blob: 0f13d0eb14ef010bc87f51b40319ac35e2aa151f [file] [log] [blame]
/*
* ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
*
* Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
* Copyright (C) 1999 - 2001 Kanoj Sarcar
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/timex.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/smp_lock.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <asm/bitops.h>
#include <asm/bootinfo.h>
#include <asm/io.h>
#include <asm/mipsregs.h>
#include <asm/system.h>
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <asm/pci/bridge.h>
#include <asm/sn/sn0/hub.h>
#include <asm/sn/sn0/ip27.h>
#include <asm/sn/addrs.h>
#include <asm/sn/agent.h>
#include <asm/sn/arch.h>
#include <asm/sn/intr.h>
#include <asm/sn/intr_public.h>
#undef DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
/* These should die */
unsigned char bus_to_wid[256]; /* widget id for linux pci bus */
unsigned char bus_to_nid[256]; /* nasid for linux pci bus */
unsigned char num_bridges; /* number of bridges in the system */
/*
* Linux has a controller-independent x86 interrupt architecture.
* every controller has a 'controller-template', that is used
* by the main code to do the right thing. Each driver-visible
* interrupt source is transparently wired to the apropriate
* controller. Thus drivers need not be aware of the
* interrupt-controller.
*
* Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
* PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
* (IO-APICs assumed to be messaging to Pentium local-APICs)
*
* the code is designed to be easily extended with new/different
* interrupt controllers, without having to do assembly magic.
*/
extern asmlinkage void ip27_irq(void);
extern int irq_to_bus[], irq_to_slot[], bus_to_cpu[];
int intr_connect_level(int cpu, int bit);
int intr_disconnect_level(int cpu, int bit);
/*
* There is a single intpend register per node, and we want to have
* distinct levels for intercpu intrs for both cpus A and B on a node.
*/
int node_level_to_irq[MAX_COMPACT_NODES][PERNODE_LEVELS];
/*
* use these macros to get the encoded nasid and widget id
* from the irq value
*/
#define IRQ_TO_BUS(i) irq_to_bus[(i)]
#define IRQ_TO_CPU(i) bus_to_cpu[IRQ_TO_BUS(i)]
#define NASID_FROM_PCI_IRQ(i) bus_to_nid[IRQ_TO_BUS(i)]
#define WID_FROM_PCI_IRQ(i) bus_to_wid[IRQ_TO_BUS(i)]
#define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
static inline int alloc_level(cpuid_t cpunum, int irq)
{
cnodeid_t nodenum = CPUID_TO_COMPACT_NODEID(cpunum);
int j = LEAST_LEVEL + 3; /* resched & crosscall entries taken */
while (++j < PERNODE_LEVELS) {
if (node_level_to_irq[nodenum][j] == -1) {
node_level_to_irq[nodenum][j] = irq;
return j;
}
}
printk("Cpu %ld flooded with devices\n", cpunum);
while(1);
return -1;
}
static inline int find_level(cpuid_t *cpunum, int irq)
{
int j;
cnodeid_t nodenum = INVALID_CNODEID;
while (++nodenum < MAX_COMPACT_NODES) {
j = LEAST_LEVEL + 3; /* resched & crosscall entries taken */
while (++j < PERNODE_LEVELS)
if (node_level_to_irq[nodenum][j] == irq) {
*cpunum = 0; /* XXX Fixme */
return(j);
}
}
printk("Could not identify cpu/level for irq %d\n", irq);
while(1);
return(-1);
}
/*
* Find first bit set
*/
static int ms1bit(unsigned long x)
{
int b = 0, s;
s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
s = 1; if (x >> 1 == 0) s = 0; b += s;
return b;
}
/*
* This code is unnecessarily complex, because we do SA_INTERRUPT
* intr enabling. Basically, once we grab the set of intrs we need
* to service, we must mask _all_ these interrupts; firstly, to make
* sure the same intr does not intr again, causing recursion that
* can lead to stack overflow. Secondly, we can not just mask the
* one intr we are do_IRQing, because the non-masked intrs in the
* first set might intr again, causing multiple servicings of the
* same intr. This effect is mostly seen for intercpu intrs.
* Kanoj 05.13.00
*/
void ip27_do_irq(struct pt_regs *regs)
{
int irq, swlevel;
hubreg_t pend0, mask0;
cpuid_t thiscpu = smp_processor_id();
int pi_int_mask0 = ((cputoslice(thiscpu) == 0) ?
PI_INT_MASK0_A : PI_INT_MASK0_B);
/* copied from Irix intpend0() */
while (((pend0 = LOCAL_HUB_L(PI_INT_PEND0)) &
(mask0 = LOCAL_HUB_L(pi_int_mask0))) != 0) {
pend0 &= mask0; /* Pick intrs we should look at */
if (pend0) {
/* Prevent any of the picked intrs from recursing */
LOCAL_HUB_S(pi_int_mask0, mask0 & ~(pend0));
do {
swlevel = ms1bit(pend0);
LOCAL_HUB_CLR_INTR(swlevel);
/* "map" swlevel to irq */
irq = LEVEL_TO_IRQ(thiscpu, swlevel);
do_IRQ(irq, regs);
/* clear bit in pend0 */
pend0 ^= 1ULL << swlevel;
} while(pend0);
/* Now allow the set of serviced intrs again */
LOCAL_HUB_S(pi_int_mask0, mask0);
LOCAL_HUB_L(PI_INT_PEND0);
}
}
}
/* Startup one of the (PCI ...) IRQs routes over a bridge. */
static unsigned int startup_bridge_irq(unsigned int irq)
{
bridgereg_t device;
bridge_t *bridge;
int pin, swlevel;
cpuid_t cpu;
nasid_t master = NASID_FROM_PCI_IRQ(irq);
if (irq < BASE_PCI_IRQ)
return 0;
bridge = (bridge_t *) NODE_SWIN_BASE(master, WID_FROM_PCI_IRQ(irq));
pin = SLOT_FROM_PCI_IRQ(irq);
cpu = IRQ_TO_CPU(irq);
DBG("bridge_startup(): irq= 0x%x pin=%d\n", irq, pin);
/*
* "map" irq to a swlevel greater than 6 since the first 6 bits
* of INT_PEND0 are taken
*/
swlevel = alloc_level(cpu, irq);
intr_connect_level(cpu, swlevel);
bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (master << 8));
bridge->b_int_enable |= (1 << pin);
/* more stuff in int_enable reg */
bridge->b_int_enable |= 0x7ffffe00;
/*
* XXX This only works if b_int_device is initialized to 0!
* We program the bridge to have a 1:1 mapping between devices
* (slots) and intr pins.
*/
device = bridge->b_int_device;
device |= (pin << (pin*3));
bridge->b_int_device = device;
bridge->b_widget.w_tflush; /* Flush */
return 0; /* Never anything pending. */
}
/* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
static unsigned int shutdown_bridge_irq(unsigned int irq)
{
bridge_t *bridge;
int pin, swlevel;
cpuid_t cpu;
if (irq < BASE_PCI_IRQ)
return 0;
bridge = (bridge_t *) NODE_SWIN_BASE(NASID_FROM_PCI_IRQ(irq),
WID_FROM_PCI_IRQ(irq));
DBG("bridge_shutdown: irq 0x%x\n", irq);
pin = SLOT_FROM_PCI_IRQ(irq);
/*
* map irq to a swlevel greater than 6 since the first 6 bits
* of INT_PEND0 are taken
*/
swlevel = find_level(&cpu, irq);
intr_disconnect_level(cpu, swlevel);
LEVEL_TO_IRQ(cpu, swlevel) = -1;
bridge->b_int_enable &= ~(1 << pin);
bridge->b_widget.w_tflush; /* Flush */
return 0; /* Never anything pending. */
}
static inline void enable_bridge_irq(unsigned int irq)
{
/* All the braindamage happens magically for us in ip27_do_irq */
}
static void disable_bridge_irq(unsigned int irq)
{
/* All the braindamage happens magically for us in ip27_do_irq */
}
static void mask_and_ack_bridge_irq(unsigned int irq)
{
/* All the braindamage happens magically for us in ip27_do_irq */
}
static void end_bridge_irq (unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
enable_bridge_irq(irq);
}
static struct hw_interrupt_type bridge_irq_type = {
"bridge",
startup_bridge_irq,
shutdown_bridge_irq,
enable_bridge_irq,
disable_bridge_irq,
mask_and_ack_bridge_irq,
end_bridge_irq
};
void irq_debug(void)
{
bridge_t *bridge = (bridge_t *) 0x9200000008000000;
printk("bridge->b_int_status = 0x%x\n", bridge->b_int_status);
printk("bridge->b_int_enable = 0x%x\n", bridge->b_int_enable);
printk("PI_INT_PEND0 = 0x%lx\n", LOCAL_HUB_L(PI_INT_PEND0));
printk("PI_INT_MASK0_A = 0x%lx\n", LOCAL_HUB_L(PI_INT_MASK0_A));
}
void __init init_IRQ(void)
{
int i;
set_except_vector(0, ip27_irq);
/*
* Right now the bridge irq is our kitchen sink interrupt type
*/
for (i = 0; i <= NR_IRQS; i++) {
irq_desc[i].status = IRQ_DISABLED;
irq_desc[i].action = 0;
irq_desc[i].depth = 1;
irq_desc[i].handler = &bridge_irq_type;
}
}
/*
* Get values that vary depending on which CPU and bit we're operating on.
*/
static hub_intmasks_t *intr_get_ptrs(cpuid_t cpu, int bit, int *new_bit,
hubreg_t **intpend_masks, int *ip)
{
hub_intmasks_t *hub_intmasks;
hub_intmasks = &cpu_data[cpu].p_intmasks;
if (bit < N_INTPEND_BITS) {
*intpend_masks = hub_intmasks->intpend0_masks;
*ip = 0;
*new_bit = bit;
} else {
*intpend_masks = hub_intmasks->intpend1_masks;
*ip = 1;
*new_bit = bit - N_INTPEND_BITS;
}
return hub_intmasks;
}
int intr_connect_level(int cpu, int bit)
{
int ip;
int slice = cputoslice(cpu);
volatile hubreg_t *mask_reg;
hubreg_t *intpend_masks;
nasid_t nasid = COMPACT_TO_NASID_NODEID(cputocnode(cpu));
(void)intr_get_ptrs(cpu, bit, &bit, &intpend_masks, &ip);
/* Make sure it's not already pending when we connect it. */
REMOTE_HUB_CLR_INTR(nasid, bit + ip * N_INTPEND_BITS);
intpend_masks[0] |= (1ULL << (u64)bit);
if (ip == 0) {
mask_reg = REMOTE_HUB_ADDR(nasid, PI_INT_MASK0_A +
PI_INT_MASK_OFFSET * slice);
} else {
mask_reg = REMOTE_HUB_ADDR(nasid, PI_INT_MASK1_A +
PI_INT_MASK_OFFSET * slice);
}
HUB_S(mask_reg, intpend_masks[0]);
return(0);
}
int intr_disconnect_level(int cpu, int bit)
{
int ip;
int slice = cputoslice(cpu);
volatile hubreg_t *mask_reg;
hubreg_t *intpend_masks;
nasid_t nasid = COMPACT_TO_NASID_NODEID(cputocnode(cpu));
(void)intr_get_ptrs(cpu, bit, &bit, &intpend_masks, &ip);
intpend_masks[0] &= ~(1ULL << (u64)bit);
if (ip == 0) {
mask_reg = REMOTE_HUB_ADDR(nasid, PI_INT_MASK0_A +
PI_INT_MASK_OFFSET * slice);
} else {
mask_reg = REMOTE_HUB_ADDR(nasid, PI_INT_MASK1_A +
PI_INT_MASK_OFFSET * slice);
}
HUB_S(mask_reg, intpend_masks[0]);
return(0);
}
void handle_resched_intr(int irq, void *dev_id, struct pt_regs *regs)
{
/* Nothing, the return from intr will work for us */
}
#ifdef CONFIG_SMP
void core_send_ipi(int destid, unsigned int action)
{
int irq;
#if (CPUS_PER_NODE == 2)
switch (action) {
case SMP_RESCHEDULE_YOURSELF:
irq = CPU_RESCHED_A_IRQ;
break;
case SMP_CALL_FUNCTION:
irq = CPU_CALL_A_IRQ;
break;
default:
panic("sendintr");
}
irq += cputoslice(destid);
/*
* Convert the compact hub number to the NASID to get the correct
* part of the address space. Then set the interrupt bit associated
* with the CPU we want to send the interrupt to.
*/
REMOTE_HUB_SEND_INTR(COMPACT_TO_NASID_NODEID(cputocnode(destid)),
FAST_IRQ_TO_LEVEL(irq));
#else
<< Bomb! Must redefine this for more than 2 CPUS. >>
#endif
}
#endif
extern void smp_call_function_interrupt(void);
void install_cpuintr(int cpu)
{
#ifdef CONFIG_SMP
#if (CPUS_PER_NODE == 2)
static int done = 0;
/*
* This is a hack till we have a pernode irqlist. Currently,
* just have the master cpu set up the handlers for the per
* cpu irqs.
*/
if (done == 0) {
int j;
if (request_irq(CPU_RESCHED_A_IRQ, handle_resched_intr,
0, "resched", 0))
panic("intercpu intr unconnectible");
if (request_irq(CPU_RESCHED_B_IRQ, handle_resched_intr,
0, "resched", 0))
panic("intercpu intr unconnectible");
if (request_irq(CPU_CALL_A_IRQ, smp_call_function_interrupt,
0, "callfunc", 0))
panic("intercpu intr unconnectible");
if (request_irq(CPU_CALL_B_IRQ, smp_call_function_interrupt,
0, "callfunc", 0))
panic("intercpu intr unconnectible");
for (j = 0; j < PERNODE_LEVELS; j++)
LEVEL_TO_IRQ(0, j) = -1;
LEVEL_TO_IRQ(0, FAST_IRQ_TO_LEVEL(CPU_RESCHED_A_IRQ)) =
CPU_RESCHED_A_IRQ;
LEVEL_TO_IRQ(0, FAST_IRQ_TO_LEVEL(CPU_RESCHED_B_IRQ)) =
CPU_RESCHED_B_IRQ;
LEVEL_TO_IRQ(0, FAST_IRQ_TO_LEVEL(CPU_CALL_A_IRQ)) =
CPU_CALL_A_IRQ;
LEVEL_TO_IRQ(0, FAST_IRQ_TO_LEVEL(CPU_CALL_B_IRQ)) =
CPU_CALL_B_IRQ;
for (j = 1; j < MAX_COMPACT_NODES; j++)
memcpy(&node_level_to_irq[j][0],
&node_level_to_irq[0][0],
sizeof(node_level_to_irq[0][0])*PERNODE_LEVELS);
done = 1;
}
intr_connect_level(cpu, FAST_IRQ_TO_LEVEL(CPU_RESCHED_A_IRQ +
cputoslice(cpu)));
intr_connect_level(cpu, FAST_IRQ_TO_LEVEL(CPU_CALL_A_IRQ +
cputoslice(cpu)));
#else /* CPUS_PER_NODE */
#error Must redefine this for more than 2 CPUS.
#endif /* CPUS_PER_NODE */
#endif /* CONFIG_SMP */
}
void install_tlbintr(int cpu)
{
#if 0
int intr_bit = N_INTPEND_BITS + TLB_INTR_A + cputoslice(cpu);
intr_connect_level(cpu, intr_bit);
#endif
}