(cm);
i < fdmax;
i++, cmfptr++) {
int new_fd;
err = get_unused_fd();
if (err < 0)
break;
new_fd = err;
err = put_user(new_fd, cmfptr);
if (err) {
put_unused_fd(new_fd);
break;
}
/* Bump the usage count and install the file. */
get_file(fp[i]);
current->files->fd[new_fd] = fp[i];
}
if (i > 0) {
int cmlen = CMSG32_LEN(i * sizeof(int));
if (!err)
err = put_user(SOL_SOCKET, &cm->cmsg_level);
if (!err)
err = put_user(SCM_RIGHTS, &cm->cmsg_type);
if (!err)
err = put_user(cmlen, &cm->cmsg_len);
if (!err) {
cmlen = CMSG32_SPACE(i * sizeof(int));
kmsg->msg_control += cmlen;
kmsg->msg_controllen -= cmlen;
}
}
if (i < fdnum)
kmsg->msg_flags |= MSG_CTRUNC;
/*
* All of the files that fit in the message have had their
* usage counts incremented, so we just free the list.
*/
__scm_destroy(scm);
}
/*
* In these cases we (currently) can just copy to data over verbatim because all CMSGs
* created by the kernel have well defined types which have the same layout in both the
* 32-bit and 64-bit API. One must add some special cased conversions here if we start
* sending control messages with incompatible types.
*
* SCM_RIGHTS and SCM_CREDENTIALS are done by hand in recvmsg32 right after
* we do our work. The remaining cases are:
*
* SOL_IP IP_PKTINFO struct in_pktinfo 32-bit clean
* IP_TTL int 32-bit clean
* IP_TOS __u8 32-bit clean
* IP_RECVOPTS variable length 32-bit clean
* IP_RETOPTS variable length 32-bit clean
* (these last two are clean because the types are defined
* by the IPv4 protocol)
* IP_RECVERR struct sock_extended_err +
* struct sockaddr_in 32-bit clean
* SOL_IPV6 IPV6_RECVERR struct sock_extended_err +
* struct sockaddr_in6 32-bit clean
* IPV6_PKTINFO struct in6_pktinfo 32-bit clean
* IPV6_HOPLIMIT int 32-bit clean
* IPV6_FLOWINFO u32 32-bit clean
* IPV6_HOPOPTS ipv6 hop exthdr 32-bit clean
* IPV6_DSTOPTS ipv6 dst exthdr(s) 32-bit clean
* IPV6_RTHDR ipv6 routing exthdr 32-bit clean
* IPV6_AUTHHDR ipv6 auth exthdr 32-bit clean
*/
static void
cmsg32_recvmsg_fixup (struct msghdr *kmsg, unsigned long orig_cmsg_uptr,
__kernel_size_t orig_cmsg_len)
{
unsigned char *workbuf, *wp;
unsigned long bufsz, space_avail;
struct cmsghdr *ucmsg;
long err;
bufsz = ((unsigned long)kmsg->msg_control) - orig_cmsg_uptr;
space_avail = kmsg->msg_controllen + bufsz;
wp = workbuf = kmalloc(bufsz, GFP_KERNEL);
if (workbuf == NULL)
goto fail;
/* To make this more sane we assume the kernel sends back properly
* formatted control messages. Because of how the kernel will truncate
* the cmsg_len for MSG_TRUNC cases, we need not check that case either.
*/
ucmsg = (struct cmsghdr *) orig_cmsg_uptr;
while (((unsigned long)ucmsg) < ((unsigned long)kmsg->msg_control)) {
struct cmsghdr32 *kcmsg32 = (struct cmsghdr32 *) wp;
int clen64, clen32;
/*
* UCMSG is the 64-bit format CMSG entry in user-space. KCMSG32 is within
* the kernel space temporary buffer we use to convert into a 32-bit style
* CMSG.
*/
err = get_user(kcmsg32->cmsg_len, &ucmsg->cmsg_len);
err |= get_user(kcmsg32->cmsg_level, &ucmsg->cmsg_level);
err |= get_user(kcmsg32->cmsg_type, &ucmsg->cmsg_type);
if (err)
goto fail2;
clen64 = kcmsg32->cmsg_len;
if ((clen64 < CMSG_ALIGN(sizeof(*ucmsg))) ||
(clen64 > (orig_cmsg_len + wp - workbuf)))
break;
copy_from_user(CMSG32_DATA(kcmsg32), CMSG_DATA(ucmsg),
clen64 - CMSG_ALIGN(sizeof(*ucmsg)));
clen32 = ((clen64 - CMSG_ALIGN(sizeof(*ucmsg))) +
CMSG32_ALIGN(sizeof(struct cmsghdr32)));
kcmsg32->cmsg_len = clen32;
ucmsg = (struct cmsghdr *) (((char *)ucmsg) + CMSG_ALIGN(clen64));
wp = (((char *)kcmsg32) + CMSG32_ALIGN(clen32));
}
/* Copy back fixed up data, and adjust pointers. */
bufsz = (wp - workbuf);
if (copy_to_user((void *)orig_cmsg_uptr, workbuf, bufsz))
goto fail2;
kmsg->msg_control = (struct cmsghdr *) (((char *)orig_cmsg_uptr) + bufsz);
kmsg->msg_controllen = space_avail - bufsz;
kfree(workbuf);
return;
fail2:
kfree(workbuf);
fail:
/*
* If we leave the 64-bit format CMSG chunks in there, the application could get
* confused and crash. So to ensure greater recovery, we report no CMSGs.
*/
kmsg->msg_controllen += bufsz;
kmsg->msg_control = (void *) orig_cmsg_uptr;
}
static inline void
sockfd_put (struct socket *sock)
{
fput(sock->file);
}
/* XXX This really belongs in some header file... -DaveM */
#define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
16 for IP, 16 for IPX,
24 for IPv6,
about 80 for AX.25 */
extern struct socket *sockfd_lookup (int fd, int *err);
/*
* BSD sendmsg interface
*/
int
sys32_sendmsg (int fd, struct msghdr32 *msg, unsigned flags)
{
struct socket *sock;
char address[MAX_SOCK_ADDR];
struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */
unsigned char *ctl_buf = ctl;
struct msghdr msg_sys;
int err, iov_size, total_len;
size_t ctl_len;
err = -EFAULT;
if (get_msghdr32(&msg_sys, msg))
goto out;
sock = sockfd_lookup(fd, &err);
if (!sock)
goto out;
/* do not move before msg_sys is valid */
err = -EINVAL;
if (msg_sys.msg_iovlen > UIO_MAXIOV)
goto out_put;
/* Check whether to allocate the iovec area*/
err = -ENOMEM;
iov_size = msg_sys.msg_iovlen * sizeof(struct iovec32);
if (msg_sys.msg_iovlen > UIO_FASTIOV) {
iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
if (!iov)
goto out_put;
}
/* This will also move the address data into kernel space */
err = verify_iovec32(&msg_sys, iov, address, VERIFY_READ);
if (err < 0)
goto out_freeiov;
total_len = err;
err = -ENOBUFS;
if (msg_sys.msg_controllen > INT_MAX)
goto out_freeiov;
if (msg_sys.msg_controllen) {
ctl_len = sizeof(ctl);
err = get_cmsghdr32(&msg_sys, ctl_buf, sock->sk, &ctl_len);
if (err)
goto out_freeiov;
ctl_buf = msg_sys.msg_control;
}
msg_sys.msg_flags = flags;
if (sock->file->f_flags & O_NONBLOCK)
msg_sys.msg_flags |= MSG_DONTWAIT;
err = sock_sendmsg(sock, &msg_sys, total_len);
if (ctl_buf != ctl)
sock_kfree_s(sock->sk, ctl_buf, ctl_len);
out_freeiov:
if (iov != iovstack)
sock_kfree_s(sock->sk, iov, iov_size);
out_put:
sockfd_put(sock);
out:
return err;
}
/*
* BSD recvmsg interface
*/
int
sys32_recvmsg (int fd, struct msghdr32 *msg, unsigned int flags)
{
struct socket *sock;
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov=iovstack;
struct msghdr msg_sys;
unsigned long cmsg_ptr;
__kernel_size_t cmsg_len;
int err, iov_size, total_len, len;
struct scm_cookie scm;
/* kernel mode address */
char addr[MAX_SOCK_ADDR];
/* user mode address pointers */
struct sockaddr *uaddr;
int *uaddr_len;
err = -EFAULT;
if (get_msghdr32(&msg_sys, msg))
goto out;
sock = sockfd_lookup(fd, &err);
if (!sock)
goto out;
err = -EINVAL;
if (msg_sys.msg_iovlen > UIO_MAXIOV)
goto out_put;
/* Check whether to allocate the iovec area*/
err = -ENOMEM;
iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
if (msg_sys.msg_iovlen > UIO_FASTIOV) {
iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
if (!iov)
goto out_put;
}
/*
* Save the user-mode address (verify_iovec will change the
* kernel msghdr to use the kernel address space)
*/
uaddr = msg_sys.msg_name;
uaddr_len = &msg->msg_namelen;
err = verify_iovec32(&msg_sys, iov, addr, VERIFY_WRITE);
if (err < 0)
goto out_freeiov;
total_len=err;
cmsg_ptr = (unsigned long)msg_sys.msg_control;
cmsg_len = msg_sys.msg_controllen;
msg_sys.msg_flags = 0;
if (sock->file->f_flags & O_NONBLOCK)
flags |= MSG_DONTWAIT;
memset(&scm, 0, sizeof(scm));
lock_kernel();
{
err = sock->ops->recvmsg(sock, &msg_sys, total_len, flags, &scm);
if (err < 0)
goto out_unlock_freeiov;
len = err;
if (!msg_sys.msg_control) {
if (sock->passcred || scm.fp)
msg_sys.msg_flags |= MSG_CTRUNC;
if (scm.fp)
__scm_destroy(&scm);
} else {
/*
* If recvmsg processing itself placed some control messages into
* user space, it's is using 64-bit CMSG processing, so we need to
* fix it up before we tack on more stuff.
*/
if ((unsigned long) msg_sys.msg_control != cmsg_ptr)
cmsg32_recvmsg_fixup(&msg_sys, cmsg_ptr,
cmsg_len);
/* Wheee... */
if (sock->passcred)
put_cmsg32(&msg_sys, SOL_SOCKET, SCM_CREDENTIALS,
sizeof(scm.creds), &scm.creds);
if (scm.fp != NULL)
scm_detach_fds32(&msg_sys, &scm);
}
}
unlock_kernel();
if (uaddr != NULL) {
err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
if (err < 0)
goto out_freeiov;
}
err = __put_user(msg_sys.msg_flags, &msg->msg_flags);
if (err)
goto out_freeiov;
err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
&msg->msg_controllen);
if (err)
goto out_freeiov;
err = len;
out_freeiov:
if (iov != iovstack)
sock_kfree_s(sock->sk, iov, iov_size);
out_put:
sockfd_put(sock);
out:
return err;
out_unlock_freeiov:
goto out_freeiov;
}
/* Argument list sizes for sys_socketcall */
#define AL(x) ((x) * sizeof(u32))
static const unsigned char nas[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
#undef AL
extern asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen);
extern asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr,
int addrlen);
extern asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr,
int *upeer_addrlen);
extern asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr,
int *usockaddr_len);
extern asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr,
int *usockaddr_len);
extern asmlinkage long sys_send(int fd, void *buff, size_t len, unsigned flags);
extern asmlinkage long sys_sendto(int fd, u32 buff, __kernel_size_t32 len,
unsigned flags, u32 addr, int addr_len);
extern asmlinkage long sys_recv(int fd, void *ubuf, size_t size, unsigned flags);
extern asmlinkage long sys_recvfrom(int fd, u32 ubuf, __kernel_size_t32 size,
unsigned flags, u32 addr, u32 addr_len);
extern asmlinkage long sys_setsockopt(int fd, int level, int optname,
char *optval, int optlen);
extern asmlinkage long sys_getsockopt(int fd, int level, int optname,
u32 optval, u32 optlen);
extern asmlinkage long sys_socket(int family, int type, int protocol);
extern asmlinkage long sys_socketpair(int family, int type, int protocol,
int usockvec[2]);
extern asmlinkage long sys_shutdown(int fd, int how);
extern asmlinkage long sys_listen(int fd, int backlog);
asmlinkage long
sys32_socketcall (int call, u32 *args)
{
int ret;
u32 a[6];
u32 a0,a1;
if (call<SYS_SOCKET||call>SYS_RECVMSG)
return -EINVAL;
if (copy_from_user(a, args, nas[call]))
return -EFAULT;
a0=a[0];
a1=a[1];
switch(call)
{
case SYS_SOCKET:
ret = sys_socket(a0, a1, a[2]);
break;
case SYS_BIND:
ret = sys_bind(a0, (struct sockaddr *)A(a1), a[2]);
break;
case SYS_CONNECT:
ret = sys_connect(a0, (struct sockaddr *)A(a1), a[2]);
break;
case SYS_LISTEN:
ret = sys_listen(a0, a1);
break;
case SYS_ACCEPT:
ret = sys_accept(a0, (struct sockaddr *)A(a1), (int *)A(a[2]));
break;
case SYS_GETSOCKNAME:
ret = sys_getsockname(a0, (struct sockaddr *)A(a1), (int *)A(a[2]));
break;
case SYS_GETPEERNAME:
ret = sys_getpeername(a0, (struct sockaddr *)A(a1), (int *)A(a[2]));
break;
case SYS_SOCKETPAIR:
ret = sys_socketpair(a0, a1, a[2], (int *)A(a[3]));
break;
case SYS_SEND:
ret = sys_send(a0, (void *)A(a1), a[2], a[3]);
break;
case SYS_SENDTO:
ret = sys_sendto(a0, a1, a[2], a[3], a[4], a[5]);
break;
case SYS_RECV:
ret = sys_recv(a0, (void *)A(a1), a[2], a[3]);
break;
case SYS_RECVFROM:
ret = sys_recvfrom(a0, a1, a[2], a[3], a[4], a[5]);
break;
case SYS_SHUTDOWN:
ret = sys_shutdown(a0,a1);
break;
case SYS_SETSOCKOPT:
ret = sys_setsockopt(a0, a1, a[2], (char *)A(a[3]),
a[4]);
break;
case SYS_GETSOCKOPT:
ret = sys_getsockopt(a0, a1, a[2], a[3], a[4]);
break;
case SYS_SENDMSG:
ret = sys32_sendmsg(a0, (struct msghdr32 *) A(a1), a[2]);
break;
case SYS_RECVMSG:
ret = sys32_recvmsg(a0, (struct msghdr32 *) A(a1), a[2]);
break;
default:
ret = EINVAL;
break;
}
return ret;
}
/*
* sys32_ipc() is the de-multiplexer for the SysV IPC calls in 32bit emulation..
*
* This is really horribly ugly.
*/
struct msgbuf32 { s32 mtype; char mtext[1]; };
struct ipc_perm32 {
key_t key;
__kernel_uid_t32 uid;
__kernel_gid_t32 gid;
__kernel_uid_t32 cuid;
__kernel_gid_t32 cgid;
__kernel_mode_t32 mode;
unsigned short seq;
};
struct ipc64_perm32 {
key_t key;
__kernel_uid32_t32 uid;
__kernel_gid32_t32 gid;
__kernel_uid32_t32 cuid;
__kernel_gid32_t32 cgid;
__kernel_mode_t32 mode;
unsigned short __pad1;
unsigned short seq;
unsigned short __pad2;
unsigned int unused1;
unsigned int unused2;
};
struct semid_ds32 {
struct ipc_perm32 sem_perm; /* permissions .. see ipc.h */
__kernel_time_t32 sem_otime; /* last semop time */
__kernel_time_t32 sem_ctime; /* last change time */
u32 sem_base; /* ptr to first semaphore in array */
u32 sem_pending; /* pending operations to be processed */
u32 sem_pending_last; /* last pending operation */
u32 undo; /* undo requests on this array */
unsigned short sem_nsems; /* no. of semaphores in array */
};
struct semid64_ds32 {
struct ipc64_perm32 sem_perm;
__kernel_time_t32 sem_otime;
unsigned int __unused1;
__kernel_time_t32 sem_ctime;
unsigned int __unused2;
unsigned int sem_nsems;
unsigned int __unused3;
unsigned int __unused4;
};
struct msqid_ds32 {
struct ipc_perm32 msg_perm;
u32 msg_first;
u32 msg_last;
__kernel_time_t32 msg_stime;
__kernel_time_t32 msg_rtime;
__kernel_time_t32 msg_ctime;
u32 wwait;
u32 rwait;
unsigned short msg_cbytes;
unsigned short msg_qnum;
unsigned short msg_qbytes;
__kernel_ipc_pid_t32 msg_lspid;
__kernel_ipc_pid_t32 msg_lrpid;
};
struct msqid64_ds32 {
struct ipc64_perm32 msg_perm;
__kernel_time_t32 msg_stime;
unsigned int __unused1;
__kernel_time_t32 msg_rtime;
unsigned int __unused2;
__kernel_time_t32 msg_ctime;
unsigned int __unused3;
unsigned int msg_cbytes;
unsigned int msg_qnum;
unsigned int msg_qbytes;
__kernel_pid_t32 msg_lspid;
__kernel_pid_t32 msg_lrpid;
unsigned int __unused4;
unsigned int __unused5;
};
struct shmid_ds32 {
struct ipc_perm32 shm_perm;
int shm_segsz;
__kernel_time_t32 shm_atime;
__kernel_time_t32 shm_dtime;
__kernel_time_t32 shm_ctime;
__kernel_ipc_pid_t32 shm_cpid;
__kernel_ipc_pid_t32 shm_lpid;
unsigned short shm_nattch;
};
struct shmid64_ds32 {
struct ipc64_perm32 shm_perm;
__kernel_size_t32 shm_segsz;
__kernel_time_t32 shm_atime;
unsigned int __unused1;
__kernel_time_t32 shm_dtime;
unsigned int __unused2;
__kernel_time_t32 shm_ctime;
unsigned int __unused3;
__kernel_pid_t32 shm_cpid;
__kernel_pid_t32 shm_lpid;
unsigned int shm_nattch;
unsigned int __unused4;
unsigned int __unused5;
};
struct shminfo64_32 {
unsigned int shmmax;
unsigned int shmmin;
unsigned int shmmni;
unsigned int shmseg;
unsigned int shmall;
unsigned int __unused1;
unsigned int __unused2;
unsigned int __unused3;
unsigned int __unused4;
};
struct shm_info32 {
int used_ids;
u32 shm_tot, shm_rss, shm_swp;
u32 swap_attempts, swap_successes;
};
struct ipc_kludge {
u32 msgp;
s32 msgtyp;
};
#define SEMOP 1
#define SEMGET 2
#define SEMCTL 3
#define MSGSND 11
#define MSGRCV 12
#define MSGGET 13
#define MSGCTL 14
#define SHMAT 21
#define SHMDT 22
#define SHMGET 23
#define SHMCTL 24
#define IPCOP_MASK(__x) (1UL << (__x))
static int
ipc_parse_version32 (int *cmd)
{
if (*cmd & IPC_64) {
*cmd ^= IPC_64;
return IPC_64;
} else {
return IPC_OLD;
}
}
static int
semctl32 (int first, int second, int third, void *uptr)
{
union semun fourth;
u32 pad;
int err = 0, err2;
struct semid64_ds s;
mm_segment_t old_fs;
int version = ipc_parse_version32(&third);
if (!uptr)
return -EINVAL;
if (get_user(pad, (u32 *)uptr))
return -EFAULT;
if (third == SETVAL)
fourth.val = (int)pad;
else
fourth.__pad = (void *)A(pad);
switch (third) {
default:
err = -EINVAL;
break;
case IPC_INFO:
case IPC_RMID:
case IPC_SET:
case SEM_INFO:
case GETVAL:
case GETPID:
case GETNCNT:
case GETZCNT:
case GETALL:
case SETVAL:
case SETALL:
err = sys_semctl(first, second, third, fourth);
break;
case IPC_STAT:
case SEM_STAT:
fourth.__pad = &s;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_semctl(first, second, third, fourth);
set_fs(old_fs);
if (version == IPC_64) {
struct semid64_ds32 *usp64 = (struct semid64_ds32 *) A(pad);
if (!access_ok(VERIFY_WRITE, usp64, sizeof(*usp64))) {
err = -EFAULT;
break;
}
err2 = __put_user(s.sem_perm.key, &usp64->sem_perm.key);
err2 |= __put_user(s.sem_perm.uid, &usp64->sem_perm.uid);
err2 |= __put_user(s.sem_perm.gid, &usp64->sem_perm.gid);
err2 |= __put_user(s.sem_perm.cuid, &usp64->sem_perm.cuid);
err2 |= __put_user(s.sem_perm.cgid, &usp64->sem_perm.cgid);
err2 |= __put_user(s.sem_perm.mode, &usp64->sem_perm.mode);
err2 |= __put_user(s.sem_perm.seq, &usp64->sem_perm.seq);
err2 |= __put_user(s.sem_otime, &usp64->sem_otime);
err2 |= __put_user(s.sem_ctime, &usp64->sem_ctime);
err2 |= __put_user(s.sem_nsems, &usp64->sem_nsems);
} else {
struct semid_ds32 *usp32 = (struct semid_ds32 *) A(pad);
if (!access_ok(VERIFY_WRITE, usp32, sizeof(*usp32))) {
err = -EFAULT;
break;
}
err2 = __put_user(s.sem_perm.key, &usp32->sem_perm.key);
err2 |= __put_user(s.sem_perm.uid, &usp32->sem_perm.uid);
err2 |= __put_user(s.sem_perm.gid, &usp32->sem_perm.gid);
err2 |= __put_user(s.sem_perm.cuid, &usp32->sem_perm.cuid);
err2 |= __put_user(s.sem_perm.cgid, &usp32->sem_perm.cgid);
err2 |= __put_user(s.sem_perm.mode, &usp32->sem_perm.mode);
err2 |= __put_user(s.sem_perm.seq, &usp32->sem_perm.seq);
err2 |= __put_user(s.sem_otime, &usp32->sem_otime);
err2 |= __put_user(s.sem_ctime, &usp32->sem_ctime);
err2 |= __put_user(s.sem_nsems, &usp32->sem_nsems);
}
if (err2)
err = -EFAULT;
break;
}
return err;
}
static int
do_sys32_msgsnd (int first, int second, int third, void *uptr)
{
struct msgbuf *p = kmalloc(second + sizeof(struct msgbuf), GFP_USER);
struct msgbuf32 *up = (struct msgbuf32 *)uptr;
mm_segment_t old_fs;
int err;
if (!p)
return -ENOMEM;
err = get_user(p->mtype, &up->mtype);
err |= copy_from_user(p->mtext, &up->mtext, second);
if (err)
goto out;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_msgsnd(first, p, second, third);
set_fs(old_fs);
out:
kfree(p);
return err;
}
static int
do_sys32_msgrcv (int first, int second, int msgtyp, int third, int version, void *uptr)
{
struct msgbuf32 *up;
struct msgbuf *p;
mm_segment_t old_fs;
int err;
if (!version) {
struct ipc_kludge *uipck = (struct ipc_kludge *)uptr;
struct ipc_kludge ipck;
err = -EINVAL;
if (!uptr)
goto out;
err = -EFAULT;
if (copy_from_user(&ipck, uipck, sizeof(struct ipc_kludge)))
goto out;
uptr = (void *)A(ipck.msgp);
msgtyp = ipck.msgtyp;
}
err = -ENOMEM;
p = kmalloc(second + sizeof(struct msgbuf), GFP_USER);
if (!p)
goto out;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_msgrcv(first, p, second, msgtyp, third);
set_fs(old_fs);
if (err < 0)
goto free_then_out;
up = (struct msgbuf32 *)uptr;
if (put_user(p->mtype, &up->mtype) || copy_to_user(&up->mtext, p->mtext, err))
err = -EFAULT;
free_then_out:
kfree(p);
out:
return err;
}
static int
msgctl32 (int first, int second, void *uptr)
{
int err = -EINVAL, err2;
struct msqid_ds m;
struct msqid64_ds m64;
struct msqid_ds32 *up32 = (struct msqid_ds32 *)uptr;
struct msqid64_ds32 *up64 = (struct msqid64_ds32 *)uptr;
mm_segment_t old_fs;
int version = ipc_parse_version32(&second);
switch (second) {
case IPC_INFO:
case IPC_RMID:
case MSG_INFO:
err = sys_msgctl(first, second, (struct msqid_ds *)uptr);
break;
case IPC_SET:
if (version == IPC_64) {
err = get_user(m64.msg_perm.uid, &up64->msg_perm.uid);
err |= get_user(m64.msg_perm.gid, &up64->msg_perm.gid);
err |= get_user(m64.msg_perm.mode, &up64->msg_perm.mode);
err |= get_user(m64.msg_qbytes, &up64->msg_qbytes);
} else {
err = get_user(m64.msg_perm.uid, &up32->msg_perm.uid);
err |= get_user(m64.msg_perm.gid, &up32->msg_perm.gid);
err |= get_user(m64.msg_perm.mode, &up32->msg_perm.mode);
err |= get_user(m64.msg_qbytes, &up32->msg_qbytes);
}
if (err)
break;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_msgctl(first, second, &m64);
set_fs(old_fs);
break;
case IPC_STAT:
case MSG_STAT:
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_msgctl(first, second, (void *) &m64);
set_fs(old_fs);
if (version == IPC_64) {
if (!access_ok(VERIFY_WRITE, up64, sizeof(*up64))) {
err = -EFAULT;
break;
}
err2 = __put_user(m64.msg_perm.key, &up64->msg_perm.key);
err2 |= __put_user(m64.msg_perm.uid, &up64->msg_perm.uid);
err2 |= __put_user(m64.msg_perm.gid, &up64->msg_perm.gid);
err2 |= __put_user(m64.msg_perm.cuid, &up64->msg_perm.cuid);
err2 |= __put_user(m64.msg_perm.cgid, &up64->msg_perm.cgid);
err2 |= __put_user(m64.msg_perm.mode, &up64->msg_perm.mode);
err2 |= __put_user(m64.msg_perm.seq, &up64->msg_perm.seq);
err2 |= __put_user(m64.msg_stime, &up64->msg_stime);
err2 |= __put_user(m64.msg_rtime, &up64->msg_rtime);
err2 |= __put_user(m64.msg_ctime, &up64->msg_ctime);
err2 |= __put_user(m64.msg_cbytes, &up64->msg_cbytes);
err2 |= __put_user(m64.msg_qnum, &up64->msg_qnum);
err2 |= __put_user(m64.msg_qbytes, &up64->msg_qbytes);
err2 |= __put_user(m64.msg_lspid, &up64->msg_lspid);
err2 |= __put_user(m64.msg_lrpid, &up64->msg_lrpid);
if (err2)
err = -EFAULT;
} else {
if (!access_ok(VERIFY_WRITE, up32, sizeof(*up32))) {
err = -EFAULT;
break;
}
err2 = __put_user(m64.msg_perm.key, &up32->msg_perm.key);
err2 |= __put_user(m64.msg_perm.uid, &up32->msg_perm.uid);
err2 |= __put_user(m64.msg_perm.gid, &up32->msg_perm.gid);
err2 |= __put_user(m64.msg_perm.cuid, &up32->msg_perm.cuid);
err2 |= __put_user(m64.msg_perm.cgid, &up32->msg_perm.cgid);
err2 |= __put_user(m64.msg_perm.mode, &up32->msg_perm.mode);
err2 |= __put_user(m64.msg_perm.seq, &up32->msg_perm.seq);
err2 |= __put_user(m64.msg_stime, &up32->msg_stime);
err2 |= __put_user(m64.msg_rtime, &up32->msg_rtime);
err2 |= __put_user(m64.msg_ctime, &up32->msg_ctime);
err2 |= __put_user(m64.msg_cbytes, &up32->msg_cbytes);
err2 |= __put_user(m64.msg_qnum, &up32->msg_qnum);
err2 |= __put_user(m64.msg_qbytes, &up32->msg_qbytes);
err2 |= __put_user(m64.msg_lspid, &up32->msg_lspid);
err2 |= __put_user(m64.msg_lrpid, &up32->msg_lrpid);
if (err2)
err = -EFAULT;
}
break;
}
return err;
}
static int
shmat32 (int first, int second, int third, int version, void *uptr)
{
unsigned long raddr;
u32 *uaddr = (u32 *)A((u32)third);
int err;
if (version == 1)
return -EINVAL; /* iBCS2 emulator entry point: unsupported */
err = sys_shmat(first, uptr, second, &raddr);
if (err)
return err;
return put_user(raddr, uaddr);
}
static int
shmctl32 (int first, int second, void *uptr)
{
int err = -EFAULT, err2;
struct shmid64_ds s64;
struct shmid_ds32 *up32 = (struct shmid_ds32 *)uptr;
struct shmid64_ds32 *up64 = (struct shmid64_ds32 *)uptr;
mm_segment_t old_fs;
struct shm_info32 *uip = (struct shm_info32 *)uptr;
struct shm_info si;
int version = ipc_parse_version32(&second);
struct shminfo64 smi;
struct shminfo *usi32 = (struct shminfo *) uptr;
struct shminfo64_32 *usi64 = (struct shminfo64_32 *) uptr;
switch (second) {
case IPC_INFO:
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_shmctl(first, second, (struct shmid_ds *)&smi);
set_fs(old_fs);
if (version == IPC_64) {
if (!access_ok(VERIFY_WRITE, usi64, sizeof(*usi64))) {
err = -EFAULT;
break;
}
err2 = __put_user(smi.shmmax, &usi64->shmmax);
err2 |= __put_user(smi.shmmin, &usi64->shmmin);
err2 |= __put_user(smi.shmmni, &usi64->shmmni);
err2 |= __put_user(smi.shmseg, &usi64->shmseg);
err2 |= __put_user(smi.shmall, &usi64->shmall);
} else {
if (!access_ok(VERIFY_WRITE, usi32, sizeof(*usi32))) {
err = -EFAULT;
break;
}
err2 = __put_user(smi.shmmax, &usi32->shmmax);
err2 |= __put_user(smi.shmmin, &usi32->shmmin);
err2 |= __put_user(smi.shmmni, &usi32->shmmni);
err2 |= __put_user(smi.shmseg, &usi32->shmseg);
err2 |= __put_user(smi.shmall, &usi32->shmall);
}
if (err2)
err = -EFAULT;
break;
case IPC_RMID:
case SHM_LOCK:
case SHM_UNLOCK:
err = sys_shmctl(first, second, (struct shmid_ds *)uptr);
break;
case IPC_SET:
if (version == IPC_64) {
err = get_user(s64.shm_perm.uid, &up64->shm_perm.uid);
err |= get_user(s64.shm_perm.gid, &up64->shm_perm.gid);
err |= get_user(s64.shm_perm.mode, &up64->shm_perm.mode);
} else {
err = get_user(s64.shm_perm.uid, &up32->shm_perm.uid);
err |= get_user(s64.shm_perm.gid, &up32->shm_perm.gid);
err |= get_user(s64.shm_perm.mode, &up32->shm_perm.mode);
}
if (err)
break;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_shmctl(first, second, &s64);
set_fs(old_fs);
break;
case IPC_STAT:
case SHM_STAT:
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_shmctl(first, second, (void *) &s64);
set_fs(old_fs);
if (err < 0)
break;
if (version == IPC_64) {
if (!access_ok(VERIFY_WRITE, up64, sizeof(*up64))) {
err = -EFAULT;
break;
}
err2 = __put_user(s64.shm_perm.key, &up64->shm_perm.key);
err2 |= __put_user(s64.shm_perm.uid, &up64->shm_perm.uid);
err2 |= __put_user(s64.shm_perm.gid, &up64->shm_perm.gid);
err2 |= __put_user(s64.shm_perm.cuid, &up64->shm_perm.cuid);
err2 |= __put_user(s64.shm_perm.cgid, &up64->shm_perm.cgid);
err2 |= __put_user(s64.shm_perm.mode, &up64->shm_perm.mode);
err2 |= __put_user(s64.shm_perm.seq, &up64->shm_perm.seq);
err2 |= __put_user(s64.shm_atime, &up64->shm_atime);
err2 |= __put_user(s64.shm_dtime, &up64->shm_dtime);
err2 |= __put_user(s64.shm_ctime, &up64->shm_ctime);
err2 |= __put_user(s64.shm_segsz, &up64->shm_segsz);
err2 |= __put_user(s64.shm_nattch, &up64->shm_nattch);
err2 |= __put_user(s64.shm_cpid, &up64->shm_cpid);
err2 |= __put_user(s64.shm_lpid, &up64->shm_lpid);
} else {
if (!access_ok(VERIFY_WRITE, up32, sizeof(*up32))) {
err = -EFAULT;
break;
}
err2 = __put_user(s64.shm_perm.key, &up32->shm_perm.key);
err2 |= __put_user(s64.shm_perm.uid, &up32->shm_perm.uid);
err2 |= __put_user(s64.shm_perm.gid, &up32->shm_perm.gid);
err2 |= __put_user(s64.shm_perm.cuid, &up32->shm_perm.cuid);
err2 |= __put_user(s64.shm_perm.cgid, &up32->shm_perm.cgid);
err2 |= __put_user(s64.shm_perm.mode, &up32->shm_perm.mode);
err2 |= __put_user(s64.shm_perm.seq, &up32->shm_perm.seq);
err2 |= __put_user(s64.shm_atime, &up32->shm_atime);
err2 |= __put_user(s64.shm_dtime, &up32->shm_dtime);
err2 |= __put_user(s64.shm_ctime, &up32->shm_ctime);
err2 |= __put_user(s64.shm_segsz, &up32->shm_segsz);
err2 |= __put_user(s64.shm_nattch, &up32->shm_nattch);
err2 |= __put_user(s64.shm_cpid, &up32->shm_cpid);
err2 |= __put_user(s64.shm_lpid, &up32->shm_lpid);
}
if (err2)
err = -EFAULT;
break;
case SHM_INFO:
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_shmctl(first, second, (void *)&si);
set_fs(old_fs);
if (err < 0)
break;
if (!access_ok(VERIFY_WRITE, uip, sizeof(*uip))) {
err = -EFAULT;
break;
}
err2 = __put_user(si.used_ids, &uip->used_ids);
err2 |= __put_user(si.shm_tot, &uip->shm_tot);
err2 |= __put_user(si.shm_rss, &uip->shm_rss);
err2 |= __put_user(si.shm_swp, &uip->shm_swp);
err2 |= __put_user(si.swap_attempts, &uip->swap_attempts);
err2 |= __put_user(si.swap_successes, &uip->swap_successes);
if (err2)
err = -EFAULT;
break;
}
return err;
}
asmlinkage long
sys32_ipc (u32 call, int first, int second, int third, u32 ptr, u32 fifth)
{
int version;
version = call >> 16; /* hack for backward compatibility */
call &= 0xffff;
switch (call) {
case SEMOP:
/* struct sembuf is the same on 32 and 64bit :)) */
return sys_semop(first, (struct sembuf *)AA(ptr), second);
case SEMGET:
return sys_semget(first, second, third);
case SEMCTL:
return semctl32(first, second, third, (void *)AA(ptr));
case MSGSND:
return do_sys32_msgsnd(first, second, third, (void *)AA(ptr));
case MSGRCV:
return do_sys32_msgrcv(first, second, fifth, third, version, (void *)AA(ptr));
case MSGGET:
return sys_msgget((key_t) first, second);
case MSGCTL:
return msgctl32(first, second, (void *)AA(ptr));
case SHMAT:
return shmat32(first, second, third, version, (void *)AA(ptr));
break;
case SHMDT:
return sys_shmdt((char *)AA(ptr));
case SHMGET:
return sys_shmget(first, second, third);
case SHMCTL:
return shmctl32(first, second, (void *)AA(ptr));
default:
return -ENOSYS;
}
return -EINVAL;
}
/*
* sys_time() can be implemented in user-level using
* sys_gettimeofday(). IA64 did this but i386 Linux did not
* so we have to implement this system call here.
*/
asmlinkage long
sys32_time (int *tloc)
{
int i;
/* SMP: This is fairly trivial. We grab CURRENT_TIME and
stuff it to user space. No side effects */
i = CURRENT_TIME;
if (tloc) {
if (put_user(i, tloc))
i = -EFAULT;
}
return i;
}
struct rusage32 {
struct timeval32 ru_utime;
struct timeval32 ru_stime;
int ru_maxrss;
int ru_ixrss;
int ru_idrss;
int ru_isrss;
int ru_minflt;
int ru_majflt;
int ru_nswap;
int ru_inblock;
int ru_oublock;
int ru_msgsnd;
int ru_msgrcv;
int ru_nsignals;
int ru_nvcsw;
int ru_nivcsw;
};
static int
put_rusage (struct rusage32 *ru, struct rusage *r)
{
int err;
if (!access_ok(VERIFY_WRITE, ru, sizeof(*ru)))
return -EFAULT;
err = __put_user (r->ru_utime.tv_sec, &ru->ru_utime.tv_sec);
err |= __put_user (r->ru_utime.tv_usec, &ru->ru_utime.tv_usec);
err |= __put_user (r->ru_stime.tv_sec, &ru->ru_stime.tv_sec);
err |= __put_user (r->ru_stime.tv_usec, &ru->ru_stime.tv_usec);
err |= __put_user (r->ru_maxrss, &ru->ru_maxrss);
err |= __put_user (r->ru_ixrss, &ru->ru_ixrss);
err |= __put_user (r->ru_idrss, &ru->ru_idrss);
err |= __put_user (r->ru_isrss, &ru->ru_isrss);
err |= __put_user (r->ru_minflt, &ru->ru_minflt);
err |= __put_user (r->ru_majflt, &ru->ru_majflt);
err |= __put_user (r->ru_nswap, &ru->ru_nswap);
err |= __put_user (r->ru_inblock, &ru->ru_inblock);
err |= __put_user (r->ru_oublock, &ru->ru_oublock);
err |= __put_user (r->ru_msgsnd, &ru->ru_msgsnd);
err |= __put_user (r->ru_msgrcv, &ru->ru_msgrcv);
err |= __put_user (r->ru_nsignals, &ru->ru_nsignals);
err |= __put_user (r->ru_nvcsw, &ru->ru_nvcsw);
err |= __put_user (r->ru_nivcsw, &ru->ru_nivcsw);
return err;
}
asmlinkage long
sys32_wait4 (int pid, unsigned int *stat_addr, int options, struct rusage32 *ru)
{
if (!ru)
return sys_wait4(pid, stat_addr, options, NULL);
else {
struct rusage r;
int ret;
unsigned int status;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_wait4(pid, stat_addr ? &status : NULL, options, &r);
set_fs(old_fs);
if (put_rusage(ru, &r))
return -EFAULT;
if (stat_addr && put_user(status, stat_addr))
return -EFAULT;
return ret;
}
}
asmlinkage long
sys32_waitpid (int pid, unsigned int *stat_addr, int options)
{
return sys32_wait4(pid, stat_addr, options, NULL);
}
extern asmlinkage long sys_getrusage (int who, struct rusage *ru);
asmlinkage long
sys32_getrusage (int who, struct rusage32 *ru)
{
struct rusage r;
int ret;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_getrusage(who, &r);
set_fs(old_fs);
if (put_rusage (ru, &r))
return -EFAULT;
return ret;
}
struct tms32 {
__kernel_clock_t32 tms_utime;
__kernel_clock_t32 tms_stime;
__kernel_clock_t32 tms_cutime;
__kernel_clock_t32 tms_cstime;
};
extern asmlinkage long sys_times (struct tms * tbuf);
asmlinkage long
sys32_times (struct tms32 *tbuf)
{
mm_segment_t old_fs = get_fs();
struct tms t;
long ret;
int err;
set_fs(KERNEL_DS);
ret = sys_times(tbuf ? &t : NULL);
set_fs(old_fs);
if (tbuf) {
err = put_user (IA32_TICK(t.tms_utime), &tbuf->tms_utime);
err |= put_user (IA32_TICK(t.tms_stime), &tbuf->tms_stime);
err |= put_user (IA32_TICK(t.tms_cutime), &tbuf->tms_cutime);
err |= put_user (IA32_TICK(t.tms_cstime), &tbuf->tms_cstime);
if (err)
ret = -EFAULT;
}
return IA32_TICK(ret);
}
static unsigned int
ia32_peek (struct pt_regs *regs, struct task_struct *child, unsigned long addr, unsigned int *val)
{
size_t copied;
unsigned int ret;
copied = access_process_vm(child, addr, val, sizeof(*val), 0);
return (copied != sizeof(ret)) ? -EIO : 0;
}
static unsigned int
ia32_poke (struct pt_regs *regs, struct task_struct *child, unsigned long addr, unsigned int val)
{
if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
return -EIO;
return 0;
}
/*
* The order in which registers are stored in the ptrace regs structure
*/
#define PT_EBX 0
#define PT_ECX 1
#define PT_EDX 2
#define PT_ESI 3
#define PT_EDI 4
#define PT_EBP 5
#define PT_EAX 6
#define PT_DS 7
#define PT_ES 8
#define PT_FS 9
#define PT_GS 10
#define PT_ORIG_EAX 11
#define PT_EIP 12
#define PT_CS 13
#define PT_EFL 14
#define PT_UESP 15
#define PT_SS 16
static unsigned int
getreg (struct task_struct *child, int regno)
{
struct pt_regs *child_regs;
child_regs = ia64_task_regs(child);
switch (regno / sizeof(int)) {
case PT_EBX: return child_regs->r11;
case PT_ECX: return child_regs->r9;
case PT_EDX: return child_regs->r10;
case PT_ESI: return child_regs->r14;
case PT_EDI: return child_regs->r15;
case PT_EBP: return child_regs->r13;
case PT_EAX: return child_regs->r8;
case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */
case PT_EIP: return child_regs->cr_iip;
case PT_UESP: return child_regs->r12;
case PT_EFL: return child->thread.eflag;
case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
return __USER_DS;
case PT_CS: return __USER_CS;
default:
printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno);
break;
}
return 0;
}
static void
putreg (struct task_struct *child, int regno, unsigned int value)
{
struct pt_regs *child_regs;
child_regs = ia64_task_regs(child);
switch (regno / sizeof(int)) {
case PT_EBX: child_regs->r11 = value; break;
case PT_ECX: child_regs->r9 = value; break;
case PT_EDX: child_regs->r10 = value; break;
case PT_ESI: child_regs->r14 = value; break;
case PT_EDI: child_regs->r15 = value; break;
case PT_EBP: child_regs->r13 = value; break;
case PT_EAX: child_regs->r8 = value; break;
case PT_ORIG_EAX: child_regs->r1 = value; break;
case PT_EIP: child_regs->cr_iip = value; break;
case PT_UESP: child_regs->r12 = value; break;
case PT_EFL: child->thread.eflag = value; break;
case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
if (value != __USER_DS)
printk(KERN_ERR
"ia32.putreg: attempt to set invalid segment register %d = %x\n",
regno, value);
break;
case PT_CS:
if (value != __USER_CS)
printk(KERN_ERR
"ia32.putreg: attempt to to set invalid segment register %d = %x\n",
regno, value);
break;
default:
printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno);
break;
}
}
static void
put_fpreg (int regno, struct _fpreg_ia32 *reg, struct pt_regs *ptp, struct switch_stack *swp,
int tos)
{
struct _fpreg_ia32 *f;
char buf[32];
f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15);
if ((regno += tos) >= 8)
regno -= 8;
switch (regno) {
case 0:
ia64f2ia32f(f, &ptp->f8);
break;
case 1:
ia64f2ia32f(f, &ptp->f9);
break;
case 2:
ia64f2ia32f(f, &ptp->f10);
break;
case 3:
ia64f2ia32f(f, &ptp->f11);
break;
case 4:
case 5:
case 6:
case 7:
ia64f2ia32f(f, &swp->f12 + (regno - 4));
break;
}
copy_to_user(reg, f, sizeof(*reg));
}
static void
get_fpreg (int regno, struct _fpreg_ia32 *reg, struct pt_regs *ptp, struct switch_stack *swp,
int tos)
{
if ((regno += tos) >= 8)
regno -= 8;
switch (regno) {
case 0:
copy_from_user(&ptp->f8, reg, sizeof(*reg));
break;
case 1:
copy_from_user(&ptp->f9, reg, sizeof(*reg));
break;
case 2:
copy_from_user(&ptp->f10, reg, sizeof(*reg));
break;
case 3:
copy_from_user(&ptp->f11, reg, sizeof(*reg));
break;
case 4:
case 5:
case 6:
case 7:
copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg));
break;
}
return;
}
int
save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct *save)
{
struct switch_stack *swp;
struct pt_regs *ptp;
int i, tos;
if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
return -EFAULT;
__put_user(tsk->thread.fcr & 0xffff, &save->cwd);
__put_user(tsk->thread.fsr & 0xffff, &save->swd);
__put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
__put_user(tsk->thread.fir, &save->fip);
__put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
__put_user(tsk->thread.fdr, &save->foo);
__put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
/*
* Stack frames start with 16-bytes of temp space
*/
swp = (struct switch_stack *)(tsk->thread.ksp + 16);
ptp = ia64_task_regs(tsk);
tos = (tsk->thread.fsr >> 11) & 7;
for (i = 0; i < 8; i++)
put_fpreg(i, &save->st_space[i], ptp, swp, tos);
return 0;
}
static int
restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct *save)
{
struct switch_stack *swp;
struct pt_regs *ptp;
int i, tos;
unsigned int fsrlo, fsrhi, num32;
if (!access_ok(VERIFY_READ, save, sizeof(*save)))
return(-EFAULT);
__get_user(num32, (unsigned int *)&save->cwd);
tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
__get_user(fsrlo, (unsigned int *)&save->swd);
__get_user(fsrhi, (unsigned int *)&save->twd);
num32 = (fsrhi << 16) | fsrlo;
tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
__get_user(num32, (unsigned int *)&save->fip);
tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
__get_user(num32, (unsigned int *)&save->foo);
tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
/*
* Stack frames start with 16-bytes of temp space
*/
swp = (struct switch_stack *)(tsk->thread.ksp + 16);
ptp = ia64_task_regs(tsk);
tos = (tsk->thread.fsr >> 11) & 7;
for (i = 0; i < 8; i++)
get_fpreg(i, &save->st_space[i], ptp, swp, tos);
return 0;
}
int
save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct *save)
{
struct switch_stack *swp;
struct pt_regs *ptp;
int i, tos;
unsigned long mxcsr=0;
unsigned long num128[2];
if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
return -EFAULT;
__put_user(tsk->thread.fcr & 0xffff, &save->cwd);
__put_user(tsk->thread.fsr & 0xffff, &save->swd);
__put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
__put_user(tsk->thread.fir, &save->fip);
__put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
__put_user(tsk->thread.fdr, &save->foo);
__put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
/*
* Stack frames start with 16-bytes of temp space
*/
swp = (struct switch_stack *)(tsk->thread.ksp + 16);
ptp = ia64_task_regs(tsk);
tos = (tsk->thread.fsr >> 11) & 7;
for (i = 0; i < 8; i++)
put_fpreg(i, (struct _fpxreg_ia32 *)&save->st_space[4*i], ptp, swp, tos);
mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f);
__put_user(mxcsr & 0xffff, &save->mxcsr);
for (i = 0; i < 8; i++) {
memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long));
memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long));
copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32));
}
return 0;
}
static int
restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct *save)
{
struct switch_stack *swp;
struct pt_regs *ptp;
int i, tos;
unsigned int fsrlo, fsrhi, num32;
int mxcsr;
unsigned long num64;
unsigned long num128[2];
if (!access_ok(VERIFY_READ, save, sizeof(*save)))
return(-EFAULT);
__get_user(num32, (unsigned int *)&save->cwd);
tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
__get_user(fsrlo, (unsigned int *)&save->swd);
__get_user(fsrhi, (unsigned int *)&save->twd);
num32 = (fsrhi << 16) | fsrlo;
tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
__get_user(num32, (unsigned int *)&save->fip);
tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
__get_user(num32, (unsigned int *)&save->foo);
tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
/*
* Stack frames start with 16-bytes of temp space
*/
swp = (struct switch_stack *)(tsk->thread.ksp + 16);
ptp = ia64_task_regs(tsk);
tos = (tsk->thread.fsr >> 11) & 7;
for (i = 0; i < 8; i++)
get_fpreg(i, (struct _fpxreg_ia32 *)&save->st_space[4*i], ptp, swp, tos);
__get_user(mxcsr, (unsigned int *)&save->mxcsr);
num64 = mxcsr & 0xff10;
tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000)) | (num64<<32);
num64 = mxcsr & 0x3f;
tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000)) | (num64<<32);
for (i = 0; i < 8; i++) {
copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32));
memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long));
memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long));
}
return 0;
}
extern asmlinkage long sys_ptrace (long, pid_t, unsigned long, unsigned long, long, long, long,
long, long);
/*
* Note that the IA32 version of `ptrace' calls the IA64 routine for
* many of the requests. This will only work for requests that do
* not need access to the calling processes `pt_regs' which is located
* at the address of `stack'. Once we call the IA64 `sys_ptrace' then
* the address of `stack' will not be the address of the `pt_regs'.
*/
asmlinkage long
sys32_ptrace (int request, pid_t pid, unsigned int addr, unsigned int data,
long arg4, long arg5, long arg6, long arg7, long stack)
{
struct pt_regs *regs = (struct pt_regs *) &stack;
struct task_struct *child;
unsigned int value, tmp;
long i, ret;
lock_kernel();
if (request == PTRACE_TRACEME) {
ret = sys_ptrace(request, pid, addr, data, arg4, arg5, arg6, arg7, stack);
goto out;
}
ret = -ESRCH;
read_lock(&tasklist_lock);
child = find_task_by_pid(pid);
if (child)
get_task_struct(child);
read_unlock(&tasklist_lock);
if (!child)
goto out;
ret = -EPERM;
if (pid == 1) /* no messing around with init! */
goto out_tsk;
if (request == PTRACE_ATTACH) {
ret = sys_ptrace(request, pid, addr, data, arg4, arg5, arg6, arg7, stack);
goto out_tsk;
}
ret = ptrace_check_attach(child, request == PTRACE_KILL);
if (ret < 0)
goto out_tsk;
switch (request) {
case PTRACE_PEEKTEXT:
case PTRACE_PEEKDATA: /* read word at location addr */
ret = ia32_peek(regs, child, addr, &value);
if (ret == 0)
ret = put_user(value, (unsigned int *) A(data));
else
ret = -EIO;
goto out_tsk;
case PTRACE_POKETEXT:
case PTRACE_POKEDATA: /* write the word at location addr */
ret = ia32_poke(regs, child, addr, data);
goto out_tsk;
case PTRACE_PEEKUSR: /* read word at addr in USER area */
ret = -EIO;
if ((addr & 3) || addr > 17*sizeof(int))
break;
tmp = getreg(child, addr);
if (!put_user(tmp, (unsigned int *) A(data)))
ret = 0;
break;
case PTRACE_POKEUSR: /* write word at addr in USER area */
ret = -EIO;
if ((addr & 3) || addr > 17*sizeof(int))
break;
putreg(child, addr, data);
ret = 0;
break;
case IA32_PTRACE_GETREGS:
if (!access_ok(VERIFY_WRITE, (int *) A(data), 17*sizeof(int))) {
ret = -EIO;
break;
}
for (i = 0; i < 17*sizeof(int); i += sizeof(int) ) {
put_user(getreg(child, i), (unsigned int *) A(data));
data += sizeof(int);
}
ret = 0;
break;
case IA32_PTRACE_SETREGS:
if (!access_ok(VERIFY_READ, (int *) A(data), 17*sizeof(int))) {
ret = -EIO;
break;
}
for (i = 0; i < 17*sizeof(int); i += sizeof(int) ) {
get_user(tmp, (unsigned int *) A(data));
putreg(child, i, tmp);
data += sizeof(int);
}
ret = 0;
break;
case IA32_PTRACE_GETFPREGS:
ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct *) A(data));
break;
case IA32_PTRACE_GETFPXREGS:
ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct *) A(data));
break;
case IA32_PTRACE_SETFPREGS:
ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct *) A(data));
break;
case IA32_PTRACE_SETFPXREGS:
ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct *) A(data));
break;
case PTRACE_SYSCALL: /* continue, stop after next syscall */
case PTRACE_CONT: /* restart after signal. */
case PTRACE_KILL:
case PTRACE_SINGLESTEP: /* execute chile for one instruction */
case PTRACE_DETACH: /* detach a process */
ret = sys_ptrace(request, pid, addr, data, arg4, arg5, arg6, arg7, stack);
break;
default:
ret = -EIO;
break;
}
out_tsk:
free_task_struct(child);
out:
unlock_kernel();
return ret;
}
static inline int
get_flock32(struct flock *kfl, struct flock32 *ufl)
{
int err;
if (!access_ok(VERIFY_READ, ufl, sizeof(*ufl)))
return -EFAULT;
err = __get_user(kfl->l_type, &ufl->l_type);
err |= __get_user(kfl->l_whence, &ufl->l_whence);
err |= __get_user(kfl->l_start, &ufl->l_start);
err |= __get_user(kfl->l_len, &ufl->l_len);
err |= __get_user(kfl->l_pid, &ufl->l_pid);
return err;
}
static inline int
put_flock32(struct flock *kfl, struct flock32 *ufl)
{
int err;
if (!access_ok(VERIFY_WRITE, ufl, sizeof(*ufl)))
return -EFAULT;
err = __put_user(kfl->l_type, &ufl->l_type);
err |= __put_user(kfl->l_whence, &ufl->l_whence);
err |= __put_user(kfl->l_start, &ufl->l_start);
err |= __put_user(kfl->l_len, &ufl->l_len);
err |= __put_user(kfl->l_pid, &ufl->l_pid);
return err;
}
extern asmlinkage long sys_fcntl (unsigned int fd, unsigned int cmd, unsigned long arg);
asmlinkage long
sys32_fcntl (unsigned int fd, unsigned int cmd, unsigned int arg)
{
mm_segment_t old_fs;
struct flock f;
long ret;
switch (cmd) {
case F_GETLK:
case F_SETLK:
case F_SETLKW:
if (get_flock32(&f, (struct flock32 *) A(arg)))
return -EFAULT;
old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_fcntl(fd, cmd, (unsigned long) &f);
set_fs(old_fs);
if (cmd == F_GETLK && put_flock32(&f, (struct flock32 *) A(arg)))
return -EFAULT;
return ret;
default:
/*
* `sys_fcntl' lies about arg, for the F_SETOWN
* sub-function arg can have a negative value.
*/
return sys_fcntl(fd, cmd, arg);
}
}
asmlinkage long sys_ni_syscall(void);
asmlinkage long
sys32_ni_syscall (int dummy0, int dummy1, int dummy2, int dummy3, int dummy4, int dummy5,
int dummy6, int dummy7, int stack)
{
struct pt_regs *regs = (struct pt_regs *)&stack;
printk(KERN_WARNING "IA32 syscall #%d issued, maybe we should implement it\n",
(int)regs->r1);
return(sys_ni_syscall());
}
/*
* The IA64 maps 4 I/O ports for each 4K page
*/
#define IOLEN ((65536 / 4) * 4096)
asmlinkage long
sys32_iopl (int level)
{
extern unsigned long ia64_iobase;
int fd;
struct file * file;
unsigned int old;
unsigned long addr;
mm_segment_t old_fs = get_fs ();
if (level != 3)
return(-EINVAL);
/* Trying to gain more privileges? */
asm volatile ("mov %0=ar.eflag ;;" : "=r"(old));
if (level > ((old >> 12) & 3)) {
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
}
set_fs(KERNEL_DS);
fd = sys_open("/dev/mem", O_SYNC | O_RDWR, 0);
set_fs(old_fs);
if (fd < 0)
return fd;
file = fget(fd);
if (file == NULL) {
sys_close(fd);
return(-EFAULT);
}
down_write(&current->mm->mmap_sem);
addr = do_mmap_pgoff(file, IA32_IOBASE,
IOLEN, PROT_READ|PROT_WRITE, MAP_SHARED,
(ia64_iobase & ~PAGE_OFFSET) >> PAGE_SHIFT);
up_write(&current->mm->mmap_sem);
if (addr >= 0) {
old = (old & ~0x3000) | (level << 12);
asm volatile ("mov ar.eflag=%0;;" :: "r"(old));
}
fput(file);
sys_close(fd);
return 0;
}
asmlinkage long
sys32_ioperm (unsigned int from, unsigned int num, int on)
{
/*
* Since IA64 doesn't have permission bits we'd have to go to
* a lot of trouble to simulate them in software. There's
* no point, only trusted programs can make this call so we'll
* just turn it into an iopl call and let the process have
* access to all I/O ports.
*
* XXX proper ioperm() support should be emulated by
* manipulating the page protections...
*/
return sys32_iopl(3);
}
typedef struct {
unsigned int ss_sp;
unsigned int ss_flags;
unsigned int ss_size;
} ia32_stack_t;
asmlinkage long
sys32_sigaltstack (ia32_stack_t *uss32, ia32_stack_t *uoss32,
long arg2, long arg3, long arg4, long arg5, long arg6, long arg7, long stack)
{
struct pt_regs *pt = (struct pt_regs *) &stack;
stack_t uss, uoss;
ia32_stack_t buf32;
int ret;
mm_segment_t old_fs = get_fs();
if (uss32)
if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t)))
return -EFAULT;
uss.ss_sp = (void *) (long) buf32.ss_sp;
uss.ss_flags = buf32.ss_flags;
/* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the
check and set it to the user requested value later */
if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) {
ret = -ENOMEM;
goto out;
}
uss.ss_size = MINSIGSTKSZ;
set_fs(KERNEL_DS);
ret = do_sigaltstack(uss32 ? &uss : NULL, &uoss, pt->r12);
current->sas_ss_size = buf32.ss_size;
set_fs(old_fs);
out:
if (ret < 0)
return(ret);
if (uoss32) {
buf32.ss_sp = (long) uoss.ss_sp;
buf32.ss_flags = uoss.ss_flags;
buf32.ss_size = uoss.ss_size;
if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t)))
return -EFAULT;
}
return ret;
}
asmlinkage int
sys32_pause (void)
{
current->state = TASK_INTERRUPTIBLE;
schedule();
return -ERESTARTNOHAND;
}
asmlinkage long sys_msync (unsigned long start, size_t len, int flags);
asmlinkage int
sys32_msync (unsigned int start, unsigned int len, int flags)
{
unsigned int addr;
if (OFFSET4K(start))
return -EINVAL;
addr = PAGE_START(start);
return sys_msync(addr, len + (start - addr), flags);
}
struct sysctl32 {
unsigned int name;
int nlen;
unsigned int oldval;
unsigned int oldlenp;
unsigned int newval;
unsigned int newlen;
unsigned int __unused[4];
};
extern asmlinkage long sys_sysctl(struct __sysctl_args *args);
asmlinkage long
sys32_sysctl (struct sysctl32 *args)
{
#ifdef CONFIG_SYSCTL
struct sysctl32 a32;
mm_segment_t old_fs = get_fs ();
void *oldvalp, *newvalp;
size_t oldlen;
int *namep;
long ret;
if (copy_from_user(&a32, args, sizeof(a32)))
return -EFAULT;
/*
* We need to pre-validate these because we have to disable address checking
* before calling do_sysctl() because of OLDLEN but we can't run the risk of the
* user specifying bad addresses here. Well, since we're dealing with 32 bit
* addresses, we KNOW that access_ok() will always succeed, so this is an
* expensive NOP, but so what...
*/
namep = (int *) A(a32.name);
oldvalp = (void *) A(a32.oldval);
newvalp = (void *) A(a32.newval);
if ((oldvalp && get_user(oldlen, (int *) A(a32.oldlenp)))
|| !access_ok(VERIFY_WRITE, namep, 0)
|| !access_ok(VERIFY_WRITE, oldvalp, 0)
|| !access_ok(VERIFY_WRITE, newvalp, 0))
return -EFAULT;
set_fs(KERNEL_DS);
lock_kernel();
ret = do_sysctl(namep, a32.nlen, oldvalp, &oldlen, newvalp, (size_t) a32.newlen);
unlock_kernel();
set_fs(old_fs);
if (oldvalp && put_user (oldlen, (int *) A(a32.oldlenp)))
return -EFAULT;
return ret;
#else
return -ENOSYS;
#endif
}
asmlinkage long
sys32_newuname (struct new_utsname *name)
{
extern asmlinkage long sys_newuname(struct new_utsname * name);
int ret = sys_newuname(name);
if (!ret)
if (copy_to_user(name->machine, "i686\0\0\0", 8))
ret = -EFAULT;
return ret;
}
extern asmlinkage long sys_getresuid (uid_t *ruid, uid_t *euid, uid_t *suid);
asmlinkage long
sys32_getresuid16 (u16 *ruid, u16 *euid, u16 *suid)
{
uid_t a, b, c;
int ret;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_getresuid(&a, &b, &c);
set_fs(old_fs);
if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid))
return -EFAULT;
return ret;
}
extern asmlinkage long sys_getresgid (gid_t *rgid, gid_t *egid, gid_t *sgid);
asmlinkage long
sys32_getresgid16 (u16 *rgid, u16 *egid, u16 *sgid)
{
gid_t a, b, c;
int ret;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_getresgid(&a, &b, &c);
set_fs(old_fs);
if (ret)
return ret;
return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid);
}
asmlinkage long
sys32_lseek (unsigned int fd, int offset, unsigned int whence)
{
extern off_t sys_lseek (unsigned int fd, off_t offset, unsigned int origin);
/* Sign-extension of "offset" is important here... */
return sys_lseek(fd, offset, whence);
}
extern asmlinkage long sys_getgroups (int gidsetsize, gid_t *grouplist);
asmlinkage long
sys32_getgroups16 (int gidsetsize, short *grouplist)
{
mm_segment_t old_fs = get_fs();
gid_t gl[NGROUPS];
int ret, i;
set_fs(KERNEL_DS);
ret = sys_getgroups(gidsetsize, gl);
set_fs(old_fs);
if (gidsetsize && ret > 0 && ret <= NGROUPS)
for (i = 0; i < ret; i++, grouplist++)
if (put_user(gl[i], grouplist))
return -EFAULT;
return ret;
}
extern asmlinkage long sys_setgroups (int gidsetsize, gid_t *grouplist);
asmlinkage long
sys32_setgroups16 (int gidsetsize, short *grouplist)
{
mm_segment_t old_fs = get_fs();
gid_t gl[NGROUPS];
int ret, i;
if ((unsigned) gidsetsize > NGROUPS)
return -EINVAL;
for (i = 0; i < gidsetsize; i++, grouplist++)
if (get_user(gl[i], grouplist))
return -EFAULT;
set_fs(KERNEL_DS);
ret = sys_setgroups(gidsetsize, gl);
set_fs(old_fs);
return ret;
}
/*
* Unfortunately, the x86 compiler aligns variables of type "long long" to a 4 byte boundary
* only, which means that the x86 version of "struct flock64" doesn't match the ia64 version
* of struct flock.
*/
static inline long
ia32_put_flock (struct flock *l, unsigned long addr)
{
return (put_user(l->l_type, (short *) addr)
| put_user(l->l_whence, (short *) (addr + 2))
| put_user(l->l_start, (long *) (addr + 4))
| put_user(l->l_len, (long *) (addr + 12))
| put_user(l->l_pid, (int *) (addr + 20)));
}
static inline long
ia32_get_flock (struct flock *l, unsigned long addr)
{
unsigned int start_lo, start_hi, len_lo, len_hi;
int err = (get_user(l->l_type, (short *) addr)
| get_user(l->l_whence, (short *) (addr + 2))
| get_user(start_lo, (int *) (addr + 4))
| get_user(start_hi, (int *) (addr + 8))
| get_user(len_lo, (int *) (addr + 12))
| get_user(len_hi, (int *) (addr + 16))
| get_user(l->l_pid, (int *) (addr + 20)));
l->l_start = ((unsigned long) start_hi << 32) | start_lo;
l->l_len = ((unsigned long) len_hi << 32) | len_lo;
return err;
}
asmlinkage long
sys32_fcntl64 (unsigned int fd, unsigned int cmd, unsigned int arg)
{
mm_segment_t old_fs;
struct flock f;
long ret;
switch (cmd) {
case F_GETLK64:
case F_SETLK64:
case F_SETLKW64:
if (ia32_get_flock(&f, arg))
return -EFAULT;
old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_fcntl(fd, (cmd == F_GETLK64) ? F_GETLK :
((cmd == F_SETLK64) ? F_SETLK : F_SETLKW),
(unsigned long) &f);
set_fs(old_fs);
if (cmd == F_GETLK64 && ia32_put_flock(&f, arg))
return -EFAULT;
break;
default:
ret = sys32_fcntl(fd, cmd, arg);
break;
}
return ret;
}
asmlinkage long
sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi)
{
extern asmlinkage long sys_truncate (const char *path, unsigned long length);
return sys_truncate((const char *) A(path), ((unsigned long) len_hi << 32) | len_lo);
}
asmlinkage long
sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi)
{
extern asmlinkage long sys_ftruncate (int fd, unsigned long length);
return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo);
}
static int
putstat64 (struct stat64 *ubuf, struct stat *kbuf)
{
int err;
if (clear_user(ubuf, sizeof(*ubuf)))
return 1;
err = __put_user(kbuf->st_dev, &ubuf->st_dev);
err |= __put_user(kbuf->st_ino, &ubuf->__st_ino);
err |= __put_user(kbuf->st_ino, &ubuf->st_ino_lo);
err |= __put_user(kbuf->st_ino >> 32, &ubuf->st_ino_hi);
err |= __put_user(kbuf->st_mode, &ubuf->st_mode);
err |= __put_user(kbuf->st_nlink, &ubuf->st_nlink);
err |= __put_user(kbuf->st_uid, &ubuf->st_uid);
err |= __put_user(kbuf->st_gid, &ubuf->st_gid);
err |= __put_user(kbuf->st_rdev, &ubuf->st_rdev);
err |= __put_user(kbuf->st_size, &ubuf->st_size_lo);
err |= __put_user((kbuf->st_size >> 32), &ubuf->st_size_hi);
err |= __put_user(kbuf->st_atime, &ubuf->st_atime);
err |= __put_user(kbuf->st_mtime, &ubuf->st_mtime);
err |= __put_user(kbuf->st_ctime, &ubuf->st_ctime);
err |= __put_user(kbuf->st_blksize, &ubuf->st_blksize);
err |= __put_user(kbuf->st_blocks, &ubuf->st_blocks);
return err;
}
asmlinkage long
sys32_stat64 (char *filename, struct stat64 *statbuf)
{
char *name;
mm_segment_t old_fs = get_fs();
struct stat s;
long ret;
name = getname(filename);
if (IS_ERR(name))
return PTR_ERR(name);
set_fs(KERNEL_DS);
ret = sys_newstat(name, &s);
set_fs(old_fs);
putname(name);
if (putstat64(statbuf, &s))
return -EFAULT;
return ret;
}
asmlinkage long
sys32_lstat64 (char *filename, struct stat64 *statbuf)
{
char *name;
mm_segment_t old_fs = get_fs();
struct stat s;
long ret;
name = getname(filename);
if (IS_ERR(name))
return PTR_ERR(name);
set_fs(KERNEL_DS);
ret = sys_newlstat(name, &s);
set_fs(old_fs);
putname(name);
if (putstat64(statbuf, &s))
return -EFAULT;
return ret;
}
asmlinkage long
sys32_fstat64 (unsigned int fd, struct stat64 *statbuf)
{
mm_segment_t old_fs = get_fs();
struct stat s;
long ret;
set_fs(KERNEL_DS);
ret = sys_newfstat(fd, &s);
set_fs(old_fs);
if (putstat64(statbuf, &s))
return -EFAULT;
return ret;
}
asmlinkage long
sys32_sigpending (unsigned int *set)
{
return do_sigpending(set, sizeof(*set));
}
struct sysinfo32 {
s32 uptime;
u32 loads[3];
u32 totalram;
u32 freeram;
u32 sharedram;
u32 bufferram;
u32 totalswap;
u32 freeswap;
u16 procs;
u16 pad;
u32 totalhigh;
u32 freehigh;
u32 mem_unit;
char _f[8];
};
asmlinkage long
sys32_sysinfo (struct sysinfo32 *info)
{
extern asmlinkage long sys_sysinfo (struct sysinfo *);
struct sysinfo s;
long ret, err;
int bitcount = 0;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_sysinfo(&s);
set_fs(old_fs);
/* Check to see if any memory value is too large for 32-bit and
* scale down if needed.
*/
if ((s.totalram >> 32) || (s.totalswap >> 32)) {
while (s.mem_unit < PAGE_SIZE) {
s.mem_unit <<= 1;
bitcount++;
}
s.totalram >>= bitcount;
s.freeram >>= bitcount;
s.sharedram >>= bitcount;
s.bufferram >>= bitcount;
s.totalswap >>= bitcount;
s.freeswap >>= bitcount;
s.totalhigh >>= bitcount;
s.freehigh >>= bitcount;
}
if (!access_ok(VERIFY_WRITE, info, sizeof(*info)))
return -EFAULT;
err = __put_user(s.uptime, &info->uptime);
err |= __put_user(s.loads[0], &info->loads[0]);
err |= __put_user(s.loads[1], &info->loads[1]);
err |= __put_user(s.loads[2], &info->loads[2]);
err |= __put_user(s.totalram, &info->totalram);
err |= __put_user(s.freeram, &info->freeram);
err |= __put_user(s.sharedram, &info->sharedram);
err |= __put_user(s.bufferram, &info->bufferram);
err |= __put_user(s.totalswap, &info->totalswap);
err |= __put_user(s.freeswap, &info->freeswap);
err |= __put_user(s.procs, &info->procs);
err |= __put_user(s.totalhigh, &info->totalhigh);
err |= __put_user(s.freehigh, &info->freehigh);
err |= __put_user(s.mem_unit, &info->mem_unit);
if (err)
return -EFAULT;
return ret;
}
/* In order to reduce some races, while at the same time doing additional
* checking and hopefully speeding things up, we copy filenames to the
* kernel data space before using them..
*
* POSIX.1 2.4: an empty pathname is invalid (ENOENT).
*/
static inline int
do_getname32 (const char *filename, char *page)
{
int retval;
/* 32bit pointer will be always far below TASK_SIZE :)) */
retval = strncpy_from_user((char *)page, (char *)filename, PAGE_SIZE);
if (retval > 0) {
if (retval < PAGE_SIZE)
return 0;
return -ENAMETOOLONG;
} else if (!retval)
retval = -ENOENT;
return retval;
}
static char *
getname32 (const char *filename)
{
char *tmp, *result;
result = ERR_PTR(-ENOMEM);
tmp = (char *)__get_free_page(GFP_KERNEL);
if (tmp) {
int retval = do_getname32(filename, tmp);
result = tmp;
if (retval < 0) {
putname(tmp);
result = ERR_PTR(retval);
}
}
return result;
}
struct user_dqblk32 {
__u32 dqb_bhardlimit;
__u32 dqb_bsoftlimit;
__u32 dqb_curblocks;
__u32 dqb_ihardlimit;
__u32 dqb_isoftlimit;
__u32 dqb_curinodes;
__kernel_time_t32 dqb_btime;
__kernel_time_t32 dqb_itime;
};
asmlinkage long
sys32_quotactl(int cmd, unsigned int special, int id, caddr_t addr)
{
extern asmlinkage long sys_quotactl (int, const char *, int, caddr_t);
int cmds = cmd >> SUBCMDSHIFT;
mm_segment_t old_fs;
struct v1c_mem_dqblk d;
char *spec;
long err;
switch (cmds) {
case Q_V1_GETQUOTA:
break;
case Q_V1_SETQUOTA:
case Q_V1_SETUSE:
case Q_V1_SETQLIM:
if (copy_from_user(&d, addr, sizeof(struct user_dqblk32)))
return -EFAULT;
d.dqb_itime = ((struct user_dqblk32 *)&d)->dqb_itime;
d.dqb_btime = ((struct user_dqblk32 *)&d)->dqb_btime;
break;
default:
return sys_quotactl(cmd, (void *)A(special), id, addr);
}
spec = getname32((void *) A(special));
err = PTR_ERR(spec);
if (IS_ERR(spec))
return err;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_quotactl(cmd, (const char *)spec, id, (caddr_t)&d);
set_fs(old_fs);
putname(spec);
if (cmds == Q_V1_GETQUOTA) {
__kernel_time_t b = d.dqb_btime, i = d.dqb_itime;
((struct user_dqblk32 *)&d)->dqb_itime = i;
((struct user_dqblk32 *)&d)->dqb_btime = b;
if (copy_to_user(addr, &d, sizeof(struct user_dqblk32)))
return -EFAULT;
}
return err;
}
asmlinkage long
sys32_sched_rr_get_interval (pid_t pid, struct timespec32 *interval)
{
extern asmlinkage long sys_sched_rr_get_interval (pid_t, struct timespec *);
mm_segment_t old_fs = get_fs();
struct timespec t;
long ret;
set_fs(KERNEL_DS);
ret = sys_sched_rr_get_interval(pid, &t);
set_fs(old_fs);
if (put_user (t.tv_sec, &interval->tv_sec) || put_user (t.tv_nsec, &interval->tv_nsec))
return -EFAULT;
return ret;
}
asmlinkage long
sys32_pread (unsigned int fd, void *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
{
extern asmlinkage long sys_pread (unsigned int, char *, size_t, loff_t);
return sys_pread(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
}
asmlinkage long
sys32_pwrite (unsigned int fd, void *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
{
extern asmlinkage long sys_pwrite (unsigned int, const char *, size_t, loff_t);
return sys_pwrite(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
}
asmlinkage long
sys32_sendfile (int out_fd, int in_fd, int *offset, unsigned int count)
{
extern asmlinkage long sys_sendfile (int, int, off_t *, size_t);
mm_segment_t old_fs = get_fs();
long ret;
off_t of;
if (offset && get_user(of, offset))
return -EFAULT;
set_fs(KERNEL_DS);
ret = sys_sendfile(out_fd, in_fd, offset ? &of : NULL, count);
set_fs(old_fs);
if (!ret && offset && put_user(of, offset))
return -EFAULT;
return ret;
}
asmlinkage long
sys32_personality (unsigned int personality)
{
extern asmlinkage long sys_personality (unsigned long);
long ret;
if (current->personality == PER_LINUX32 && personality == PER_LINUX)
personality = PER_LINUX32;
ret = sys_personality(personality);
if (ret == PER_LINUX32)
ret = PER_LINUX;
return ret;
}
asmlinkage unsigned long
sys32_brk (unsigned int brk)
{
unsigned long ret, obrk;
struct mm_struct *mm = current->mm;
obrk = mm->brk;
ret = sys_brk(brk);
if (ret < obrk)
clear_user((void *) ret, PAGE_ALIGN(ret) - ret);
return ret;
}
/*
* Exactly like fs/open.c:sys_open(), except that it doesn't set the O_LARGEFILE flag.
*/
asmlinkage long
sys32_open (const char * filename, int flags, int mode)
{
char * tmp;
int fd, error;
tmp = getname(filename);
fd = PTR_ERR(tmp);
if (!IS_ERR(tmp)) {
fd = get_unused_fd();
if (fd >= 0) {
struct file *f = filp_open(tmp, flags, mode);
error = PTR_ERR(f);
if (IS_ERR(f))
goto out_error;
fd_install(fd, f);
}
out:
putname(tmp);
}
return fd;
out_error:
put_unused_fd(fd);
fd = error;
goto out;
}
#ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */
struct ncp_mount_data32 {
int version;
unsigned int ncp_fd;
__kernel_uid_t32 mounted_uid;
int wdog_pid;
unsigned char mounted_vol[NCP_VOLNAME_LEN + 1];
unsigned int time_out;
unsigned int retry_count;
unsigned int flags;
__kernel_uid_t32 uid;
__kernel_gid_t32 gid;
__kernel_mode_t32 file_mode;
__kernel_mode_t32 dir_mode;
};
static void *
do_ncp_super_data_conv(void *raw_data)
{
struct ncp_mount_data *n = (struct ncp_mount_data *)raw_data;
struct ncp_mount_data32 *n32 = (struct ncp_mount_data32 *)raw_data;
n->dir_mode = n32->dir_mode;
n->file_mode = n32->file_mode;
n->gid = n32->gid;
n->uid = n32->uid;
memmove (n->mounted_vol, n32->mounted_vol,
(sizeof (n32->mounted_vol) + 3 * sizeof (unsigned int)));
n->wdog_pid = n32->wdog_pid;
n->mounted_uid = n32->mounted_uid;
return raw_data;
}
struct smb_mount_data32 {
int version;
__kernel_uid_t32 mounted_uid;
__kernel_uid_t32 uid;
__kernel_gid_t32 gid;
__kernel_mode_t32 file_mode;
__kernel_mode_t32 dir_mode;
};
static void *
do_smb_super_data_conv(void *raw_data)
{
struct smb_mount_data *s = (struct smb_mount_data *)raw_data;
struct smb_mount_data32 *s32 = (struct smb_mount_data32 *)raw_data;
s->version = s32->version;
s->mounted_uid = s32->mounted_uid;
s->uid = s32->uid;
s->gid = s32->gid;
s->file_mode = s32->file_mode;
s->dir_mode = s32->dir_mode;
return raw_data;
}
static int
copy_mount_stuff_to_kernel(const void *user, unsigned long *kernel)
{
int i;
unsigned long page;
struct vm_area_struct *vma;
*kernel = 0;
if(!user)
return 0;
vma = find_vma(current->mm, (unsigned long)user);
if(!vma || (unsigned long)user < vma->vm_start)
return -EFAULT;
if(!(vma->vm_flags & VM_READ))
return -EFAULT;
i = vma->vm_end - (unsigned long) user;
if(PAGE_SIZE <= (unsigned long) i)
i = PAGE_SIZE - 1;
if(!(page = __get_free_page(GFP_KERNEL)))
return -ENOMEM;
if(copy_from_user((void *) page, user, i)) {
free_page(page);
return -EFAULT;
}
*kernel = page;
return 0;
}
extern asmlinkage long sys_mount(char * dev_name, char * dir_name, char * type,
unsigned long new_flags, void *data);
#define SMBFS_NAME "smbfs"
#define NCPFS_NAME "ncpfs"
asmlinkage long
sys32_mount(char *dev_name, char *dir_name, char *type,
unsigned long new_flags, u32 data)
{
unsigned long type_page;
int err, is_smb, is_ncp;
if(!capable(CAP_SYS_ADMIN))
return -EPERM;
is_smb = is_ncp = 0;
err = copy_mount_stuff_to_kernel((const void *)type, &type_page);
if(err)
return err;
if(type_page) {
is_smb = !strcmp((char *)type_page, SMBFS_NAME);
is_ncp = !strcmp((char *)type_page, NCPFS_NAME);
}
if(!is_smb && !is_ncp) {
if(type_page)
free_page(type_page);
return sys_mount(dev_name, dir_name, type, new_flags,
(void *)AA(data));
} else {
unsigned long dev_page, dir_page, data_page;
err = copy_mount_stuff_to_kernel((const void *)dev_name,
&dev_page);
if(err)
goto out;
err = copy_mount_stuff_to_kernel((const void *)dir_name,
&dir_page);
if(err)
goto dev_out;
err = copy_mount_stuff_to_kernel((const void *)AA(data),
&data_page);
if(err)
goto dir_out;
if(is_ncp)
do_ncp_super_data_conv((void *)data_page);
else if(is_smb)
do_smb_super_data_conv((void *)data_page);
else
panic("The problem is here...");
err = do_mount((char *)dev_page, (char *)dir_page,
(char *)type_page, new_flags,
(void *)data_page);
if(data_page)
free_page(data_page);
dir_out:
if(dir_page)
free_page(dir_page);
dev_out:
if(dev_page)
free_page(dev_page);
out:
if(type_page)
free_page(type_page);
return err;
}
}
extern asmlinkage long sys_setreuid(uid_t ruid, uid_t euid);
asmlinkage long sys32_setreuid(__kernel_uid_t32 ruid, __kernel_uid_t32 euid)
{
uid_t sruid, seuid;
sruid = (ruid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)ruid);
seuid = (euid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)euid);
return sys_setreuid(sruid, seuid);
}
extern asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid);
asmlinkage long
sys32_setresuid(__kernel_uid_t32 ruid, __kernel_uid_t32 euid,
__kernel_uid_t32 suid)
{
uid_t sruid, seuid, ssuid;
sruid = (ruid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)ruid);
seuid = (euid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)euid);
ssuid = (suid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)suid);
return sys_setresuid(sruid, seuid, ssuid);
}
extern asmlinkage long sys_setregid(gid_t rgid, gid_t egid);
asmlinkage long
sys32_setregid(__kernel_gid_t32 rgid, __kernel_gid_t32 egid)
{
gid_t srgid, segid;
srgid = (rgid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)rgid);
segid = (egid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)egid);
return sys_setregid(srgid, segid);
}
extern asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid);
asmlinkage long
sys32_setresgid(__kernel_gid_t32 rgid, __kernel_gid_t32 egid,
__kernel_gid_t32 sgid)
{
gid_t srgid, segid, ssgid;
srgid = (rgid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)rgid);
segid = (egid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)egid);
ssgid = (sgid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)sgid);
return sys_setresgid(srgid, segid, ssgid);
}
/* Stuff for NFS server syscalls... */
struct nfsctl_svc32 {
u16 svc32_port;
s32 svc32_nthreads;
};
struct nfsctl_client32 {
s8 cl32_ident[NFSCLNT_IDMAX+1];
s32 cl32_naddr;
struct in_addr cl32_addrlist[NFSCLNT_ADDRMAX];
s32 cl32_fhkeytype;
s32 cl32_fhkeylen;
u8 cl32_fhkey[NFSCLNT_KEYMAX];
};
struct nfsctl_export32 {
s8 ex32_client[NFSCLNT_IDMAX+1];
s8 ex32_path[NFS_MAXPATHLEN+1];
__kernel_dev_t32 ex32_dev;
__kernel_ino_t32 ex32_ino;
s32 ex32_flags;
__kernel_uid_t32 ex32_anon_uid;
__kernel_gid_t32 ex32_anon_gid;
};
struct nfsctl_uidmap32 {
u32 ug32_ident; /* char * */
__kernel_uid_t32 ug32_uidbase;
s32 ug32_uidlen;
u32 ug32_udimap; /* uid_t * */
__kernel_uid_t32 ug32_gidbase;
s32 ug32_gidlen;
u32 ug32_gdimap; /* gid_t * */
};
struct nfsctl_fhparm32 {
struct sockaddr gf32_addr;
__kernel_dev_t32 gf32_dev;
__kernel_ino_t32 gf32_ino;
s32 gf32_version;
};
struct nfsctl_arg32 {
s32 ca32_version; /* safeguard */
union {
struct nfsctl_svc32 u32_svc;
struct nfsctl_client32 u32_client;
struct nfsctl_export32 u32_export;
struct nfsctl_uidmap32 u32_umap;
struct nfsctl_fhparm32 u32_getfh;
u32 u32_debug;
} u;
#define ca32_svc u.u32_svc
#define ca32_client u.u32_client
#define ca32_export u.u32_export
#define ca32_umap u.u32_umap
#define ca32_getfh u.u32_getfh
#define ca32_authd u.u32_authd
#define ca32_debug u.u32_debug
};
union nfsctl_res32 {
struct knfs_fh cr32_getfh;
u32 cr32_debug;
};
static int
nfs_svc32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= __get_user(karg->ca_svc.svc_port, &arg32->ca32_svc.svc32_port);
err |= __get_user(karg->ca_svc.svc_nthreads,
&arg32->ca32_svc.svc32_nthreads);
return err;
}
static int
nfs_clnt32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_client.cl_ident[0],
&arg32->ca32_client.cl32_ident[0],
NFSCLNT_IDMAX);
err |= __get_user(karg->ca_client.cl_naddr,
&arg32->ca32_client.cl32_naddr);
err |= copy_from_user(&karg->ca_client.cl_addrlist[0],
&arg32->ca32_client.cl32_addrlist[0],
(sizeof(struct in_addr) * NFSCLNT_ADDRMAX));
err |= __get_user(karg->ca_client.cl_fhkeytype,
&arg32->ca32_client.cl32_fhkeytype);
err |= __get_user(karg->ca_client.cl_fhkeylen,
&arg32->ca32_client.cl32_fhkeylen);
err |= copy_from_user(&karg->ca_client.cl_fhkey[0],
&arg32->ca32_client.cl32_fhkey[0],
NFSCLNT_KEYMAX);
return err;
}
static int
nfs_exp32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_export.ex_client[0],
&arg32->ca32_export.ex32_client[0],
NFSCLNT_IDMAX);
err |= copy_from_user(&karg->ca_export.ex_path[0],
&arg32->ca32_export.ex32_path[0],
NFS_MAXPATHLEN);
err |= __get_user(karg->ca_export.ex_dev,
&arg32->ca32_export.ex32_dev);
err |= __get_user(karg->ca_export.ex_ino,
&arg32->ca32_export.ex32_ino);
err |= __get_user(karg->ca_export.ex_flags,
&arg32->ca32_export.ex32_flags);
err |= __get_user(karg->ca_export.ex_anon_uid,
&arg32->ca32_export.ex32_anon_uid);
err |= __get_user(karg->ca_export.ex_anon_gid,
&arg32->ca32_export.ex32_anon_gid);
return err;
}
static int
nfs_uud32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
u32 uaddr;
int i;
int err;
memset(karg, 0, sizeof(*karg));
if(__get_user(karg->ca_version, &arg32->ca32_version))
return -EFAULT;
karg->ca_umap.ug_ident = (char *)get_free_page(GFP_USER);
if(!karg->ca_umap.ug_ident)
return -ENOMEM;
err = __get_user(uaddr, &arg32->ca32_umap.ug32_ident);
if(strncpy_from_user(karg->ca_umap.ug_ident,
(char *)A(uaddr), PAGE_SIZE) <= 0)
return -EFAULT;
err |= __get_user(karg->ca_umap.ug_uidbase,
&arg32->ca32_umap.ug32_uidbase);
err |= __get_user(karg->ca_umap.ug_uidlen,
&arg32->ca32_umap.ug32_uidlen);
err |= __get_user(uaddr, &arg32->ca32_umap.ug32_udimap);
if (err)
return -EFAULT;
karg->ca_umap.ug_udimap = kmalloc((sizeof(uid_t) *
karg->ca_umap.ug_uidlen),
GFP_USER);
if(!karg->ca_umap.ug_udimap)
return -ENOMEM;
for(i = 0; i < karg->ca_umap.ug_uidlen; i++)
err |= __get_user(karg->ca_umap.ug_udimap[i],
&(((__kernel_uid_t32 *)A(uaddr))[i]));
err |= __get_user(karg->ca_umap.ug_gidbase,
&arg32->ca32_umap.ug32_gidbase);
err |= __get_user(karg->ca_umap.ug_uidlen,
&arg32->ca32_umap.ug32_gidlen);
err |= __get_user(uaddr, &arg32->ca32_umap.ug32_gdimap);
if (err)
return -EFAULT;
karg->ca_umap.ug_gdimap = kmalloc((sizeof(gid_t) *
karg->ca_umap.ug_uidlen),
GFP_USER);
if(!karg->ca_umap.ug_gdimap)
return -ENOMEM;
for(i = 0; i < karg->ca_umap.ug_gidlen; i++)
err |= __get_user(karg->ca_umap.ug_gdimap[i],
&(((__kernel_gid_t32 *)A(uaddr))[i]));
return err;
}
static int
nfs_getfh32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_getfh.gf_addr,
&arg32->ca32_getfh.gf32_addr,
(sizeof(struct sockaddr)));
err |= __get_user(karg->ca_getfh.gf_dev,
&arg32->ca32_getfh.gf32_dev);
err |= __get_user(karg->ca_getfh.gf_ino,
&arg32->ca32_getfh.gf32_ino);
err |= __get_user(karg->ca_getfh.gf_version,
&arg32->ca32_getfh.gf32_version);
return err;
}
static int
nfs_getfh32_res_trans(union nfsctl_res *kres, union nfsctl_res32 *res32)
{
int err;
err = copy_to_user(&res32->cr32_getfh,
&kres->cr_getfh,
sizeof(res32->cr32_getfh));
err |= __put_user(kres->cr_debug, &res32->cr32_debug);
return err;
}
extern asmlinkage long sys_nfsservctl(int cmd, void *arg, void *resp);
int asmlinkage
sys32_nfsservctl(int cmd, struct nfsctl_arg32 *arg32, union nfsctl_res32 *res32)
{
struct nfsctl_arg *karg = NULL;
union nfsctl_res *kres = NULL;
mm_segment_t oldfs;
int err;
karg = kmalloc(sizeof(*karg), GFP_USER);
if(!karg)
return -ENOMEM;
if(res32) {
kres = kmalloc(sizeof(*kres), GFP_USER);
if(!kres) {
kfree(karg);
return -ENOMEM;
}
}
switch(cmd) {
case NFSCTL_SVC:
err = nfs_svc32_trans(karg, arg32);
break;
case NFSCTL_ADDCLIENT:
err = nfs_clnt32_trans(karg, arg32);
break;
case NFSCTL_DELCLIENT:
err = nfs_clnt32_trans(karg, arg32);
break;
case NFSCTL_EXPORT:
err = nfs_exp32_trans(karg, arg32);
break;
/* This one is unimplemented, be we're ready for it. */
case NFSCTL_UGIDUPDATE:
err = nfs_uud32_trans(karg, arg32);
break;
case NFSCTL_GETFH:
err = nfs_getfh32_trans(karg, arg32);
break;
default:
err = -EINVAL;
break;
}
if(err)
goto done;
oldfs = get_fs();
set_fs(KERNEL_DS);
err = sys_nfsservctl(cmd, karg, kres);
set_fs(oldfs);
if(!err && cmd == NFSCTL_GETFH)
err = nfs_getfh32_res_trans(kres, res32);
done:
if(karg) {
if(cmd == NFSCTL_UGIDUPDATE) {
if(karg->ca_umap.ug_ident)
kfree(karg->ca_umap.ug_ident);
if(karg->ca_umap.ug_udimap)
kfree(karg->ca_umap.ug_udimap);
if(karg->ca_umap.ug_gdimap)
kfree(karg->ca_umap.ug_gdimap);
}
kfree(karg);
}
if(kres)
kfree(kres);
return err;
}
/* Handle adjtimex compatability. */
struct timex32 {
u32 modes;
s32 offset, freq, maxerror, esterror;
s32 status, constant, precision, tolerance;
struct timeval32 time;
s32 tick;
s32 ppsfreq, jitter, shift, stabil;
s32 jitcnt, calcnt, errcnt, stbcnt;
s32 :32; s32 :32; s32 :32; s32 :32;
s32 :32; s32 :32; s32 :32; s32 :32;
s32 :32; s32 :32; s32 :32; s32 :32;
};
extern int do_adjtimex(struct timex *);
asmlinkage long
sys32_adjtimex(struct timex32 *utp)
{
struct timex txc;
int ret;
memset(&txc, 0, sizeof(struct timex));
if(get_user(txc.modes, &utp->modes) ||
__get_user(txc.offset, &utp->offset) ||
__get_user(txc.freq, &utp->freq) ||
__get_user(txc.maxerror, &utp->maxerror) ||
__get_user(txc.esterror, &utp->esterror) ||
__get_user(txc.status, &utp->status) ||
__get_user(txc.constant, &utp->constant) ||
__get_user(txc.precision, &utp->precision) ||
__get_user(txc.tolerance, &utp->tolerance) ||
__get_user(txc.time.tv_sec, &utp->time.tv_sec) ||
__get_user(txc.time.tv_usec, &utp->time.tv_usec) ||
__get_user(txc.tick, &utp->tick) ||
__get_user(txc.ppsfreq, &utp->ppsfreq) ||
__get_user(txc.jitter, &utp->jitter) ||
__get_user(txc.shift, &utp->shift) ||
__get_user(txc.stabil, &utp->stabil) ||
__get_user(txc.jitcnt, &utp->jitcnt) ||
__get_user(txc.calcnt, &utp->calcnt) ||
__get_user(txc.errcnt, &utp->errcnt) ||
__get_user(txc.stbcnt, &utp->stbcnt))
return -EFAULT;
ret = do_adjtimex(&txc);
if(put_user(txc.modes, &utp->modes) ||
__put_user(txc.offset, &utp->offset) ||
__put_user(txc.freq, &utp->freq) ||
__put_user(txc.maxerror, &utp->maxerror) ||
__put_user(txc.esterror, &utp->esterror) ||
__put_user(txc.status, &utp->status) ||
__put_user(txc.constant, &utp->constant) ||
__put_user(txc.precision, &utp->precision) ||
__put_user(txc.tolerance, &utp->tolerance) ||
__put_user(txc.time.tv_sec, &utp->time.tv_sec) ||
__put_user(txc.time.tv_usec, &utp->time.tv_usec) ||
__put_user(txc.tick, &utp->tick) ||
__put_user(txc.ppsfreq, &utp->ppsfreq) ||
__put_user(txc.jitter, &utp->jitter) ||
__put_user(txc.shift, &utp->shift) ||
__put_user(txc.stabil, &utp->stabil) ||
__put_user(txc.jitcnt, &utp->jitcnt) ||
__put_user(txc.calcnt, &utp->calcnt) ||
__put_user(txc.errcnt, &utp->errcnt) ||
__put_user(txc.stbcnt, &utp->stbcnt))
ret = -EFAULT;
return ret;
}
#endif /* NOTYET */