| /* |
| * x86 SMP booting functions |
| * |
| * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> |
| * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> |
| * Copyright 2001 Andi Kleen, SuSE Labs. |
| * |
| * Much of the core SMP work is based on previous work by Thomas Radke, to |
| * whom a great many thanks are extended. |
| * |
| * Thanks to Intel for making available several different Pentium, |
| * Pentium Pro and Pentium-II/Xeon MP machines. |
| * Original development of Linux SMP code supported by Caldera. |
| * |
| * This code is released under the GNU General Public License version 2 or |
| * later. |
| * |
| * Fixes |
| * Felix Koop : NR_CPUS used properly |
| * Jose Renau : Handle single CPU case. |
| * Alan Cox : By repeated request 8) - Total BogoMIP report. |
| * Greg Wright : Fix for kernel stacks panic. |
| * Erich Boleyn : MP v1.4 and additional changes. |
| * Matthias Sattler : Changes for 2.1 kernel map. |
| * Michel Lespinasse : Changes for 2.1 kernel map. |
| * Michael Chastain : Change trampoline.S to gnu as. |
| * Alan Cox : Dumb bug: 'B' step PPro's are fine |
| * Ingo Molnar : Added APIC timers, based on code |
| * from Jose Renau |
| * Ingo Molnar : various cleanups and rewrites |
| * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. |
| * Maciej W. Rozycki : Bits for genuine 82489DX APICs |
| * Andi Kleen : Changed for SMP boot into long mode. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/init.h> |
| |
| #include <linux/mm.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/smp_lock.h> |
| #include <linux/irq.h> |
| #include <linux/bootmem.h> |
| |
| #include <linux/delay.h> |
| #include <linux/mc146818rtc.h> |
| #include <asm/mtrr.h> |
| #include <asm/pgalloc.h> |
| #include <asm/desc.h> |
| #include <asm/kdebug.h> |
| #include <asm/timex.h> |
| #include <asm/proto.h> |
| #include <asm/acpi.h> |
| |
| /* Setup configured maximum number of CPUs to activate */ |
| unsigned int max_cpus = NR_CPUS; |
| |
| static int cpu_mask = -1; |
| |
| /* Total count of live CPUs */ |
| int smp_num_cpus = 1; |
| |
| /* Number of siblings per CPU package */ |
| int smp_num_siblings = 1; |
| int __initdata phys_proc_id[NR_CPUS]; /* Package ID of each logical CPU */ |
| int cpu_sibling_map[NR_CPUS] __cacheline_aligned; |
| |
| /* Bitmask of currently online CPUs */ |
| unsigned long cpu_online_map; |
| |
| /* which CPU (physical APIC ID) maps to which logical CPU number */ |
| volatile int x86_apicid_to_cpu[NR_CPUS]; |
| /* which logical CPU number maps to which CPU (physical APIC ID) */ |
| volatile int x86_cpu_to_apicid[NR_CPUS]; |
| |
| static volatile unsigned long cpu_callin_map; |
| static volatile unsigned long cpu_callout_map; |
| |
| /* Per CPU bogomips and other parameters */ |
| struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned; |
| |
| /* Set when the idlers are all forked */ |
| int smp_threads_ready; |
| |
| extern void time_init_smp(void); |
| |
| /* |
| * Setup routine for controlling SMP activation |
| * |
| * Command-line option of "nosmp" or "maxcpus=0" will disable SMP |
| * activation entirely (the MPS table probe still happens, though). |
| */ |
| |
| static int __init nosmp(char *str) |
| { |
| max_cpus = 0; |
| return 1; |
| } |
| |
| __setup("nosmp", nosmp); |
| |
| static int __init cpumask(char *str) |
| { |
| get_option(&str, &cpu_mask); |
| return 1; |
| } |
| |
| __setup("cpumask=", cpumask); |
| |
| /* |
| * Trampoline 80x86 program as an array. |
| */ |
| |
| extern unsigned char trampoline_data []; |
| extern unsigned char trampoline_end []; |
| static unsigned char *trampoline_base; |
| |
| /* |
| * Currently trivial. Write the real->protected mode |
| * bootstrap into the page concerned. The caller |
| * has made sure it's suitably aligned. |
| */ |
| |
| static unsigned long __init setup_trampoline(void) |
| { |
| extern volatile __u32 tramp_gdt_ptr; |
| tramp_gdt_ptr = __pa_symbol(&gdt_table); |
| memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data); |
| return virt_to_phys(trampoline_base); |
| } |
| |
| /* |
| * We are called very early to get the low memory for the |
| * SMP bootup trampoline page. |
| */ |
| void __init smp_alloc_memory(void) |
| { |
| trampoline_base = __va(0x6000); /* reserved in setup.c */ |
| } |
| |
| /* |
| * The bootstrap kernel entry code has set these up. Save them for |
| * a given CPU |
| */ |
| |
| void __init smp_store_cpu_info(int id) |
| { |
| struct cpuinfo_x86 *c = cpu_data + id; |
| |
| *c = boot_cpu_data; |
| identify_cpu(c); |
| } |
| |
| /* |
| * Architecture specific routine called by the kernel just before init is |
| * fired off. This allows the BP to have everything in order [we hope]. |
| * At the end of this all the APs will hit the system scheduling and off |
| * we go. Each AP will load the system gdt's and jump through the kernel |
| * init into idle(). At this point the scheduler will one day take over |
| * and give them jobs to do. smp_callin is a standard routine |
| * we use to track CPUs as they power up. |
| */ |
| |
| static atomic_t smp_commenced = ATOMIC_INIT(0); |
| |
| void __init smp_commence(void) |
| { |
| /* |
| * Lets the callins below out of their loop. |
| */ |
| Dprintk("Setting commenced=1, go go go\n"); |
| |
| wmb(); |
| atomic_set(&smp_commenced,1); |
| } |
| |
| /* |
| * TSC synchronization. |
| * |
| * We first check wether all CPUs have their TSC's synchronized, |
| * then we print a warning if not, and always resync. |
| */ |
| |
| static atomic_t tsc_start_flag = ATOMIC_INIT(0); |
| static atomic_t tsc_count_start = ATOMIC_INIT(0); |
| static atomic_t tsc_count_stop = ATOMIC_INIT(0); |
| static unsigned long long tsc_values[NR_CPUS]; |
| |
| #define NR_LOOPS 5 |
| |
| static inline unsigned long long div64 (unsigned long long a, unsigned long b) |
| { |
| return a/b; |
| } |
| |
| static void __init synchronize_tsc_bp (void) |
| { |
| int i; |
| unsigned long long t0; |
| unsigned long long sum, avg; |
| long long delta; |
| unsigned long one_usec; |
| int buggy = 0; |
| |
| printk("checking TSC synchronization across CPUs: "); |
| |
| one_usec = cpu_khz / 1000; |
| |
| atomic_set(&tsc_start_flag, 1); |
| wmb(); |
| |
| /* |
| * We loop a few times to get a primed instruction cache, |
| * then the last pass is more or less synchronized and |
| * the BP and APs set their cycle counters to zero all at |
| * once. This reduces the chance of having random offsets |
| * between the processors, and guarantees that the maximum |
| * delay between the cycle counters is never bigger than |
| * the latency of information-passing (cachelines) between |
| * two CPUs. |
| */ |
| for (i = 0; i < NR_LOOPS; i++) { |
| /* |
| * all APs synchronize but they loop on '== num_cpus' |
| */ |
| while (atomic_read(&tsc_count_start) != smp_num_cpus-1) mb(); |
| atomic_set(&tsc_count_stop, 0); |
| wmb(); |
| /* |
| * this lets the APs save their current TSC: |
| */ |
| atomic_inc(&tsc_count_start); |
| |
| sync_core(); |
| rdtscll(tsc_values[smp_processor_id()]); |
| |
| /* |
| * We clear the TSC in the last loop: |
| */ |
| |
| if (i == NR_LOOPS-1) { |
| write_tsc(0, 0); |
| } |
| |
| /* |
| * Wait for all APs to leave the synchronization point: |
| */ |
| while (atomic_read(&tsc_count_stop) != smp_num_cpus-1) mb(); |
| atomic_set(&tsc_count_start, 0); |
| wmb(); |
| atomic_inc(&tsc_count_stop); |
| } |
| |
| sum = 0; |
| for (i = 0; i < smp_num_cpus; i++) { |
| t0 = tsc_values[i]; |
| sum += t0; |
| } |
| avg = div64(sum, smp_num_cpus); |
| |
| sum = 0; |
| for (i = 0; i < smp_num_cpus; i++) { |
| delta = tsc_values[i] - avg; |
| if (delta < 0) |
| delta = -delta; |
| /* |
| * We report bigger than 2 microseconds clock differences. |
| */ |
| if (delta > 2*one_usec) { |
| long realdelta; |
| if (!buggy) { |
| buggy = 1; |
| printk("\n"); |
| } |
| realdelta = div64(delta, one_usec); |
| if (tsc_values[i] < avg) |
| realdelta = -realdelta; |
| |
| printk("BIOS BUG: CPU#%d improperly initialized, has %ld usecs TSC skew! FIXED.\n", |
| i, realdelta); |
| } |
| |
| sum += delta; |
| } |
| if (!buggy) |
| printk("passed.\n"); |
| } |
| |
| static void __init synchronize_tsc_ap (void) |
| { |
| int i; |
| |
| /* |
| * smp_num_cpus is not necessarily known at the time |
| * this gets called, so we first wait for the BP to |
| * finish SMP initialization: |
| */ |
| while (!atomic_read(&tsc_start_flag)) mb(); |
| |
| for (i = 0; i < NR_LOOPS; i++) { |
| atomic_inc(&tsc_count_start); |
| while (atomic_read(&tsc_count_start) != smp_num_cpus) mb(); |
| |
| sync_core(); |
| rdtscll(tsc_values[smp_processor_id()]); |
| if (i == NR_LOOPS-1) |
| write_tsc(0, 0); |
| |
| atomic_inc(&tsc_count_stop); |
| while (atomic_read(&tsc_count_stop) != smp_num_cpus) mb(); |
| } |
| } |
| #undef NR_LOOPS |
| |
| extern void calibrate_delay(void); |
| |
| static atomic_t init_deasserted; |
| |
| void __init smp_callin(void) |
| { |
| int cpuid, phys_id; |
| unsigned long timeout; |
| |
| /* |
| * If waken up by an INIT in an 82489DX configuration |
| * we may get here before an INIT-deassert IPI reaches |
| * our local APIC. We have to wait for the IPI or we'll |
| * lock up on an APIC access. |
| */ |
| while (!atomic_read(&init_deasserted)); |
| |
| /* |
| * (This works even if the APIC is not enabled.) |
| */ |
| phys_id = GET_APIC_ID(apic_read(APIC_ID)); |
| cpuid = current->processor; |
| if (test_and_set_bit(cpuid, &cpu_online_map)) { |
| printk("huh, phys CPU#%d, CPU#%d already present??\n", |
| phys_id, cpuid); |
| BUG(); |
| } |
| Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); |
| |
| /* |
| * STARTUP IPIs are fragile beasts as they might sometimes |
| * trigger some glue motherboard logic. Complete APIC bus |
| * silence for 1 second, this overestimates the time the |
| * boot CPU is spending to send the up to 2 STARTUP IPIs |
| * by a factor of two. This should be enough. |
| */ |
| |
| /* |
| * Waiting 2s total for startup (udelay is not yet working) |
| */ |
| timeout = jiffies + 2*HZ; |
| while (time_before(jiffies, timeout)) { |
| /* |
| * Has the boot CPU finished it's STARTUP sequence? |
| */ |
| if (test_bit(cpuid, &cpu_callout_map)) |
| break; |
| rep_nop(); |
| } |
| |
| if (!time_before(jiffies, timeout)) { |
| printk("BUG: CPU%d started up but did not get a callout!\n", |
| cpuid); |
| BUG(); |
| } |
| |
| /* |
| * the boot CPU has finished the init stage and is spinning |
| * on callin_map until we finish. We are free to set up this |
| * CPU, first the APIC. (this is probably redundant on most |
| * boards) |
| */ |
| |
| Dprintk("CALLIN, before setup_local_APIC().\n"); |
| setup_local_APIC(); |
| |
| if (nmi_watchdog == NMI_IO_APIC) { |
| disable_8259A_irq(0); |
| enable_NMI_through_LVT0(NULL); |
| enable_8259A_irq(0); |
| } |
| |
| sti(); |
| |
| #ifdef CONFIG_MTRR |
| /* |
| * Must be done before calibration delay is computed |
| */ |
| mtrr_init_secondary_cpu (); |
| #endif |
| /* |
| * Get our bogomips. |
| */ |
| calibrate_delay(); |
| Dprintk("Stack at about %p\n",&cpuid); |
| |
| /* |
| * Save our processor parameters |
| */ |
| smp_store_cpu_info(cpuid); |
| |
| /* |
| * Allow the master to continue. |
| */ |
| set_bit(cpuid, &cpu_callin_map); |
| |
| /* |
| * Synchronize the TSC with the BP |
| */ |
| if (cpu_has_tsc) |
| synchronize_tsc_ap(); |
| } |
| |
| int cpucount; |
| |
| /* |
| * Activate a secondary processor. |
| */ |
| int __init start_secondary(void *unused) |
| { |
| /* |
| * Dont put anything before smp_callin(), SMP |
| * booting is too fragile that we want to limit the |
| * things done here to the most necessary things. |
| */ |
| cpu_init(); |
| smp_callin(); |
| while (!atomic_read(&smp_commenced)) |
| rep_nop(); |
| /* |
| * low-memory mappings have been cleared, flush them from |
| * the local TLBs too. |
| */ |
| local_flush_tlb(); |
| |
| cpu_idle(); |
| return 0; |
| } |
| |
| /* |
| * Everything has been set up for the secondary |
| * CPUs - they just need to reload everything |
| * from the task structure |
| * This function must not return. |
| */ |
| void __init initialize_secondary(void) |
| { |
| struct task_struct *me = stack_current(); |
| |
| /* |
| * We don't actually need to load the full TSS, |
| * basically just the stack pointer and the eip. |
| */ |
| |
| asm volatile( |
| "movq %0,%%rsp\n\t" |
| "jmp *%1" |
| : |
| :"r" (me->thread.rsp),"r" (me->thread.rip)); |
| } |
| |
| extern volatile void *init_rsp; |
| extern void (*initial_code)(void); |
| |
| static int __init fork_by_hand(void) |
| { |
| struct pt_regs regs; |
| /* |
| * don't care about the eip and regs settings since |
| * we'll never reschedule the forked task. |
| */ |
| return do_fork(CLONE_VM|CLONE_PID, 0, ®s, 0); |
| } |
| |
| #if APIC_DEBUG |
| static inline void inquire_remote_apic(int apicid) |
| { |
| int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; |
| char *names[] = { "ID", "VERSION", "SPIV" }; |
| int timeout, status; |
| |
| printk("Inquiring remote APIC #%d...\n", apicid); |
| |
| for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) { |
| printk("... APIC #%d %s: ", apicid, names[i]); |
| |
| /* |
| * Wait for idle. |
| */ |
| apic_wait_icr_idle(); |
| |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); |
| apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]); |
| |
| timeout = 0; |
| do { |
| udelay(100); |
| status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; |
| } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); |
| |
| switch (status) { |
| case APIC_ICR_RR_VALID: |
| status = apic_read(APIC_RRR); |
| printk("%08x\n", status); |
| break; |
| default: |
| printk("failed\n"); |
| } |
| } |
| } |
| #endif |
| |
| static int __init do_boot_cpu (int apicid) |
| { |
| struct task_struct *idle; |
| unsigned long send_status, accept_status, boot_status, maxlvt; |
| int timeout, num_starts, j, cpu; |
| unsigned long start_eip; |
| |
| cpu = ++cpucount; |
| |
| /* |
| * We can't use kernel_thread since we must avoid to |
| * reschedule the child. |
| */ |
| if (fork_by_hand() < 0) |
| panic("failed fork for CPU %d", cpu); |
| |
| /* |
| * We remove it from the pidhash and the runqueue |
| * once we got the process: |
| */ |
| idle = init_task.prev_task; |
| if (!idle) |
| panic("No idle process for CPU %d", cpu); |
| |
| idle->processor = cpu; |
| x86_cpu_to_apicid[cpu] = apicid; |
| x86_apicid_to_cpu[apicid] = cpu; |
| idle->cpus_runnable = 1<<cpu; |
| idle->cpus_allowed = 1<<cpu; |
| idle->thread.rip = (unsigned long)start_secondary; |
| idle->thread.rsp = (unsigned long)idle + THREAD_SIZE - 8; |
| |
| del_from_runqueue(idle); |
| unhash_process(idle); |
| cpu_pda[cpu].pcurrent = init_tasks[cpu] = idle; |
| |
| /* start_eip had better be page-aligned! */ |
| start_eip = setup_trampoline(); |
| |
| /* So we see what's up */ |
| printk("Booting processor %d/%d rip %lx page %p\n", cpu, apicid, start_eip, idle); |
| init_rsp = (void *) (THREAD_SIZE + (char *)idle - 16); |
| initial_code = initialize_secondary; |
| |
| /* |
| * This grunge runs the startup process for |
| * the targeted processor. |
| */ |
| |
| atomic_set(&init_deasserted, 0); |
| |
| Dprintk("Setting warm reset code and vector.\n"); |
| |
| CMOS_WRITE(0xa, 0xf); |
| local_flush_tlb(); |
| Dprintk("1.\n"); |
| *((volatile unsigned short *) phys_to_virt(0x469)) = start_eip >> 4; |
| Dprintk("2.\n"); |
| *((volatile unsigned short *) phys_to_virt(0x467)) = start_eip & 0xf; |
| Dprintk("3.\n"); |
| |
| /* |
| * Be paranoid about clearing APIC errors. |
| */ |
| if (APIC_INTEGRATED(apic_version[apicid])) { |
| apic_read_around(APIC_SPIV); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| } |
| |
| /* |
| * Status is now clean |
| */ |
| send_status = 0; |
| accept_status = 0; |
| boot_status = 0; |
| |
| /* |
| * Starting actual IPI sequence... |
| */ |
| |
| Dprintk("Asserting INIT.\n"); |
| |
| /* |
| * Turn INIT on target chip |
| */ |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); |
| |
| /* |
| * Send IPI |
| */ |
| apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT |
| | APIC_DM_INIT); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| Dprintk("+"); |
| udelay(100); |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| |
| mdelay(10); |
| |
| Dprintk("Deasserting INIT.\n"); |
| |
| /* Target chip */ |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); |
| |
| /* Send IPI */ |
| apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| Dprintk("+"); |
| udelay(100); |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| |
| atomic_set(&init_deasserted, 1); |
| |
| /* |
| * Should we send STARTUP IPIs ? |
| * |
| * Determine this based on the APIC version. |
| * If we don't have an integrated APIC, don't |
| * send the STARTUP IPIs. |
| */ |
| if (APIC_INTEGRATED(apic_version[apicid])) |
| num_starts = 2; |
| else |
| num_starts = 0; |
| |
| /* |
| * Run STARTUP IPI loop. |
| */ |
| Dprintk("#startup loops: %d.\n", num_starts); |
| |
| maxlvt = get_maxlvt(); |
| |
| for (j = 1; j <= num_starts; j++) { |
| Dprintk("Sending STARTUP #%d.\n",j); |
| apic_read_around(APIC_SPIV); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| Dprintk("After apic_write.\n"); |
| |
| /* |
| * STARTUP IPI |
| */ |
| |
| /* Target chip */ |
| Dprintk("target apic %x\n", SET_APIC_DEST_FIELD(apicid)); |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); |
| |
| Dprintk("after target chip\n"); |
| |
| /* Boot on the stack */ |
| /* Kick the second */ |
| apic_write_around(APIC_ICR, APIC_DM_STARTUP |
| | (start_eip >> 12)); |
| |
| Dprintk("after eip write\n"); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(300); |
| |
| Dprintk("Startup point 1.\n"); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| Dprintk("+"); |
| udelay(100); |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(200); |
| /* |
| * Due to the Pentium erratum 3AP. |
| */ |
| if (maxlvt > 3) { |
| apic_read_around(APIC_SPIV); |
| apic_write(APIC_ESR, 0); |
| } |
| accept_status = (apic_read(APIC_ESR) & 0xEF); |
| if (send_status || accept_status) |
| break; |
| } |
| Dprintk("After Startup.\n"); |
| |
| if (send_status) |
| printk("APIC never delivered???\n"); |
| if (accept_status) |
| printk("APIC delivery error (%lx).\n", accept_status); |
| |
| if (!send_status && !accept_status) { |
| /* |
| * allow APs to start initializing. |
| */ |
| Dprintk("Before Callout %d.\n", cpu); |
| set_bit(cpu, &cpu_callout_map); |
| Dprintk("After Callout %d.\n", cpu); |
| |
| /* |
| * Wait 5s total for a response |
| */ |
| for (timeout = 0; timeout < 50000; timeout++) { |
| if (test_bit(cpu, &cpu_callin_map)) |
| break; /* It has booted */ |
| udelay(100); |
| } |
| |
| if (test_bit(cpu, &cpu_callin_map)) { |
| /* number CPUs logically, starting from 1 (BSP is 0) */ |
| Dprintk("OK.\n"); |
| printk("CPU%d: ", cpu); |
| print_cpu_info(&cpu_data[cpu]); |
| Dprintk("CPU has booted.\n"); |
| } else { |
| boot_status = 1; |
| if (*((volatile unsigned char *)phys_to_virt(8192)) |
| == 0xA5) |
| /* trampoline started but...? */ |
| printk("Stuck ??\n"); |
| else |
| /* trampoline code not run */ |
| printk("Not responding.\n"); |
| #if APIC_DEBUG |
| inquire_remote_apic(apicid); |
| #endif |
| } |
| } |
| if (send_status || accept_status || boot_status) { |
| x86_cpu_to_apicid[cpu] = -1; |
| x86_apicid_to_cpu[apicid] = -1; |
| cpucount--; |
| } |
| |
| /* mark "stuck" area as not stuck */ |
| *((volatile unsigned int *)phys_to_virt(8192)) = 0; |
| |
| return cpu; |
| } |
| |
| cycles_t cacheflush_time; |
| |
| static __init void smp_tune_scheduling (void) |
| { |
| unsigned long cachesize; /* kB */ |
| unsigned long bandwidth = 2000; /* MB/s */ |
| /* |
| * Rough estimation for SMP scheduling, this is the number of |
| * cycles it takes for a fully memory-limited process to flush |
| * the SMP-local cache. |
| * |
| * (For a P5 this pretty much means we will choose another idle |
| * CPU almost always at wakeup time (this is due to the small |
| * L1 cache), on PIIs it's around 50-100 usecs, depending on |
| * the cache size) |
| */ |
| |
| if (!cpu_khz) { |
| /* |
| * this basically disables processor-affinity |
| * scheduling on SMP without a TSC. |
| */ |
| cacheflush_time = 0; |
| return; |
| } else { |
| cachesize = boot_cpu_data.x86_cache_size; |
| if (cachesize == -1) { |
| cachesize = 16; /* Pentiums, 2x8kB cache */ |
| bandwidth = 100; |
| } |
| |
| cacheflush_time = (cpu_khz>>10) * (cachesize<<10) / bandwidth; |
| } |
| |
| cacheflush_time *= 10; /* Add an NUMA factor */ |
| |
| printk("per-CPU timeslice cutoff: %ld.%02ld usecs.\n", |
| (long)cacheflush_time/(cpu_khz/1000), |
| ((long)cacheflush_time*100/(cpu_khz/1000)) % 100); |
| } |
| |
| /* |
| * Cycle through the processors sending APIC IPIs to boot each. |
| */ |
| |
| extern int prof_multiplier[NR_CPUS]; |
| extern int prof_old_multiplier[NR_CPUS]; |
| extern int prof_counter[NR_CPUS]; |
| |
| void __init smp_boot_cpus(void) |
| { |
| int apicid, cpu, maxcpu; |
| |
| #ifdef CONFIG_MTRR |
| /* Must be done before other processors booted */ |
| mtrr_init_boot_cpu (); |
| #endif |
| /* |
| * Initialize the logical to physical CPU number mapping |
| * and the per-CPU profiling counter/multiplier |
| */ |
| |
| for (apicid = 0; apicid < NR_CPUS; apicid++) { |
| x86_apicid_to_cpu[apicid] = -1; |
| prof_counter[apicid] = 1; |
| prof_old_multiplier[apicid] = 1; |
| prof_multiplier[apicid] = 1; |
| } |
| |
| /* |
| * Setup boot CPU information |
| */ |
| smp_store_cpu_info(0); /* Final full version of the data */ |
| printk("CPU%d: ", 0); |
| print_cpu_info(&cpu_data[0]); |
| |
| /* |
| * We have the boot CPU online for sure. |
| */ |
| set_bit(0, &cpu_online_map); |
| x86_apicid_to_cpu[boot_cpu_id] = 0; |
| x86_cpu_to_apicid[0] = boot_cpu_id; |
| global_irq_holder = 0; |
| current->processor = 0; |
| init_idle(); |
| smp_tune_scheduling(); |
| |
| /* |
| * If we couldnt find an SMP configuration at boot time, |
| * get out of here now! |
| */ |
| if (!smp_found_config && !acpi_lapic) { |
| printk(KERN_NOTICE "SMP motherboard not detected.\n"); |
| io_apic_irqs = 0; |
| cpu_online_map = phys_cpu_present_map = 1; |
| smp_num_cpus = 1; |
| if (APIC_init_uniprocessor()) |
| printk(KERN_NOTICE "Local APIC not detected." |
| " Using dummy APIC emulation.\n"); |
| goto smp_done; |
| } |
| |
| /* |
| * Should not be necessary because the MP table should list the boot |
| * CPU too, but we do it for the sake of robustness anyway. |
| */ |
| if (!test_bit(boot_cpu_id, &phys_cpu_present_map)) { |
| printk("weird, boot CPU (#%d) not listed by the BIOS.\n", |
| boot_cpu_id); |
| phys_cpu_present_map |= (1 << hard_smp_processor_id()); |
| } |
| |
| /* |
| * If we couldn't find a local APIC, then get out of here now! |
| */ |
| if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && |
| !test_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability)) { |
| printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n", |
| boot_cpu_id); |
| printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n"); |
| io_apic_irqs = 0; |
| cpu_online_map = phys_cpu_present_map = 1; |
| smp_num_cpus = 1; |
| apic_disabled = 1; |
| goto smp_done; |
| } |
| |
| verify_local_APIC(); |
| |
| /* |
| * If SMP should be disabled, then really disable it! |
| */ |
| if (!max_cpus) { |
| smp_found_config = 0; |
| printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n"); |
| cpu_online_map = phys_cpu_present_map = 1; |
| smp_num_cpus = 1; |
| goto smp_done; |
| } |
| |
| connect_bsp_APIC(); |
| setup_local_APIC(); |
| |
| if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) |
| BUG(); |
| |
| /* |
| * Now scan the CPU present map and fire up the other CPUs. |
| */ |
| Dprintk("CPU present map: %lx\n", phys_cpu_present_map); |
| |
| maxcpu = 0; |
| for (apicid = 0; apicid < NR_CPUS; apicid++) { |
| /* |
| * Don't even attempt to start the boot CPU! |
| */ |
| if (apicid == boot_cpu_id) |
| continue; |
| |
| if (!(phys_cpu_present_map & (1 << apicid))) |
| continue; |
| if (((1<<apicid) & cpu_mask) == 0) |
| continue; |
| |
| cpu = do_boot_cpu(apicid); |
| |
| /* |
| * Make sure we unmap all failed CPUs |
| */ |
| if ((x86_apicid_to_cpu[apicid] == -1) && |
| (phys_cpu_present_map & (1 << apicid))) |
| printk("phys CPU #%d not responding - cannot use it.\n",apicid); |
| else if (cpu > maxcpu) |
| maxcpu = cpu; |
| } |
| |
| /* |
| * Cleanup possible dangling ends... |
| */ |
| { |
| /* |
| * Install writable page 0 entry to set BIOS data area. |
| */ |
| local_flush_tlb(); |
| |
| /* |
| * Paranoid: Set warm reset code and vector here back |
| * to default values. |
| */ |
| CMOS_WRITE(0, 0xf); |
| |
| *((volatile int *) phys_to_virt(0x467)) = 0; |
| } |
| |
| /* |
| * Allow the user to impress friends. |
| */ |
| |
| Dprintk("Before bogomips.\n"); |
| { |
| unsigned long bogosum = 0; |
| for (cpu = 0; cpu < NR_CPUS; cpu++) |
| if (cpu_online_map & (1<<cpu)) |
| bogosum += cpu_data[cpu].loops_per_jiffy; |
| printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", |
| cpucount+1, |
| bogosum/(500000/HZ), |
| (bogosum/(5000/HZ))%100); |
| Dprintk("Before bogocount - setting activated=1.\n"); |
| } |
| smp_num_cpus = maxcpu + 1; |
| |
| Dprintk("Boot done.\n"); |
| |
| /* |
| * If Hyper-Threading is avaialble, construct cpu_sibling_map[], so |
| * that we can tell the sibling CPU efficiently. |
| */ |
| if (test_bit(X86_FEATURE_HT, boot_cpu_data.x86_capability) |
| && smp_num_siblings > 1) { |
| for (cpu = 0; cpu < NR_CPUS; cpu++) |
| cpu_sibling_map[cpu] = NO_PROC_ID; |
| |
| for (cpu = 0; cpu < smp_num_cpus; cpu++) { |
| int i; |
| |
| for (i = 0; i < smp_num_cpus; i++) { |
| if (i == cpu) |
| continue; |
| if (phys_proc_id[cpu] == phys_proc_id[i]) { |
| cpu_sibling_map[cpu] = i; |
| printk("cpu_sibling_map[%d] = %d\n", cpu, cpu_sibling_map[cpu]); |
| break; |
| } |
| } |
| if (cpu_sibling_map[cpu] == NO_PROC_ID) { |
| smp_num_siblings = 1; |
| printk(KERN_WARNING "WARNING: No sibling found for CPU %d.\n", cpu); |
| } |
| } |
| } |
| |
| /* |
| * Here we can be sure that there is an IO-APIC in the system. Let's |
| * go and set it up: |
| */ |
| if (!skip_ioapic_setup && nr_ioapics) |
| setup_IO_APIC(); |
| else |
| nr_ioapics = 0; |
| |
| /* |
| * Set up all local APIC timers in the system: |
| */ |
| setup_APIC_clocks(); |
| |
| /* |
| * Synchronize the TSC with the AP |
| */ |
| if (cpu_has_tsc && cpucount) |
| synchronize_tsc_bp(); |
| |
| if (nmi_watchdog != 0) |
| check_nmi_watchdog(); |
| |
| smp_done: |
| zap_low_mappings(); |
| time_init_smp(); |
| } |