| /* |
| * Initialize MMU support. |
| * |
| * Copyright (C) 1998-2002 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| */ |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| |
| #include <linux/bootmem.h> |
| #include <linux/mm.h> |
| #include <linux/personality.h> |
| #include <linux/reboot.h> |
| #include <linux/slab.h> |
| #include <linux/swap.h> |
| #include <linux/efi.h> |
| #include <linux/mmzone.h> |
| |
| #include <asm/bitops.h> |
| #include <asm/dma.h> |
| #include <asm/ia32.h> |
| #include <asm/io.h> |
| #include <asm/machvec.h> |
| #include <asm/numa.h> |
| #include <asm/pgalloc.h> |
| #include <asm/sal.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/mca.h> |
| |
| /* References to section boundaries: */ |
| extern char _stext, _etext, _edata, __init_begin, __init_end; |
| |
| extern void ia64_tlb_init (void); |
| extern int filter_rsvd_memory (unsigned long, unsigned long, void *); |
| |
| /* Note - may be changed by platform_setup */ |
| unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; |
| #define LARGE_GAP 0x40000000 /* Use virtual mem map if a hole is > than this */ |
| |
| static unsigned long totalram_pages, reserved_pages; |
| struct page *zero_page_memmap_ptr; /* map entry for zero page */ |
| |
| unsigned long vmalloc_end = VMALLOC_END_INIT; |
| |
| static struct page *vmem_map; |
| static unsigned long num_dma_physpages; |
| |
| int |
| do_check_pgt_cache (int low, int high) |
| { |
| int freed = 0; |
| |
| if (pgtable_cache_size > high) { |
| do { |
| if (pgd_quicklist) |
| free_page((unsigned long)pgd_alloc_one_fast(0)), ++freed; |
| if (pmd_quicklist) |
| free_page((unsigned long)pmd_alloc_one_fast(0, 0)), ++freed; |
| if (pte_quicklist) |
| free_page((unsigned long)pte_alloc_one_fast(0, 0)), ++freed; |
| } while (pgtable_cache_size > low); |
| } |
| return freed; |
| } |
| |
| inline void |
| ia64_set_rbs_bot (void) |
| { |
| unsigned long stack_size = current->rlim[RLIMIT_STACK].rlim_max & -16; |
| |
| if (stack_size > MAX_USER_STACK_SIZE) |
| stack_size = MAX_USER_STACK_SIZE; |
| current->thread.rbs_bot = STACK_TOP - stack_size; |
| } |
| |
| /* |
| * This performs some platform-dependent address space initialization. |
| * On IA-64, we want to setup the VM area for the register backing |
| * store (which grows upwards) and install the gateway page which is |
| * used for signal trampolines, etc. |
| */ |
| void |
| ia64_init_addr_space (void) |
| { |
| struct vm_area_struct *vma; |
| |
| ia64_set_rbs_bot(); |
| |
| /* |
| * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore |
| * the problem. When the process attempts to write to the register backing store |
| * for the first time, it will get a SEGFAULT in this case. |
| */ |
| vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); |
| if (vma) { |
| vma->vm_mm = current->mm; |
| vma->vm_start = current->thread.rbs_bot & PAGE_MASK; |
| vma->vm_end = vma->vm_start + PAGE_SIZE; |
| vma->vm_page_prot = PAGE_COPY; |
| vma->vm_flags = VM_READ|VM_WRITE|VM_MAYREAD|VM_MAYWRITE|VM_GROWSUP; |
| vma->vm_ops = NULL; |
| vma->vm_pgoff = 0; |
| vma->vm_file = NULL; |
| vma->vm_private_data = NULL; |
| down_write(¤t->mm->mmap_sem); |
| if (insert_vm_struct(current->mm, vma)) { |
| up_write(¤t->mm->mmap_sem); |
| kmem_cache_free(vm_area_cachep, vma); |
| return; |
| } |
| up_write(¤t->mm->mmap_sem); |
| } |
| |
| /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ |
| if (!(current->personality & MMAP_PAGE_ZERO)) { |
| vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); |
| if (vma) { |
| memset(vma, 0, sizeof(*vma)); |
| vma->vm_mm = current->mm; |
| vma->vm_end = PAGE_SIZE; |
| vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); |
| vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; |
| down_write(¤t->mm->mmap_sem); |
| if (insert_vm_struct(current->mm, vma)) { |
| up_write(¤t->mm->mmap_sem); |
| kmem_cache_free(vm_area_cachep, vma); |
| return; |
| } |
| up_write(¤t->mm->mmap_sem); |
| } |
| } |
| } |
| |
| void |
| free_initmem (void) |
| { |
| unsigned long addr, eaddr; |
| |
| addr = (unsigned long) ia64_imva(&__init_begin); |
| eaddr = (unsigned long) ia64_imva(&__init_end); |
| for (; addr < eaddr; addr += PAGE_SIZE) { |
| clear_bit(PG_reserved, &virt_to_page((void *)addr)->flags); |
| set_page_count(virt_to_page((void *)addr), 1); |
| free_page(addr); |
| ++totalram_pages; |
| } |
| printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", |
| (&__init_end - &__init_begin) >> 10); |
| } |
| |
| void |
| free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| /* |
| * EFI uses 4KB pages while the kernel can use 4KB or bigger. |
| * Thus EFI and the kernel may have different page sizes. It is |
| * therefore possible to have the initrd share the same page as |
| * the end of the kernel (given current setup). |
| * |
| * To avoid freeing/using the wrong page (kernel sized) we: |
| * - align up the beginning of initrd |
| * - align down the end of initrd |
| * |
| * | | |
| * |=============| a000 |
| * | | |
| * | | |
| * | | 9000 |
| * |/////////////| |
| * |/////////////| |
| * |=============| 8000 |
| * |///INITRD////| |
| * |/////////////| |
| * |/////////////| 7000 |
| * | | |
| * |KKKKKKKKKKKKK| |
| * |=============| 6000 |
| * |KKKKKKKKKKKKK| |
| * |KKKKKKKKKKKKK| |
| * K=kernel using 8KB pages |
| * |
| * In this example, we must free page 8000 ONLY. So we must align up |
| * initrd_start and keep initrd_end as is. |
| */ |
| start = PAGE_ALIGN(start); |
| end = end & PAGE_MASK; |
| |
| if (start < end) |
| printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); |
| |
| for (; start < end; start += PAGE_SIZE) { |
| if (!VALID_PAGE(virt_to_page((void *)start))) |
| continue; |
| clear_bit(PG_reserved, &virt_to_page((void *)start)->flags); |
| set_page_count(virt_to_page((void *)start), 1); |
| free_page(start); |
| ++totalram_pages; |
| } |
| } |
| |
| void |
| si_meminfo (struct sysinfo *val) |
| { |
| val->totalram = totalram_pages; |
| val->sharedram = 0; |
| val->freeram = nr_free_pages(); |
| val->bufferram = atomic_read(&buffermem_pages); |
| val->totalhigh = 0; |
| val->freehigh = 0; |
| val->mem_unit = PAGE_SIZE; |
| return; |
| } |
| |
| void |
| show_mem(void) |
| { |
| int i, reserved; |
| int shared, cached; |
| pg_data_t *pgdat; |
| char *tchar = (numnodes > 1) ? "\t" : ""; |
| |
| printk("Mem-info:\n"); |
| show_free_areas(); |
| |
| printk("Free swap: %6dkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| for_each_pgdat(pgdat) { |
| reserved=0; |
| cached=0; |
| shared=0; |
| if (numnodes > 1) |
| printk("Node ID: %d\n", pgdat->node_id); |
| for(i = 0; i < pgdat->node_size; i++) { |
| if (!VALID_PAGE(pgdat->node_mem_map+i)) |
| continue; |
| if (PageReserved(pgdat->node_mem_map+i)) |
| reserved++; |
| else if (PageSwapCache(pgdat->node_mem_map+i)) |
| cached++; |
| else if (page_count(pgdat->node_mem_map + i)) |
| shared += page_count(pgdat->node_mem_map + i) - 1; |
| } |
| printk("%s%ld pages of RAM\n", tchar, pgdat->node_size); |
| printk("%s%d reserved pages\n", tchar, reserved); |
| printk("%s%d pages shared\n", tchar, shared); |
| printk("%s%d pages swap cached\n", tchar, cached); |
| } |
| printk("Total of %ld pages in page table cache\n", pgtable_cache_size); |
| show_buffers(); |
| printk("%d free buffer pages\n", nr_free_buffer_pages()); |
| } |
| |
| /* |
| * This is like put_dirty_page() but installs a clean page with PAGE_GATE protection |
| * (execute-only, typically). |
| */ |
| struct page * |
| put_gate_page (struct page *page, unsigned long address) |
| { |
| pgd_t *pgd; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| if (!PageReserved(page)) |
| printk(KERN_ERR "put_gate_page: gate page at 0x%p not in reserved memory\n", |
| page_address(page)); |
| |
| pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ |
| |
| spin_lock(&init_mm.page_table_lock); |
| { |
| pmd = pmd_alloc(&init_mm, pgd, address); |
| if (!pmd) |
| goto out; |
| pte = pte_alloc(&init_mm, pmd, address); |
| if (!pte) |
| goto out; |
| if (!pte_none(*pte)) { |
| pte_ERROR(*pte); |
| goto out; |
| } |
| flush_page_to_ram(page); |
| set_pte(pte, mk_pte(page, PAGE_GATE)); |
| } |
| out: spin_unlock(&init_mm.page_table_lock); |
| /* no need for flush_tlb */ |
| return page; |
| } |
| |
| void __init |
| ia64_mmu_init (void *my_cpu_data) |
| { |
| unsigned long psr, rid, pta, impl_va_bits; |
| extern void __init tlb_init (void); |
| #ifdef CONFIG_IA64_MCA |
| int cpu; |
| #endif |
| |
| #ifdef CONFIG_DISABLE_VHPT |
| # define VHPT_ENABLE_BIT 0 |
| #else |
| # define VHPT_ENABLE_BIT 1 |
| #endif |
| |
| /* |
| * Set up the kernel identity mapping for regions 6 and 5. The mapping for region |
| * 7 is setup up in _start(). |
| */ |
| psr = ia64_clear_ic(); |
| |
| rid = ia64_rid(IA64_REGION_ID_KERNEL, __IA64_UNCACHED_OFFSET); |
| ia64_set_rr(__IA64_UNCACHED_OFFSET, (rid << 8) | (IA64_GRANULE_SHIFT << 2)); |
| |
| rid = ia64_rid(IA64_REGION_ID_KERNEL, VMALLOC_START); |
| ia64_set_rr(VMALLOC_START, (rid << 8) | (PAGE_SHIFT << 2) | 1); |
| |
| /* ensure rr6 is up-to-date before inserting the PERCPU_ADDR translation: */ |
| ia64_srlz_d(); |
| |
| ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR, |
| pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL)), PAGE_SHIFT); |
| |
| ia64_set_psr(psr); |
| ia64_srlz_i(); |
| |
| /* |
| * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped |
| * address space. The IA-64 architecture guarantees that at least 50 bits of |
| * virtual address space are implemented but if we pick a large enough page size |
| * (e.g., 64KB), the mapped address space is big enough that it will overlap with |
| * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, |
| * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a |
| * problem in practice. Alternatively, we could truncate the top of the mapped |
| * address space to not permit mappings that would overlap with the VMLPT. |
| * --davidm 00/12/06 |
| */ |
| # define pte_bits 3 |
| # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) |
| /* |
| * The virtual page table has to cover the entire implemented address space within |
| * a region even though not all of this space may be mappable. The reason for |
| * this is that the Access bit and Dirty bit fault handlers perform |
| * non-speculative accesses to the virtual page table, so the address range of the |
| * virtual page table itself needs to be covered by virtual page table. |
| */ |
| # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) |
| # define POW2(n) (1ULL << (n)) |
| |
| impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); |
| |
| if (impl_va_bits < 51 || impl_va_bits > 61) |
| panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); |
| |
| /* place the VMLPT at the end of each page-table mapped region: */ |
| pta = POW2(61) - POW2(vmlpt_bits); |
| |
| if (POW2(mapped_space_bits) >= pta) |
| panic("mm/init: overlap between virtually mapped linear page table and " |
| "mapped kernel space!"); |
| /* |
| * Set the (virtually mapped linear) page table address. Bit |
| * 8 selects between the short and long format, bits 2-7 the |
| * size of the table, and bit 0 whether the VHPT walker is |
| * enabled. |
| */ |
| ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); |
| |
| ia64_tlb_init(); |
| |
| #ifdef CONFIG_IA64_MCA |
| cpu = smp_processor_id(); |
| |
| /* mca handler uses cr.lid as key to pick the right entry */ |
| ia64_mca_tlb_list[cpu].cr_lid = ia64_get_lid(); |
| |
| /* insert this percpu data information into our list for MCA recovery purposes */ |
| ia64_mca_tlb_list[cpu].percpu_paddr = pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL)); |
| /* Also save per-cpu tlb flush recipe for use in physical mode mca handler */ |
| ia64_mca_tlb_list[cpu].ptce_base = local_cpu_data->ptce_base; |
| ia64_mca_tlb_list[cpu].ptce_count[0] = local_cpu_data->ptce_count[0]; |
| ia64_mca_tlb_list[cpu].ptce_count[1] = local_cpu_data->ptce_count[1]; |
| ia64_mca_tlb_list[cpu].ptce_stride[0] = local_cpu_data->ptce_stride[0]; |
| ia64_mca_tlb_list[cpu].ptce_stride[1] = local_cpu_data->ptce_stride[1]; |
| #endif |
| } |
| |
| static int |
| create_mem_map_page_table (u64 start, u64 end, void *arg) |
| { |
| unsigned long address, start_page, end_page, next_blk_page; |
| unsigned long blk_start; |
| struct page *map_start, *map_end; |
| int node=0; |
| pgd_t *pgd; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| /* should we use platform_map_nr here? */ |
| |
| map_start = vmem_map + MAP_NR_DENSE(start); |
| map_end = vmem_map + MAP_NR_DENSE(end); |
| |
| start_page = (unsigned long) map_start & PAGE_MASK; |
| end_page = PAGE_ALIGN((unsigned long) map_end); |
| |
| /* force the first iteration to get node id */ |
| blk_start = start; |
| next_blk_page = 0; |
| |
| for (address = start_page; address < end_page; address += PAGE_SIZE) { |
| |
| /* if we went across a node boundary, get new nid */ |
| if (address >= next_blk_page) { |
| struct page *map_next_blk; |
| |
| node = paddr_to_nid(__pa(blk_start)); |
| |
| /* get end addr of this memblk as next blk_start */ |
| blk_start = (unsigned long) __va(min(end, memblk_endpaddr(__pa(blk_start)))); |
| map_next_blk = vmem_map + MAP_NR_DENSE(blk_start); |
| next_blk_page = PAGE_ALIGN((unsigned long) map_next_blk); |
| } |
| |
| pgd = pgd_offset_k(address); |
| if (pgd_none(*pgd)) |
| pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); |
| pmd = pmd_offset(pgd, address); |
| |
| if (pmd_none(*pmd)) |
| pmd_populate(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); |
| pte = pte_offset(pmd, address); |
| |
| if (pte_none(*pte)) |
| set_pte(pte, mk_pte_phys(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)), |
| PAGE_KERNEL)); |
| } |
| return 0; |
| } |
| |
| struct memmap_init_callback_data { |
| memmap_init_callback_t *memmap_init; |
| struct page *start; |
| struct page *end; |
| int zone; |
| int highmem; |
| }; |
| |
| struct memmap_count_callback_data { |
| int node; |
| unsigned long num_physpages; |
| unsigned long num_dma_physpages; |
| unsigned long min_pfn; |
| unsigned long max_pfn; |
| } cdata; |
| |
| static int |
| virtual_memmap_init (u64 start, u64 end, void *arg) |
| { |
| struct memmap_init_callback_data *args; |
| struct page *map_start, *map_end; |
| |
| args = (struct memmap_init_callback_data *) arg; |
| |
| /* Should we use platform_map_nr here? */ |
| |
| map_start = mem_map + MAP_NR_DENSE(start); |
| map_end = mem_map + MAP_NR_DENSE(end); |
| |
| if (map_start < args->start) |
| map_start = args->start; |
| if (map_end > args->end) |
| map_end = args->end; |
| |
| /* |
| * We have to initialize "out of bounds" struct page elements |
| * that fit completely on the same pages that were allocated |
| * for the "in bounds" elements because they may be referenced |
| * later (and found to be "reserved"). |
| */ |
| map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) |
| / sizeof(struct page); |
| map_end += ((PAGE_ALIGN((unsigned long) map_end) - |
| (unsigned long) map_end) |
| / sizeof(struct page)); |
| |
| if (map_start < map_end) |
| (*args->memmap_init)(map_start, map_end, args->zone, |
| page_to_phys(map_start), args->highmem); |
| |
| return 0; |
| } |
| |
| unsigned long |
| arch_memmap_init (memmap_init_callback_t *memmap_init, struct page *start, |
| struct page *end, int zone, unsigned long start_paddr, int highmem) |
| { |
| if (!vmem_map) |
| memmap_init(start,end,zone,page_to_phys(start),highmem); |
| else { |
| struct memmap_init_callback_data args; |
| |
| args.memmap_init = memmap_init; |
| args.start = start; |
| args.end = end; |
| args.zone = zone; |
| args.highmem = highmem; |
| |
| efi_memmap_walk(virtual_memmap_init, &args); |
| } |
| |
| return page_to_phys(end-1) + PAGE_SIZE;; |
| } |
| |
| int |
| ia64_page_valid (struct page *page) |
| { |
| char byte; |
| |
| return (__get_user(byte, (char *) page) == 0) |
| && (__get_user(byte, (char *) (page + 1) - 1) == 0); |
| } |
| |
| #define GRANULEROUNDDOWN(n) ((n) & ~(IA64_GRANULE_SIZE-1)) |
| #define GRANULEROUNDUP(n) (((n)+IA64_GRANULE_SIZE-1) & ~(IA64_GRANULE_SIZE-1)) |
| #define ORDERROUNDDOWN(n) ((n) & ~((PAGE_SIZE<<MAX_ORDER)-1)) |
| static int |
| count_pages (u64 start, u64 end, int node) |
| { |
| start = __pa(start); |
| end = __pa(end); |
| if (node == cdata.node) { |
| cdata.num_physpages += (end - start) >> PAGE_SHIFT; |
| if (start <= __pa(MAX_DMA_ADDRESS)) |
| cdata.num_dma_physpages += (min(end, __pa(MAX_DMA_ADDRESS)) - start) >> PAGE_SHIFT; |
| start = GRANULEROUNDDOWN(__pa(start)); |
| start = ORDERROUNDDOWN(start); |
| end = GRANULEROUNDUP(__pa(end)); |
| cdata.max_pfn = max(cdata.max_pfn, end >> PAGE_SHIFT); |
| cdata.min_pfn = min(cdata.min_pfn, start >> PAGE_SHIFT); |
| } |
| return 0; |
| } |
| |
| static int |
| find_largest_hole(u64 start, u64 end, void *arg) |
| { |
| u64 *max_gap = arg; |
| static u64 last_end = PAGE_OFFSET; |
| |
| /* NOTE: this algorithm assumes efi memmap table is ordered */ |
| |
| if (*max_gap < (start - last_end)) |
| *max_gap = start - last_end; |
| last_end = end; |
| return 0; |
| } |
| |
| /* |
| * Set up the page tables. |
| */ |
| void |
| paging_init (void) |
| { |
| unsigned long max_dma; |
| unsigned long zones_size[MAX_NR_ZONES]; |
| unsigned long zholes_size[MAX_NR_ZONES]; |
| unsigned long max_gap; |
| int node; |
| |
| /* initialize mem_map[] */ |
| |
| max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; |
| max_gap = 0; |
| efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); |
| |
| for (node=0; node < numnodes; node++) { |
| memset(zones_size, 0, sizeof(zones_size)); |
| memset(zholes_size, 0, sizeof(zholes_size)); |
| memset(&cdata, 0, sizeof(cdata)); |
| |
| cdata.node = node; |
| cdata.min_pfn = ~0; |
| |
| efi_memmap_walk(filter_rsvd_memory, count_pages); |
| num_dma_physpages += cdata.num_dma_physpages; |
| num_physpages += cdata.num_physpages; |
| |
| if (cdata.min_pfn >= max_dma) { |
| zones_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn; |
| zholes_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn - cdata.num_physpages; |
| } else if (cdata.max_pfn < max_dma) { |
| zones_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn; |
| zholes_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn - cdata.num_dma_physpages; |
| } else { |
| zones_size[ZONE_DMA] = max_dma - cdata.min_pfn; |
| zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - cdata.num_dma_physpages; |
| zones_size[ZONE_NORMAL] = cdata.max_pfn - max_dma; |
| zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - (cdata.num_physpages - cdata.num_dma_physpages); |
| } |
| |
| if (numnodes == 1 && max_gap < LARGE_GAP) { |
| vmem_map = (struct page *)0; |
| zones_size[ZONE_DMA] += cdata.min_pfn; |
| zholes_size[ZONE_DMA] += cdata.min_pfn; |
| free_area_init_core(0, NODE_DATA(node), &mem_map, zones_size, 0, zholes_size, NULL); |
| } else { |
| |
| /* allocate virtual mem_map */ |
| |
| if (node == 0) { |
| unsigned long map_size; |
| map_size = PAGE_ALIGN(max_low_pfn*sizeof(struct page)); |
| vmalloc_end -= map_size; |
| mem_map = vmem_map = (struct page *) vmalloc_end; |
| efi_memmap_walk(create_mem_map_page_table, 0); |
| printk(KERN_INFO "Virtual mem_map starts at 0x%p\n", mem_map); |
| } |
| |
| free_area_init_node(node, NODE_DATA(node), vmem_map+cdata.min_pfn, zones_size, |
| cdata.min_pfn<<PAGE_SHIFT, zholes_size); |
| } |
| } |
| |
| zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); |
| } |
| |
| static int |
| count_reserved_pages (u64 start, u64 end, void *arg) |
| { |
| unsigned long num_reserved = 0; |
| struct page *pg; |
| |
| for (pg = virt_to_page((void *)start); pg < virt_to_page((void *)end); ++pg) |
| if (PageReserved(pg)) |
| ++num_reserved; |
| reserved_pages += num_reserved; |
| return 0; |
| } |
| |
| void |
| mem_init (void) |
| { |
| extern char __start_gate_section[]; |
| long codesize, datasize, initsize; |
| unsigned long num_pgt_pages; |
| pg_data_t *pgdat; |
| |
| |
| #ifdef CONFIG_PCI |
| /* |
| * This needs to be called _after_ the command line has been parsed but _before_ |
| * any drivers that may need the PCI DMA interface are initialized or bootmem has |
| * been freed. |
| */ |
| platform_pci_dma_init(); |
| #endif |
| |
| if (!mem_map) |
| BUG(); |
| |
| max_mapnr = max_low_pfn; |
| high_memory = __va(max_low_pfn * PAGE_SIZE); |
| |
| for_each_pgdat(pgdat) |
| totalram_pages += free_all_bootmem_node(pgdat); |
| |
| reserved_pages = 0; |
| efi_memmap_walk(filter_rsvd_memory, count_reserved_pages); |
| |
| codesize = (unsigned long) &_etext - (unsigned long) &_stext; |
| datasize = (unsigned long) &_edata - (unsigned long) &_etext; |
| initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; |
| |
| printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, %luk data, %luk init)\n", |
| (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10), |
| num_physpages << (PAGE_SHIFT - 10), codesize >> 10, |
| reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); |
| |
| /* |
| * Allow for enough (cached) page table pages so that we can map the entire memory |
| * at least once. Each task also needs a couple of page tables pages, so add in a |
| * fudge factor for that (don't use "threads-max" here; that would be wrong!). |
| * Don't allow the cache to be more than 10% of total memory, though. |
| */ |
| # define NUM_TASKS 500 /* typical number of tasks */ |
| num_pgt_pages = nr_free_pages() / PTRS_PER_PGD + NUM_TASKS; |
| if (num_pgt_pages > nr_free_pages() / 10) |
| num_pgt_pages = nr_free_pages() / 10; |
| if (num_pgt_pages > pgt_cache_water[1]) |
| pgt_cache_water[1] = num_pgt_pages; |
| |
| /* install the gate page in the global page table: */ |
| put_gate_page(virt_to_page(ia64_imva(__start_gate_section)), GATE_ADDR); |
| |
| #ifdef CONFIG_IA32_SUPPORT |
| ia32_gdt_init(); |
| #endif |
| } |