| /* |
| * linux/arch/x86-64/kernel/process.c |
| * |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| * |
| * X86-64 port |
| * Andi Kleen. |
| * |
| * $Id: process.c,v 1.77 2004/03/22 00:37:29 ak Exp $ |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| #define __KERNEL_SYSCALLS__ |
| #include <stdarg.h> |
| |
| #include <linux/compiler.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/user.h> |
| #include <linux/a.out.h> |
| #include <linux/interrupt.h> |
| #include <linux/config.h> |
| #include <linux/delay.h> |
| #include <linux/reboot.h> |
| #include <linux/init.h> |
| #include <linux/ctype.h> |
| #include <linux/slab.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/ldt.h> |
| #include <asm/processor.h> |
| #include <asm/i387.h> |
| #include <asm/desc.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pda.h> |
| #include <asm/prctl.h> |
| #include <asm/kdebug.h> |
| #include <asm/proto.h> |
| #include <asm/apic.h> |
| |
| #include <linux/irq.h> |
| |
| asmlinkage extern void ret_from_fork(void); |
| |
| int hlt_counter; |
| |
| /* |
| * Powermanagement idle function, if any.. |
| */ |
| void (*pm_idle)(void); |
| |
| /* |
| * Power off function, if any |
| */ |
| void (*pm_power_off)(void); |
| |
| void disable_hlt(void) |
| { |
| hlt_counter++; |
| } |
| |
| void enable_hlt(void) |
| { |
| hlt_counter--; |
| } |
| |
| /* |
| * We use this if we don't have any better |
| * idle routine.. |
| */ |
| static void default_idle(void) |
| { |
| if (!hlt_counter) { |
| __cli(); |
| if (!current->need_resched) |
| safe_halt(); |
| else |
| __sti(); |
| } |
| } |
| |
| /* |
| * On SMP it's slightly faster (but much more power-consuming!) |
| * to poll the ->need_resched flag instead of waiting for the |
| * cross-CPU IPI to arrive. Use this option with caution. |
| */ |
| static void poll_idle (void) |
| { |
| int oldval; |
| |
| __sti(); |
| |
| /* |
| * Deal with another CPU just having chosen a thread to |
| * run here: |
| */ |
| oldval = xchg(¤t->need_resched, -1); |
| |
| if (!oldval) |
| asm volatile( |
| "2:" |
| "cmpl $-1, %0;" |
| "rep; nop;" |
| "je 2b;" |
| : :"m" (current->need_resched)); |
| } |
| |
| /* |
| * The idle thread. There's no useful work to be |
| * done, so just try to conserve power and have a |
| * low exit latency (ie sit in a loop waiting for |
| * somebody to say that they'd like to reschedule) |
| */ |
| void cpu_idle (void) |
| { |
| /* endless idle loop with no priority at all */ |
| init_idle(); |
| current->nice = 20; |
| current->counter = -100; |
| |
| while (1) { |
| void (*idle)(void) = pm_idle; |
| if (!idle) |
| idle = default_idle; |
| while (!current->need_resched) |
| idle(); |
| schedule(); |
| check_pgt_cache(); |
| } |
| } |
| |
| /* |
| * This is a kind of hybrid between poll and halt idle routines. This uses new |
| * Monitor/Mwait instructions on P4 processors with PNI. We Monitor |
| * need_resched and go to optimized wait state through Mwait. |
| * Whenever someone changes need_resched, we would be woken up from Mwait |
| * (without an IPI). |
| */ |
| static void mwait_idle (void) |
| { |
| int oldval; |
| |
| __sti(); |
| /* Setting need_resched to -1 skips sending IPI during idle resched */ |
| oldval = xchg(¤t->need_resched, -1); |
| if (!oldval) { |
| do { |
| __monitor((void *)¤t->need_resched, 0, 0); |
| if (current->need_resched != -1) |
| break; |
| __mwait(0, 0); |
| } while (current->need_resched == -1); |
| } |
| } |
| |
| int __init select_idle_routine(struct cpuinfo_x86 *c) |
| { |
| if (cpu_has(c, X86_FEATURE_MWAIT)) { |
| printk("Monitor/Mwait feature present.\n"); |
| /* |
| * Take care of system with asymmetric CPUs. |
| * Use, mwait_idle only if all cpus support it. |
| * If not, we fallback to default_idle() |
| */ |
| if (!pm_idle) { |
| pm_idle = mwait_idle; |
| } |
| return 1; |
| } |
| return 1; |
| } |
| |
| |
| static int __init idle_setup (char *str) |
| { |
| if (!strncmp(str, "poll", 4)) { |
| printk("using polling idle threads.\n"); |
| pm_idle = poll_idle; |
| } else if (!strncmp(str, "halt", 4)) { |
| printk("using halt in idle threads.\n"); |
| pm_idle = default_idle; |
| } |
| |
| return 1; |
| } |
| |
| __setup("idle=", idle_setup); |
| |
| static struct { long x; } no_idt[3]; |
| static enum { |
| BOOT_BIOS = 'b', |
| BOOT_TRIPLE = 't', |
| BOOT_KBD = 'k', |
| } reboot_type = BOOT_KBD; |
| static int reboot_mode = 0; |
| |
| /* reboot=b[ios] | t[riple] | k[bd] [, [w]arm | [c]old] |
| bios Use the CPU reboot vector for warm reset |
| warm Don't set the cold reboot flag |
| cold Set the cold reboto flag |
| triple Force a triple fault (init) |
| kbd Use the keyboard controller. cold reset (default) |
| */ |
| static int __init reboot_setup(char *str) |
| { |
| for (;;) { |
| switch (*str) { |
| case 'w': |
| reboot_mode = 0x1234; |
| break; |
| |
| case 'c': |
| reboot_mode = 0; |
| break; |
| |
| case 't': |
| case 'b': |
| case 'k': |
| reboot_type = *str; |
| break; |
| } |
| if((str = strchr(str,',')) != NULL) |
| str++; |
| else |
| break; |
| } |
| return 1; |
| } |
| __setup("reboot=", reboot_setup); |
| |
| /* overwrites random kernel memory. Should not be kernel .text */ |
| #define WARMBOOT_TRAMP 0x1000UL |
| |
| static void reboot_warm(void) |
| { |
| extern unsigned char warm_reboot[], warm_reboot_end[]; |
| printk("warm reboot\n"); |
| |
| __cli(); |
| |
| /* restore identity mapping */ |
| init_level4_pgt[0] = __pml4(__pa(level3_ident_pgt) | 7); |
| __flush_tlb_all(); |
| |
| memcpy(__va(WARMBOOT_TRAMP), warm_reboot, warm_reboot_end - warm_reboot); |
| |
| asm volatile( " pushq $0\n" /* ss */ |
| " pushq $0x2000\n" /* rsp */ |
| " pushfq\n" /* eflags */ |
| " pushq %[cs]\n" |
| " pushq %[target]\n" |
| " iretq" :: |
| [cs] "i" (__KERNEL_COMPAT32_CS), |
| [target] "b" (WARMBOOT_TRAMP)); |
| } |
| |
| static void kb_wait(void) |
| { |
| int i; |
| |
| for (i=0; i<0x10000; i++) |
| if ((inb_p(0x64) & 0x02) == 0) |
| break; |
| } |
| |
| |
| #ifdef CONFIG_SMP |
| static void smp_halt(void) |
| { |
| int cpuid = safe_smp_processor_id(); |
| static int first_entry = 1; |
| |
| if (first_entry) { |
| first_entry = 0; |
| smp_call_function((void *)machine_restart, NULL, 1, 0); |
| } |
| |
| smp_stop_cpu(); |
| |
| /* AP calling this. Just halt */ |
| if (cpuid != boot_cpu_id) { |
| printk("CPU %d SMP halt\n", cpuid); |
| for (;;) |
| asm("hlt"); |
| } |
| |
| /* Wait for all other CPUs to have run smp_stop_cpu */ |
| while (cpu_online_map) |
| rep_nop(); |
| } |
| #endif |
| |
| void machine_restart(char * __unused) |
| { |
| int i; |
| |
| #if CONFIG_SMP |
| smp_halt(); |
| #endif |
| __cli(); |
| |
| #ifndef CONFIG_SMP |
| disable_local_APIC(); |
| #endif |
| disable_IO_APIC(); |
| |
| __sti(); |
| |
| /* Tell the BIOS if we want cold or warm reboot */ |
| *((unsigned short *)__va(0x472)) = reboot_mode; |
| |
| for (;;) { |
| /* Could also try the reset bit in the Hammer NB */ |
| switch (reboot_type) { |
| case BOOT_BIOS: |
| reboot_warm(); |
| |
| case BOOT_KBD: |
| /* force cold reboot to reinit all hardware*/ |
| for (i=0; i<100; i++) { |
| kb_wait(); |
| udelay(50); |
| outb(0xfe,0x64); /* pulse reset low */ |
| udelay(50); |
| } |
| |
| case BOOT_TRIPLE: |
| /* force cold reboot to reinit all hardware*/ |
| *((unsigned short *)__va(0x472)) = 0; |
| |
| __asm__ __volatile__("lidt (%0)": :"r" (no_idt)); |
| __asm__ __volatile__("int3"); |
| |
| reboot_type = BOOT_KBD; |
| break; |
| } |
| } |
| } |
| |
| void machine_halt(void) |
| { |
| } |
| |
| void machine_power_off(void) |
| { |
| if (pm_power_off) |
| pm_power_off(); |
| } |
| |
| extern int printk_address(unsigned long); |
| |
| /* Prints also some state that isn't saved in the pt_regs */ |
| void __show_regs(struct pt_regs * regs) |
| { |
| unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; |
| unsigned int fsindex,gsindex; |
| unsigned int ds,cs,es; |
| |
| printk("\n"); |
| printk("Pid: %d, comm: %.20s %s\n", current->pid, current->comm, print_tainted()); |
| printk("RIP: %04lx:", regs->cs & 0xffff); |
| printk_address(regs->rip); |
| printk("\nRSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss, regs->rsp, regs->eflags); |
| printk("RAX: %016lx RBX: %016lx RCX: %016lx\n", |
| regs->rax, regs->rbx, regs->rcx); |
| printk("RDX: %016lx RSI: %016lx RDI: %016lx\n", |
| regs->rdx, regs->rsi, regs->rdi); |
| printk("RBP: %016lx R08: %016lx R09: %016lx\n", |
| regs->rbp, regs->r8, regs->r9); |
| printk("R10: %016lx R11: %016lx R12: %016lx\n", |
| regs->r10, regs->r11, regs->r12); |
| printk("R13: %016lx R14: %016lx R15: %016lx\n", |
| regs->r13, regs->r14, regs->r15); |
| |
| asm("movl %%ds,%0" : "=r" (ds)); |
| asm("movl %%cs,%0" : "=r" (cs)); |
| asm("movl %%es,%0" : "=r" (es)); |
| asm("movl %%fs,%0" : "=r" (fsindex)); |
| asm("movl %%gs,%0" : "=r" (gsindex)); |
| |
| rdmsrl(MSR_FS_BASE, fs); |
| rdmsrl(MSR_GS_BASE, gs); |
| rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); |
| |
| asm("movq %%cr0, %0": "=r" (cr0)); |
| asm("movq %%cr2, %0": "=r" (cr2)); |
| asm("movq %%cr3, %0": "=r" (cr3)); |
| asm("movq %%cr4, %0": "=r" (cr4)); |
| |
| printk("FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", |
| fs,fsindex,gs,gsindex,shadowgs); |
| printk("CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, es, cr0); |
| printk("CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, cr4); |
| } |
| |
| void show_regs(struct pt_regs * regs) |
| { |
| __show_regs(regs); |
| show_trace(®s->rsp); |
| } |
| |
| /* |
| * No need to lock the MM as we are the last user |
| */ |
| void release_segments(struct mm_struct *mm) |
| { |
| void * ldt = mm->context.segments; |
| |
| /* |
| * free the LDT |
| */ |
| if (ldt) { |
| mm->context.segments = NULL; |
| clear_LDT(); |
| vfree(ldt); |
| } |
| } |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| void exit_thread(void) |
| { |
| struct task_struct *me = current; |
| if (me->thread.io_bitmap_ptr) { |
| (init_tss + smp_processor_id())->io_map_base = |
| INVALID_IO_BITMAP_OFFSET; |
| kfree(me->thread.io_bitmap_ptr); |
| me->thread.io_bitmap_ptr = NULL; |
| } |
| } |
| |
| void flush_thread(void) |
| { |
| struct task_struct *tsk = current; |
| |
| memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8); |
| /* |
| * Forget coprocessor state.. |
| */ |
| clear_fpu(tsk); |
| tsk->used_math = 0; |
| } |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| if (dead_task->mm) { |
| void * ldt = dead_task->mm->context.segments; |
| |
| // temporary debugging check |
| if (ldt) { |
| printk("WARNING: dead process %8s still has LDT? <%p>\n", |
| dead_task->comm, ldt); |
| BUG(); |
| } |
| } |
| } |
| |
| /* |
| * we do not have to muck with descriptors here, that is |
| * done in switch_mm() as needed. |
| */ |
| void copy_segments(struct task_struct *p, struct mm_struct *new_mm) |
| { |
| struct mm_struct * old_mm; |
| void *old_ldt, *ldt; |
| |
| ldt = NULL; |
| old_mm = current->mm; |
| if (old_mm && (old_ldt = old_mm->context.segments) != NULL) { |
| /* |
| * Completely new LDT, we initialize it from the parent: |
| */ |
| ldt = vmalloc(LDT_ENTRIES*LDT_ENTRY_SIZE); |
| if (!ldt) |
| printk(KERN_WARNING "ldt allocation failed\n"); |
| else |
| memcpy(ldt, old_ldt, LDT_ENTRIES*LDT_ENTRY_SIZE); |
| } |
| new_mm->context.segments = ldt; |
| new_mm->context.cpuvalid = 0UL; |
| return; |
| } |
| |
| int copy_thread(int nr, unsigned long clone_flags, unsigned long rsp, |
| unsigned long unused, |
| struct task_struct * p, struct pt_regs * regs) |
| { |
| struct pt_regs * childregs; |
| struct task_struct *me = current; |
| |
| childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p)) - 1; |
| |
| *childregs = *regs; |
| |
| childregs->rax = 0; |
| childregs->rsp = rsp; |
| if (rsp == ~0) { |
| childregs->rsp = (unsigned long)childregs; |
| } |
| |
| p->thread.rsp = (unsigned long) childregs; |
| p->thread.rsp0 = (unsigned long) (childregs+1); |
| p->thread.userrsp = current->thread.userrsp; |
| |
| p->thread.rip = (unsigned long) ret_from_fork; |
| |
| p->thread.fs = me->thread.fs; |
| p->thread.gs = me->thread.gs; |
| |
| asm("mov %%gs,%0" : "=m" (p->thread.gsindex)); |
| asm("mov %%fs,%0" : "=m" (p->thread.fsindex)); |
| asm("mov %%es,%0" : "=m" (p->thread.es)); |
| asm("mov %%ds,%0" : "=m" (p->thread.ds)); |
| |
| unlazy_fpu(current); |
| p->thread.i387 = current->thread.i387; |
| |
| if (unlikely(me->thread.io_bitmap_ptr != NULL)) { |
| p->thread.io_bitmap_ptr = kmalloc((IO_BITMAP_SIZE+1)*4, GFP_KERNEL); |
| if (!p->thread.io_bitmap_ptr) |
| return -ENOMEM; |
| memcpy(p->thread.io_bitmap_ptr, me->thread.io_bitmap_ptr, |
| (IO_BITMAP_SIZE+1)*4); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This special macro can be used to load a debugging register |
| */ |
| #define loaddebug(thread,register) \ |
| set_debug(thread->debugreg[register], register) |
| |
| /* |
| * switch_to(x,y) should switch tasks from x to y. |
| * |
| * This could still be optimized: |
| * - fold all the options into a flag word and test it with a single test. |
| * - could test fs/gs bitsliced |
| */ |
| struct task_struct *__switch_to(struct task_struct *prev_p, struct task_struct *next_p) |
| { |
| struct thread_struct *prev = &prev_p->thread, |
| *next = &next_p->thread; |
| struct tss_struct *tss = init_tss + smp_processor_id(); |
| |
| /* |
| * Reload rsp0, LDT and the page table pointer: |
| */ |
| tss->rsp0 = next->rsp0; |
| |
| /* |
| * Switch DS and ES. |
| */ |
| asm volatile("mov %%es,%0" : "=m" (prev->es)); |
| if (unlikely(next->es | prev->es)) |
| loadsegment(es, next->es); |
| |
| asm volatile ("mov %%ds,%0" : "=m" (prev->ds)); |
| if (unlikely(next->ds | prev->ds)) |
| loadsegment(ds, next->ds); |
| |
| /* |
| * Must be after DS reload for AMD workaround. |
| */ |
| unlazy_fpu(prev_p); |
| |
| /* |
| * Switch FS and GS. |
| */ |
| { |
| unsigned fsindex; |
| asm volatile("movl %%fs,%0" : "=r" (fsindex)); |
| /* segment register != 0 always requires a reload. |
| also reload when it has changed. |
| when prev process used 64bit base always reload |
| to avoid an information leak. */ |
| if (unlikely((fsindex | next->fsindex) || prev->fs)) { |
| loadsegment(fs, next->fsindex); |
| /* check if the user use a selector != 0 |
| * if yes clear 64bit base, since overloaded base |
| * is allways mapped to the Null selector |
| */ |
| if (fsindex) |
| prev->fs = 0; |
| } |
| /* when next process has a 64bit base use it */ |
| if (next->fs) |
| wrmsrl(MSR_FS_BASE, next->fs); |
| prev->fsindex = fsindex; |
| } |
| { |
| unsigned gsindex; |
| asm volatile("movl %%gs,%0" : "=r" (gsindex)); |
| if (unlikely((gsindex | next->gsindex) || prev->gs)) { |
| load_gs_index(next->gsindex); |
| if (gsindex) |
| prev->gs = 0; |
| } |
| if (next->gs) |
| wrmsrl(MSR_KERNEL_GS_BASE, next->gs); |
| prev->gsindex = gsindex; |
| } |
| |
| /* |
| * Switch the PDA context. |
| */ |
| prev->userrsp = read_pda(oldrsp); |
| write_pda(oldrsp, next->userrsp); |
| write_pda(pcurrent, next_p); |
| write_pda(kernelstack, (unsigned long)next_p + THREAD_SIZE - PDA_STACKOFFSET); |
| |
| /* |
| * Now maybe reload the debug registers |
| */ |
| if (unlikely(next->debugreg[7])) { |
| loaddebug(next, 0); |
| loaddebug(next, 1); |
| loaddebug(next, 2); |
| loaddebug(next, 3); |
| /* no 4 and 5 */ |
| loaddebug(next, 6); |
| loaddebug(next, 7); |
| } |
| |
| |
| /* |
| * Handle the IO bitmap |
| */ |
| if (unlikely(prev->io_bitmap_ptr || next->io_bitmap_ptr)) { |
| if (next->io_bitmap_ptr) { |
| /* |
| * 4 cachelines copy ... not good, but not that |
| * bad either. Anyone got something better? |
| * This only affects processes which use ioperm(). |
| * [Putting the TSSs into 4k-tlb mapped regions |
| * and playing VM tricks to switch the IO bitmap |
| * is not really acceptable.] |
| */ |
| memcpy(tss->io_bitmap, next->io_bitmap_ptr, |
| IO_BITMAP_SIZE*sizeof(u32)); |
| tss->io_map_base = IO_BITMAP_OFFSET; |
| } else { |
| /* |
| * a bitmap offset pointing outside of the TSS limit |
| * causes a nicely controllable SIGSEGV if a process |
| * tries to use a port IO instruction. The first |
| * sys_ioperm() call sets up the bitmap properly. |
| */ |
| tss->io_map_base = INVALID_IO_BITMAP_OFFSET; |
| } |
| } |
| |
| |
| return prev_p; |
| } |
| |
| /* |
| * sys_execve() executes a new program. |
| */ |
| asmlinkage |
| long sys_execve(char *name, char **argv,char **envp, struct pt_regs regs) |
| { |
| long error; |
| char * filename; |
| |
| filename = getname(name); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| return error; |
| error = do_execve(filename, argv, envp, ®s); |
| if (error == 0) |
| current->ptrace &= ~PT_DTRACE; |
| putname(filename); |
| return error; |
| } |
| |
| void set_personality_64bit(void) |
| { |
| /* inherit personality from parent */ |
| |
| /* Make sure to be in 64bit mode */ |
| current->thread.flags = 0; |
| } |
| |
| asmlinkage long sys_fork(struct pt_regs regs) |
| { |
| return do_fork(SIGCHLD, regs.rsp, ®s, 0); |
| } |
| |
| asmlinkage long sys_clone(unsigned long clone_flags, unsigned long newsp, struct pt_regs regs) |
| { |
| if (!newsp) |
| newsp = regs.rsp; |
| return do_fork(clone_flags, newsp, ®s, 0); |
| } |
| |
| /* |
| * This is trivial, and on the face of it looks like it |
| * could equally well be done in user mode. |
| * |
| * Not so, for quite unobvious reasons - register pressure. |
| * In user mode vfork() cannot have a stack frame, and if |
| * done by calling the "clone()" system call directly, you |
| * do not have enough call-clobbered registers to hold all |
| * the information you need. |
| */ |
| asmlinkage long sys_vfork(struct pt_regs regs) |
| { |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.rsp, ®s, 0); |
| } |
| |
| /* |
| * These bracket the sleeping functions.. |
| */ |
| extern void scheduling_functions_start_here(void); |
| extern void scheduling_functions_end_here(void); |
| #define first_sched ((unsigned long) scheduling_functions_start_here) |
| #define last_sched ((unsigned long) scheduling_functions_end_here) |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| u64 fp,rip; |
| int count = 0; |
| |
| if (!p || p == current || p->state==TASK_RUNNING) |
| return 0; |
| if (p->thread.rsp < (u64)p || p->thread.rsp > (u64)p + THREAD_SIZE) |
| return 0; |
| fp = *(u64 *)(p->thread.rsp); |
| do { |
| if (fp < (unsigned long)p || fp > (unsigned long)p+THREAD_SIZE) |
| return 0; |
| rip = *(u64 *)(fp+8); |
| if (rip < first_sched || rip >= last_sched) |
| return rip; |
| fp = *(u64 *)fp; |
| } while (count++ < 16); |
| return 0; |
| } |
| #undef last_sched |
| #undef first_sched |
| |
| asmlinkage long sys_arch_prctl(int code, unsigned long addr) |
| { |
| int ret = 0; |
| unsigned long tmp; |
| |
| switch (code) { |
| case ARCH_SET_GS: |
| if (addr >= TASK_SIZE) |
| return -EPERM; |
| asm volatile("movl %0,%%gs" :: "r" (0)); |
| current->thread.gsindex = 0; |
| current->thread.gs = addr; |
| ret = checking_wrmsrl(MSR_KERNEL_GS_BASE, addr); |
| break; |
| case ARCH_SET_FS: |
| /* Not strictly needed for fs, but do it for symmetry |
| with gs. */ |
| if (addr >= TASK_SIZE) |
| return -EPERM; |
| asm volatile("movl %0,%%fs" :: "r" (0)); |
| current->thread.fsindex = 0; |
| current->thread.fs = addr; |
| ret = checking_wrmsrl(MSR_FS_BASE, addr); |
| break; |
| |
| /* Returned value may not be correct when the user changed fs/gs */ |
| case ARCH_GET_FS: |
| rdmsrl(MSR_FS_BASE, tmp); |
| ret = put_user(tmp, (unsigned long *)addr); |
| break; |
| |
| case ARCH_GET_GS: |
| rdmsrl(MSR_KERNEL_GS_BASE, tmp); |
| ret = put_user(tmp, (unsigned long *)addr); |
| break; |
| |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| return ret; |
| } |