blob: 74b41836909921039a37b0d393e322970e84ee1f [file] [log] [blame]
/*
* x86 SMP booting functions
*
* (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
* (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
* Copyright 2001 Andi Kleen, SuSE Labs.
*
* Much of the core SMP work is based on previous work by Thomas Radke, to
* whom a great many thanks are extended.
*
* Thanks to Intel for making available several different Pentium,
* Pentium Pro and Pentium-II/Xeon MP machines.
* Original development of Linux SMP code supported by Caldera.
*
* This code is released under the GNU General Public License version 2 or
* later.
*
* Fixes
* Felix Koop : NR_CPUS used properly
* Jose Renau : Handle single CPU case.
* Alan Cox : By repeated request 8) - Total BogoMIP report.
* Greg Wright : Fix for kernel stacks panic.
* Erich Boleyn : MP v1.4 and additional changes.
* Matthias Sattler : Changes for 2.1 kernel map.
* Michel Lespinasse : Changes for 2.1 kernel map.
* Michael Chastain : Change trampoline.S to gnu as.
* Alan Cox : Dumb bug: 'B' step PPro's are fine
* Ingo Molnar : Added APIC timers, based on code
* from Jose Renau
* Ingo Molnar : various cleanups and rewrites
* Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
* Maciej W. Rozycki : Bits for genuine 82489DX APICs
* Andi Kleen : Changed for SMP boot into long mode.
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/smp_lock.h>
#include <linux/irq.h>
#include <linux/bootmem.h>
#include <linux/delay.h>
#include <linux/mc146818rtc.h>
#include <asm/mtrr.h>
#include <asm/pgalloc.h>
#include <asm/desc.h>
#include <asm/kdebug.h>
#include <asm/timex.h>
#include <asm/proto.h>
#include <asm/acpi.h>
/* Setup configured maximum number of CPUs to activate */
unsigned int max_cpus = NR_CPUS;
static int cpu_mask = -1;
/* Total count of live CPUs */
int smp_num_cpus = 1;
/* Number of siblings per CPU package */
int smp_num_siblings = 1;
int __initdata phys_proc_id[NR_CPUS]; /* Package ID of each logical CPU */
int cpu_sibling_map[NR_CPUS] __cacheline_aligned;
/* Bitmask of currently online CPUs */
unsigned long cpu_online_map;
/* which CPU (physical APIC ID) maps to which logical CPU number */
volatile int x86_apicid_to_cpu[NR_CPUS];
/* which logical CPU number maps to which CPU (physical APIC ID) */
volatile int x86_cpu_to_apicid[NR_CPUS];
static volatile unsigned long cpu_callin_map;
static volatile unsigned long cpu_callout_map;
/* Per CPU bogomips and other parameters */
struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
/* Set when the idlers are all forked */
int smp_threads_ready;
extern void time_init_smp(void);
/*
* Setup routine for controlling SMP activation
*
* Command-line option of "nosmp" or "maxcpus=0" will disable SMP
* activation entirely (the MPS table probe still happens, though).
*/
static int __init nosmp(char *str)
{
max_cpus = 0;
return 1;
}
__setup("nosmp", nosmp);
static int __init cpumask(char *str)
{
get_option(&str, &cpu_mask);
return 1;
}
__setup("cpumask=", cpumask);
/*
* Trampoline 80x86 program as an array.
*/
extern unsigned char trampoline_data [];
extern unsigned char trampoline_end [];
static unsigned char *trampoline_base;
/*
* Currently trivial. Write the real->protected mode
* bootstrap into the page concerned. The caller
* has made sure it's suitably aligned.
*/
static unsigned long __init setup_trampoline(void)
{
extern volatile __u32 tramp_gdt_ptr;
tramp_gdt_ptr = __pa_symbol(&gdt_table);
memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
return virt_to_phys(trampoline_base);
}
/*
* We are called very early to get the low memory for the
* SMP bootup trampoline page.
*/
void __init smp_alloc_memory(void)
{
trampoline_base = __va(0x6000); /* reserved in setup.c */
}
/*
* The bootstrap kernel entry code has set these up. Save them for
* a given CPU
*/
void __init smp_store_cpu_info(int id)
{
struct cpuinfo_x86 *c = cpu_data + id;
*c = boot_cpu_data;
identify_cpu(c);
}
/*
* Architecture specific routine called by the kernel just before init is
* fired off. This allows the BP to have everything in order [we hope].
* At the end of this all the APs will hit the system scheduling and off
* we go. Each AP will load the system gdt's and jump through the kernel
* init into idle(). At this point the scheduler will one day take over
* and give them jobs to do. smp_callin is a standard routine
* we use to track CPUs as they power up.
*/
static atomic_t smp_commenced = ATOMIC_INIT(0);
void __init smp_commence(void)
{
/*
* Lets the callins below out of their loop.
*/
Dprintk("Setting commenced=1, go go go\n");
wmb();
atomic_set(&smp_commenced,1);
}
/*
* TSC synchronization.
*
* We first check wether all CPUs have their TSC's synchronized,
* then we print a warning if not, and always resync.
*/
static atomic_t tsc_start_flag = ATOMIC_INIT(0);
static atomic_t tsc_count_start = ATOMIC_INIT(0);
static atomic_t tsc_count_stop = ATOMIC_INIT(0);
static unsigned long long tsc_values[NR_CPUS];
#define NR_LOOPS 5
static inline unsigned long long div64 (unsigned long long a, unsigned long b)
{
return a/b;
}
static void __init synchronize_tsc_bp (void)
{
int i;
unsigned long long t0;
unsigned long long sum, avg;
long long delta;
unsigned long one_usec;
int buggy = 0;
printk("checking TSC synchronization across CPUs: ");
one_usec = cpu_khz / 1000;
atomic_set(&tsc_start_flag, 1);
wmb();
/*
* We loop a few times to get a primed instruction cache,
* then the last pass is more or less synchronized and
* the BP and APs set their cycle counters to zero all at
* once. This reduces the chance of having random offsets
* between the processors, and guarantees that the maximum
* delay between the cycle counters is never bigger than
* the latency of information-passing (cachelines) between
* two CPUs.
*/
for (i = 0; i < NR_LOOPS; i++) {
/*
* all APs synchronize but they loop on '== num_cpus'
*/
while (atomic_read(&tsc_count_start) != smp_num_cpus-1) mb();
atomic_set(&tsc_count_stop, 0);
wmb();
/*
* this lets the APs save their current TSC:
*/
atomic_inc(&tsc_count_start);
sync_core();
rdtscll(tsc_values[smp_processor_id()]);
/*
* We clear the TSC in the last loop:
*/
if (i == NR_LOOPS-1) {
write_tsc(0, 0);
}
/*
* Wait for all APs to leave the synchronization point:
*/
while (atomic_read(&tsc_count_stop) != smp_num_cpus-1) mb();
atomic_set(&tsc_count_start, 0);
wmb();
atomic_inc(&tsc_count_stop);
}
sum = 0;
for (i = 0; i < smp_num_cpus; i++) {
t0 = tsc_values[i];
sum += t0;
}
avg = div64(sum, smp_num_cpus);
sum = 0;
for (i = 0; i < smp_num_cpus; i++) {
delta = tsc_values[i] - avg;
if (delta < 0)
delta = -delta;
/*
* We report bigger than 2 microseconds clock differences.
*/
if (delta > 2*one_usec) {
long realdelta;
if (!buggy) {
buggy = 1;
printk("\n");
}
realdelta = div64(delta, one_usec);
if (tsc_values[i] < avg)
realdelta = -realdelta;
printk("BIOS BUG: CPU#%d improperly initialized, has %ld usecs TSC skew! FIXED.\n",
i, realdelta);
}
sum += delta;
}
if (!buggy)
printk("passed.\n");
}
static void __init synchronize_tsc_ap (void)
{
int i;
/*
* smp_num_cpus is not necessarily known at the time
* this gets called, so we first wait for the BP to
* finish SMP initialization:
*/
while (!atomic_read(&tsc_start_flag)) mb();
for (i = 0; i < NR_LOOPS; i++) {
atomic_inc(&tsc_count_start);
while (atomic_read(&tsc_count_start) != smp_num_cpus) mb();
sync_core();
rdtscll(tsc_values[smp_processor_id()]);
if (i == NR_LOOPS-1)
write_tsc(0, 0);
atomic_inc(&tsc_count_stop);
while (atomic_read(&tsc_count_stop) != smp_num_cpus) mb();
}
}
#undef NR_LOOPS
extern void calibrate_delay(void);
static atomic_t init_deasserted;
void __init smp_callin(void)
{
int cpuid, phys_id;
unsigned long timeout;
/*
* If waken up by an INIT in an 82489DX configuration
* we may get here before an INIT-deassert IPI reaches
* our local APIC. We have to wait for the IPI or we'll
* lock up on an APIC access.
*/
while (!atomic_read(&init_deasserted));
/*
* (This works even if the APIC is not enabled.)
*/
phys_id = GET_APIC_ID(apic_read(APIC_ID));
cpuid = current->processor;
if (test_and_set_bit(cpuid, &cpu_online_map)) {
printk("huh, phys CPU#%d, CPU#%d already present??\n",
phys_id, cpuid);
BUG();
}
Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
/*
* STARTUP IPIs are fragile beasts as they might sometimes
* trigger some glue motherboard logic. Complete APIC bus
* silence for 1 second, this overestimates the time the
* boot CPU is spending to send the up to 2 STARTUP IPIs
* by a factor of two. This should be enough.
*/
/*
* Waiting 2s total for startup (udelay is not yet working)
*/
timeout = jiffies + 2*HZ;
while (time_before(jiffies, timeout)) {
/*
* Has the boot CPU finished it's STARTUP sequence?
*/
if (test_bit(cpuid, &cpu_callout_map))
break;
rep_nop();
}
if (!time_before(jiffies, timeout)) {
printk("BUG: CPU%d started up but did not get a callout!\n",
cpuid);
BUG();
}
/*
* the boot CPU has finished the init stage and is spinning
* on callin_map until we finish. We are free to set up this
* CPU, first the APIC. (this is probably redundant on most
* boards)
*/
Dprintk("CALLIN, before setup_local_APIC().\n");
setup_local_APIC();
if (nmi_watchdog == NMI_IO_APIC) {
disable_8259A_irq(0);
enable_NMI_through_LVT0(NULL);
enable_8259A_irq(0);
}
sti();
#ifdef CONFIG_MTRR
/*
* Must be done before calibration delay is computed
*/
mtrr_init_secondary_cpu ();
#endif
/*
* Get our bogomips.
*/
calibrate_delay();
Dprintk("Stack at about %p\n",&cpuid);
/*
* Save our processor parameters
*/
smp_store_cpu_info(cpuid);
/*
* Allow the master to continue.
*/
set_bit(cpuid, &cpu_callin_map);
/*
* Synchronize the TSC with the BP
*/
if (cpu_has_tsc)
synchronize_tsc_ap();
}
int cpucount;
/*
* Activate a secondary processor.
*/
int __init start_secondary(void *unused)
{
/*
* Dont put anything before smp_callin(), SMP
* booting is too fragile that we want to limit the
* things done here to the most necessary things.
*/
cpu_init();
smp_callin();
while (!atomic_read(&smp_commenced))
rep_nop();
/*
* low-memory mappings have been cleared, flush them from
* the local TLBs too.
*/
local_flush_tlb();
cpu_idle();
return 0;
}
/*
* Everything has been set up for the secondary
* CPUs - they just need to reload everything
* from the task structure
* This function must not return.
*/
void __init initialize_secondary(void)
{
struct task_struct *me = stack_current();
/*
* We don't actually need to load the full TSS,
* basically just the stack pointer and the eip.
*/
asm volatile(
"movq %0,%%rsp\n\t"
"jmp *%1"
:
:"r" (me->thread.rsp),"r" (me->thread.rip));
}
extern volatile void *init_rsp;
extern void (*initial_code)(void);
static int __init fork_by_hand(void)
{
struct pt_regs regs;
/*
* don't care about the eip and regs settings since
* we'll never reschedule the forked task.
*/
return do_fork(CLONE_VM|CLONE_PID, 0, &regs, 0);
}
#if APIC_DEBUG
static inline void inquire_remote_apic(int apicid)
{
int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
char *names[] = { "ID", "VERSION", "SPIV" };
int timeout, status;
printk("Inquiring remote APIC #%d...\n", apicid);
for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
printk("... APIC #%d %s: ", apicid, names[i]);
/*
* Wait for idle.
*/
apic_wait_icr_idle();
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
timeout = 0;
do {
udelay(100);
status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
switch (status) {
case APIC_ICR_RR_VALID:
status = apic_read(APIC_RRR);
printk("%08x\n", status);
break;
default:
printk("failed\n");
}
}
}
#endif
static int __init do_boot_cpu (int apicid)
{
struct task_struct *idle;
unsigned long send_status, accept_status, boot_status, maxlvt;
int timeout, num_starts, j, cpu;
unsigned long start_eip;
cpu = ++cpucount;
/*
* We can't use kernel_thread since we must avoid to
* reschedule the child.
*/
if (fork_by_hand() < 0)
panic("failed fork for CPU %d", cpu);
/*
* We remove it from the pidhash and the runqueue
* once we got the process:
*/
idle = init_task.prev_task;
if (!idle)
panic("No idle process for CPU %d", cpu);
idle->processor = cpu;
x86_cpu_to_apicid[cpu] = apicid;
x86_apicid_to_cpu[apicid] = cpu;
idle->cpus_runnable = 1<<cpu;
idle->cpus_allowed = 1<<cpu;
idle->thread.rip = (unsigned long)start_secondary;
idle->thread.rsp = (unsigned long)idle + THREAD_SIZE - 8;
del_from_runqueue(idle);
unhash_process(idle);
cpu_pda[cpu].pcurrent = init_tasks[cpu] = idle;
/* start_eip had better be page-aligned! */
start_eip = setup_trampoline();
/* So we see what's up */
printk("Booting processor %d/%d rip %lx page %p\n", cpu, apicid, start_eip, idle);
init_rsp = (void *) (THREAD_SIZE + (char *)idle - 16);
initial_code = initialize_secondary;
/*
* This grunge runs the startup process for
* the targeted processor.
*/
atomic_set(&init_deasserted, 0);
Dprintk("Setting warm reset code and vector.\n");
CMOS_WRITE(0xa, 0xf);
local_flush_tlb();
Dprintk("1.\n");
*((volatile unsigned short *) phys_to_virt(0x469)) = start_eip >> 4;
Dprintk("2.\n");
*((volatile unsigned short *) phys_to_virt(0x467)) = start_eip & 0xf;
Dprintk("3.\n");
/*
* Be paranoid about clearing APIC errors.
*/
if (APIC_INTEGRATED(apic_version[apicid])) {
apic_read_around(APIC_SPIV);
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
/*
* Status is now clean
*/
send_status = 0;
accept_status = 0;
boot_status = 0;
/*
* Starting actual IPI sequence...
*/
Dprintk("Asserting INIT.\n");
/*
* Turn INIT on target chip
*/
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
/*
* Send IPI
*/
apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
| APIC_DM_INIT);
Dprintk("Waiting for send to finish...\n");
timeout = 0;
do {
Dprintk("+");
udelay(100);
send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
mdelay(10);
Dprintk("Deasserting INIT.\n");
/* Target chip */
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
/* Send IPI */
apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
Dprintk("Waiting for send to finish...\n");
timeout = 0;
do {
Dprintk("+");
udelay(100);
send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
atomic_set(&init_deasserted, 1);
/*
* Should we send STARTUP IPIs ?
*
* Determine this based on the APIC version.
* If we don't have an integrated APIC, don't
* send the STARTUP IPIs.
*/
if (APIC_INTEGRATED(apic_version[apicid]))
num_starts = 2;
else
num_starts = 0;
/*
* Run STARTUP IPI loop.
*/
Dprintk("#startup loops: %d.\n", num_starts);
maxlvt = get_maxlvt();
for (j = 1; j <= num_starts; j++) {
Dprintk("Sending STARTUP #%d.\n",j);
apic_read_around(APIC_SPIV);
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
Dprintk("After apic_write.\n");
/*
* STARTUP IPI
*/
/* Target chip */
Dprintk("target apic %x\n", SET_APIC_DEST_FIELD(apicid));
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
Dprintk("after target chip\n");
/* Boot on the stack */
/* Kick the second */
apic_write_around(APIC_ICR, APIC_DM_STARTUP
| (start_eip >> 12));
Dprintk("after eip write\n");
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(300);
Dprintk("Startup point 1.\n");
Dprintk("Waiting for send to finish...\n");
timeout = 0;
do {
Dprintk("+");
udelay(100);
send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(200);
/*
* Due to the Pentium erratum 3AP.
*/
if (maxlvt > 3) {
apic_read_around(APIC_SPIV);
apic_write(APIC_ESR, 0);
}
accept_status = (apic_read(APIC_ESR) & 0xEF);
if (send_status || accept_status)
break;
}
Dprintk("After Startup.\n");
if (send_status)
printk("APIC never delivered???\n");
if (accept_status)
printk("APIC delivery error (%lx).\n", accept_status);
if (!send_status && !accept_status) {
/*
* allow APs to start initializing.
*/
Dprintk("Before Callout %d.\n", cpu);
set_bit(cpu, &cpu_callout_map);
Dprintk("After Callout %d.\n", cpu);
/*
* Wait 5s total for a response
*/
for (timeout = 0; timeout < 50000; timeout++) {
if (test_bit(cpu, &cpu_callin_map))
break; /* It has booted */
udelay(100);
}
if (test_bit(cpu, &cpu_callin_map)) {
/* number CPUs logically, starting from 1 (BSP is 0) */
Dprintk("OK.\n");
printk("CPU%d: ", cpu);
print_cpu_info(&cpu_data[cpu]);
Dprintk("CPU has booted.\n");
} else {
boot_status = 1;
if (*((volatile unsigned char *)phys_to_virt(8192))
== 0xA5)
/* trampoline started but...? */
printk("Stuck ??\n");
else
/* trampoline code not run */
printk("Not responding.\n");
#if APIC_DEBUG
inquire_remote_apic(apicid);
#endif
}
}
if (send_status || accept_status || boot_status) {
x86_cpu_to_apicid[cpu] = -1;
x86_apicid_to_cpu[apicid] = -1;
cpucount--;
}
/* mark "stuck" area as not stuck */
*((volatile unsigned int *)phys_to_virt(8192)) = 0;
return cpu;
}
cycles_t cacheflush_time;
static __init void smp_tune_scheduling (void)
{
unsigned long cachesize; /* kB */
unsigned long bandwidth = 2000; /* MB/s */
/*
* Rough estimation for SMP scheduling, this is the number of
* cycles it takes for a fully memory-limited process to flush
* the SMP-local cache.
*
* (For a P5 this pretty much means we will choose another idle
* CPU almost always at wakeup time (this is due to the small
* L1 cache), on PIIs it's around 50-100 usecs, depending on
* the cache size)
*/
if (!cpu_khz) {
/*
* this basically disables processor-affinity
* scheduling on SMP without a TSC.
*/
cacheflush_time = 0;
return;
} else {
cachesize = boot_cpu_data.x86_cache_size;
if (cachesize == -1) {
cachesize = 16; /* Pentiums, 2x8kB cache */
bandwidth = 100;
}
cacheflush_time = (cpu_khz>>10) * (cachesize<<10) / bandwidth;
}
cacheflush_time *= 10; /* Add an NUMA factor */
printk("per-CPU timeslice cutoff: %ld.%02ld usecs.\n",
(long)cacheflush_time/(cpu_khz/1000),
((long)cacheflush_time*100/(cpu_khz/1000)) % 100);
}
/*
* Cycle through the processors sending APIC IPIs to boot each.
*/
extern int prof_multiplier[NR_CPUS];
extern int prof_old_multiplier[NR_CPUS];
extern int prof_counter[NR_CPUS];
void __init smp_boot_cpus(void)
{
int apicid, cpu, maxcpu;
#ifdef CONFIG_MTRR
/* Must be done before other processors booted */
mtrr_init_boot_cpu ();
#endif
/*
* Initialize the logical to physical CPU number mapping
* and the per-CPU profiling counter/multiplier
*/
for (apicid = 0; apicid < NR_CPUS; apicid++) {
x86_apicid_to_cpu[apicid] = -1;
prof_counter[apicid] = 1;
prof_old_multiplier[apicid] = 1;
prof_multiplier[apicid] = 1;
}
/*
* Setup boot CPU information
*/
smp_store_cpu_info(0); /* Final full version of the data */
printk("CPU%d: ", 0);
print_cpu_info(&cpu_data[0]);
/*
* We have the boot CPU online for sure.
*/
set_bit(0, &cpu_online_map);
x86_apicid_to_cpu[boot_cpu_id] = 0;
x86_cpu_to_apicid[0] = boot_cpu_id;
global_irq_holder = 0;
current->processor = 0;
init_idle();
smp_tune_scheduling();
/*
* If we couldnt find an SMP configuration at boot time,
* get out of here now!
*/
if (!smp_found_config && !acpi_lapic) {
printk(KERN_NOTICE "SMP motherboard not detected.\n");
io_apic_irqs = 0;
cpu_online_map = phys_cpu_present_map = 1;
smp_num_cpus = 1;
if (APIC_init_uniprocessor())
printk(KERN_NOTICE "Local APIC not detected."
" Using dummy APIC emulation.\n");
goto smp_done;
}
/*
* Should not be necessary because the MP table should list the boot
* CPU too, but we do it for the sake of robustness anyway.
*/
if (!test_bit(boot_cpu_id, &phys_cpu_present_map)) {
printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
boot_cpu_id);
phys_cpu_present_map |= (1 << hard_smp_processor_id());
}
/*
* If we couldn't find a local APIC, then get out of here now!
*/
if (APIC_INTEGRATED(apic_version[boot_cpu_id]) &&
!test_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability)) {
printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
boot_cpu_id);
printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
io_apic_irqs = 0;
cpu_online_map = phys_cpu_present_map = 1;
smp_num_cpus = 1;
apic_disabled = 1;
goto smp_done;
}
verify_local_APIC();
/*
* If SMP should be disabled, then really disable it!
*/
if (!max_cpus) {
smp_found_config = 0;
printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
cpu_online_map = phys_cpu_present_map = 1;
smp_num_cpus = 1;
goto smp_done;
}
connect_bsp_APIC();
setup_local_APIC();
if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id)
BUG();
/*
* Now scan the CPU present map and fire up the other CPUs.
*/
Dprintk("CPU present map: %lx\n", phys_cpu_present_map);
maxcpu = 0;
for (apicid = 0; apicid < NR_CPUS; apicid++) {
/*
* Don't even attempt to start the boot CPU!
*/
if (apicid == boot_cpu_id)
continue;
if (!(phys_cpu_present_map & (1 << apicid)))
continue;
if (((1<<apicid) & cpu_mask) == 0)
continue;
cpu = do_boot_cpu(apicid);
/*
* Make sure we unmap all failed CPUs
*/
if ((x86_apicid_to_cpu[apicid] == -1) &&
(phys_cpu_present_map & (1 << apicid)))
printk("phys CPU #%d not responding - cannot use it.\n",apicid);
else if (cpu > maxcpu)
maxcpu = cpu;
}
/*
* Cleanup possible dangling ends...
*/
{
/*
* Install writable page 0 entry to set BIOS data area.
*/
local_flush_tlb();
/*
* Paranoid: Set warm reset code and vector here back
* to default values.
*/
CMOS_WRITE(0, 0xf);
*((volatile int *) phys_to_virt(0x467)) = 0;
}
/*
* Allow the user to impress friends.
*/
Dprintk("Before bogomips.\n");
{
unsigned long bogosum = 0;
for (cpu = 0; cpu < NR_CPUS; cpu++)
if (cpu_online_map & (1<<cpu))
bogosum += cpu_data[cpu].loops_per_jiffy;
printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
cpucount+1,
bogosum/(500000/HZ),
(bogosum/(5000/HZ))%100);
Dprintk("Before bogocount - setting activated=1.\n");
}
smp_num_cpus = maxcpu + 1;
Dprintk("Boot done.\n");
/*
* If Hyper-Threading is avaialble, construct cpu_sibling_map[], so
* that we can tell the sibling CPU efficiently.
*/
if (test_bit(X86_FEATURE_HT, boot_cpu_data.x86_capability)
&& smp_num_siblings > 1) {
for (cpu = 0; cpu < NR_CPUS; cpu++)
cpu_sibling_map[cpu] = NO_PROC_ID;
for (cpu = 0; cpu < smp_num_cpus; cpu++) {
int i;
for (i = 0; i < smp_num_cpus; i++) {
if (i == cpu)
continue;
if (phys_proc_id[cpu] == phys_proc_id[i]) {
cpu_sibling_map[cpu] = i;
printk("cpu_sibling_map[%d] = %d\n", cpu, cpu_sibling_map[cpu]);
break;
}
}
if (cpu_sibling_map[cpu] == NO_PROC_ID) {
smp_num_siblings = 1;
printk(KERN_WARNING "WARNING: No sibling found for CPU %d.\n", cpu);
}
}
}
/*
* Here we can be sure that there is an IO-APIC in the system. Let's
* go and set it up:
*/
if (!skip_ioapic_setup && nr_ioapics)
setup_IO_APIC();
else
nr_ioapics = 0;
/*
* Set up all local APIC timers in the system:
*/
setup_APIC_clocks();
/*
* Synchronize the TSC with the AP
*/
if (cpu_has_tsc && cpucount)
synchronize_tsc_bp();
if (nmi_watchdog != 0)
check_nmi_watchdog();
smp_done:
zap_low_mappings();
time_init_smp();
}