| /* $Id: ide.c,v 1.30 2003/07/08 07:24:47 pkj Exp $ |
| * |
| * Etrax specific IDE functions, like init and PIO-mode setting etc. |
| * Almost the entire ide.c is used for the rest of the Etrax ATA driver. |
| * Copyright (c) 2000, 2001, 2002 Axis Communications AB |
| * |
| * Authors: Bjorn Wesen (initial version) |
| * Mikael Starvik (pio setup stuff) |
| * |
| * $Log: ide.c,v $ |
| * Revision 1.30 2003/07/08 07:24:47 pkj |
| * Corrected spelling mistakes originally found in 2.5.x |
| * |
| * Revision 1.29 2003/06/17 13:57:49 starvik |
| * Merge of Linux 2.4.21 |
| * |
| * Revision 1.28 2003/01/22 12:41:12 starvik |
| * Added LBA48 support |
| * Fixed typo in e100_ideproc |
| * |
| * Revision 1.27 2003/01/09 18:03:47 starvik |
| * init_ioremap is now called by kernel before device drivers are initialized |
| * |
| * Revision 1.26 2002/09/17 12:16:59 bjornw |
| * Removed unnecessary cli/sti pair |
| * |
| * Revision 1.25 2002/08/19 08:07:19 matsfg |
| * Added IN_WORD. |
| * |
| * Revision 1.24 2002/04/22 11:47:21 johana |
| * Fix according to 2.4.19-pre7. time_after/time_before and |
| * missing end of comment. |
| * The patch has a typo for ethernet.c in e100_clear_network_leds(), |
| * that is fixed here. |
| * |
| * Revision 1.23 2002/03/19 15:35:51 bjornw |
| * Cleaned up the bus-reset code a bit and made G27-reset work |
| * |
| * Revision 1.22 2002/03/19 15:23:05 bjornw |
| * Added flush_etrax_cache before starting the receiving DMA |
| * |
| * Revision 1.21 2002/03/06 15:37:56 hp |
| * * ide.c (OUT_BYTE): If timing out in the first busy-loop, do a |
| * printk, fall through and still do the write. |
| * (IN_BYTE): If timing out in the first loop, and reg indicated it's |
| * the ATA status register in the device being read, return BUSY_STAT. |
| * |
| * Revision 1.20 2002/02/22 11:47:56 bjornw |
| * Added a timeout to IN_BYTE and OUT_BYTE |
| * |
| * Revision 1.19 2001/05/09 12:53:16 johana |
| * Added #include <asm/dma.h> |
| * |
| * Revision 1.18 2001/05/09 12:37:00 johana |
| * Use DMA_NBR macros from dma.h. |
| * |
| * Revision 1.17 2001/04/23 13:36:30 matsfg |
| * Changed CONFIG_IDE_DELAY to CONFIG_ETRAX_IDE_DELAY |
| * |
| * Revision 1.16 2001/04/05 08:30:07 matsfg |
| * Corrected cse1 and csp0 reset. |
| * |
| * Revision 1.15 2001/04/04 14:34:06 bjornw |
| * Re-instated code that mysteriously disappeared during review updates. |
| * |
| * Revision 1.14 2001/04/04 13:45:12 matsfg |
| * Calls REG_SHADOW_SET for cse1 reset so only the resetbit is affected |
| * |
| * Revision 1.13 2001/04/04 13:26:40 matsfg |
| * memmapping is done in init.c |
| * |
| * Revision 1.12 2001/04/04 11:37:56 markusl |
| * Updated according to review remarks |
| * |
| * Revision 1.11 2001/03/29 12:49:14 matsfg |
| * Changed check for ata_tot_size from >= to >. |
| * Sets sw_len to 0 if size is exactly 65536. |
| * |
| * Revision 1.10 2001/03/16 09:39:30 matsfg |
| * Support for reset on port CSP0 |
| * |
| * Revision 1.9 2001/03/01 13:11:18 bjornw |
| * 100 -> HZ |
| * |
| * Revision 1.8 2001/03/01 09:32:56 matsfg |
| * Moved IDE delay to a CONFIG-parameter instead |
| * |
| * Revision 1.7 2001/02/23 13:46:38 bjornw |
| * Spellling check |
| * |
| * Revision 1.6 2001/02/22 15:44:30 bjornw |
| * * Use ioremap when mapping the CSE1 memory-mapped reset-line for LX v2 |
| * * sw_len for a 65536 descriptor is 0, not 65536 |
| * * Express concern for G27 reset code |
| * |
| * Revision 1.5 2001/02/16 07:35:38 matsfg |
| * Now handles DMA request blocks between 64k and 128k by split into two descriptors. |
| * |
| * Revision 1.4 2001/01/10 21:14:32 bjornw |
| * Initialize hwif->ideproc, for the new way of handling ide_xxx_data |
| * |
| * Revision 1.3 2000/12/01 17:48:18 bjornw |
| * - atapi_output_bytes now uses DMA |
| * - dma_active check removed - the kernel does proper serializing and it had |
| * a race-condition anyway |
| * - ide_build_dmatable had a nameclash |
| * - re-added the RESET_DMA thingys because sometimes the interface can get |
| * stuck apparently |
| * - added ide_release_dma |
| * |
| * Revision 1.2 2000/11/29 17:31:29 bjornw |
| * 2.4 port |
| * |
| * - The "register addresses" stored in the hwif are now 32-bit fields that |
| * don't need to be shifted into correct positions in R_ATA_CTRL_DATA |
| * - PIO-mode detection temporarily disabled since ide-modes.c is not compiled |
| * - All DMA uses virt_to_phys conversions for DMA buffers and descriptor ptrs |
| * - Probably correct ide_dma_begin semantics in dmaproc now for ATAPI devices |
| * - Removed RESET_DMA when starting a new transfer - why was this necessary ? |
| * - Indentation fix |
| * |
| * |
| */ |
| |
| /* Regarding DMA: |
| * |
| * There are two forms of DMA - "DMA handshaking" between the interface and the drive, |
| * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's |
| * something built-in in the Etrax. However only some drives support the DMA-mode handshaking |
| * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the |
| * device can't do DMA handshaking for some stupid reason. We don't need to do that. |
| */ |
| |
| #undef REALLY_SLOW_IO /* most systems can safely undef this */ |
| |
| #include <linux/config.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/blkdev.h> |
| #include <linux/hdreg.h> |
| #include <linux/ide.h> |
| #include <linux/init.h> |
| |
| #include <asm/io.h> |
| #include <asm/svinto.h> |
| #include <asm/dma.h> |
| |
| /* number of Etrax DMA descriptors */ |
| #define MAX_DMA_DESCRS 64 |
| |
| /* number of times to retry busy-flags when reading/writing IDE-registers |
| * this can't be too high because a hung harddisk might cause the watchdog |
| * to trigger (sometimes IN_BYTE and OUT_BYTE are called with irq's disabled) |
| */ |
| |
| #define IDE_REGISTER_TIMEOUT 300 |
| |
| #ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET |
| /* address where the memory-mapped IDE reset bit lives, if used */ |
| static volatile unsigned long *reset_addr; |
| #endif |
| |
| static int e100_read_command = 0; |
| |
| #define LOWDB(x) |
| #define D(x) |
| |
| void |
| OUT_BYTE(unsigned char data, ide_ioreg_t reg) { |
| int timeleft; |
| LOWDB(printk("ob: data 0x%x, reg 0x%x\n", data, reg)); |
| |
| /* note the lack of handling any timeouts. we stop waiting, but we don't |
| * really notify anybody. |
| */ |
| |
| timeleft = IDE_REGISTER_TIMEOUT; |
| /* wait for busy flag */ |
| while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy))) |
| timeleft--; |
| |
| /* |
| * Fall through at a timeout, so the ongoing command will be |
| * aborted by the write below, which is expected to be a dummy |
| * command to the command register. This happens when a faulty |
| * drive times out on a command. See comment on timeout in |
| * IN_BYTE. |
| */ |
| if(!timeleft) |
| printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data); |
| |
| *R_ATA_CTRL_DATA = reg | data; /* write data to the drive's register */ |
| |
| timeleft = IDE_REGISTER_TIMEOUT; |
| /* wait for transmitter ready */ |
| while(timeleft && !(*R_ATA_STATUS_DATA & |
| IO_MASK(R_ATA_STATUS_DATA, tr_rdy))) |
| timeleft--; |
| } |
| |
| unsigned short |
| IN_BYTE(ide_ioreg_t reg) { |
| int status; |
| int timeleft; |
| |
| timeleft = IDE_REGISTER_TIMEOUT; |
| /* wait for busy flag */ |
| while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy))) |
| timeleft--; |
| |
| if(!timeleft) { |
| /* |
| * If we're asked to read the status register, like for |
| * example when a command does not complete for an |
| * extended time, but the ATA interface is stuck in a |
| * busy state at the *ETRAX* ATA interface level (as has |
| * happened repeatedly with at least one bad disk), then |
| * the best thing to do is to pretend that we read |
| * "busy" in the status register, so the IDE driver will |
| * time-out, abort the ongoing command and perform a |
| * reset sequence. Note that the subsequent OUT_BYTE |
| * call will also timeout on busy, but as long as the |
| * write is still performed, everything will be fine. |
| */ |
| if ((reg & IO_MASK (R_ATA_CTRL_DATA, addr)) |
| == IO_FIELD (R_ATA_CTRL_DATA, addr, IDE_STATUS_OFFSET)) |
| return BUSY_STAT; |
| else |
| /* For other rare cases we assume 0 is good enough. */ |
| return 0; |
| } |
| |
| *R_ATA_CTRL_DATA = reg | IO_STATE(R_ATA_CTRL_DATA, rw, read); /* read data */ |
| |
| timeleft = IDE_REGISTER_TIMEOUT; |
| /* wait for available */ |
| while(timeleft && !((status = *R_ATA_STATUS_DATA) & |
| IO_MASK(R_ATA_STATUS_DATA, dav))) |
| timeleft--; |
| |
| if(!timeleft) |
| return 0; |
| |
| LOWDB(printk("inb: 0x%x from reg 0x%x\n", status & 0xff, reg)); |
| |
| return (unsigned char)status; |
| } |
| |
| /* PIO timing (in R_ATA_CONFIG) |
| * |
| * _____________________________ |
| * ADDRESS : ________/ |
| * |
| * _______________ |
| * DIOR : ____________/ \__________ |
| * |
| * _______________ |
| * DATA : XXXXXXXXXXXXXXXX_______________XXXXXXXX |
| * |
| * |
| * DIOR is unbuffered while address and data is buffered. |
| * This creates two problems: |
| * 1. The DIOR pulse is to early (because it is unbuffered) |
| * 2. The rise time of DIOR is long |
| * |
| * There are at least three different plausible solutions |
| * 1. Use a pad capable of larger currents in Etrax |
| * 2. Use an external buffer |
| * 3. Make the strobe pulse longer |
| * |
| * Some of the strobe timings below are modified to compensate |
| * for this. This implies a slight performance decrease. |
| * |
| * THIS SHOULD NEVER BE CHANGED! |
| * |
| * TODO: Is this true for the latest LX boards still ? |
| */ |
| |
| #define ATA_DMA2_STROBE 4 |
| #define ATA_DMA2_HOLD 0 |
| #define ATA_DMA1_STROBE 4 |
| #define ATA_DMA1_HOLD 1 |
| #define ATA_DMA0_STROBE 12 |
| #define ATA_DMA0_HOLD 9 |
| #define ATA_PIO4_SETUP 1 |
| #define ATA_PIO4_STROBE 5 |
| #define ATA_PIO4_HOLD 0 |
| #define ATA_PIO3_SETUP 1 |
| #define ATA_PIO3_STROBE 5 |
| #define ATA_PIO3_HOLD 1 |
| #define ATA_PIO2_SETUP 1 |
| #define ATA_PIO2_STROBE 6 |
| #define ATA_PIO2_HOLD 2 |
| #define ATA_PIO1_SETUP 2 |
| #define ATA_PIO1_STROBE 11 |
| #define ATA_PIO1_HOLD 4 |
| #define ATA_PIO0_SETUP 4 |
| #define ATA_PIO0_STROBE 19 |
| #define ATA_PIO0_HOLD 4 |
| |
| static int e100_dma_check (ide_drive_t *drive); |
| static int e100_dma_begin (ide_drive_t *drive); |
| static int e100_dma_end (ide_drive_t *drive); |
| static int e100_dma_read (ide_drive_t *drive); |
| static int e100_dma_write (ide_drive_t *drive); |
| static void e100_ide_input_data (ide_drive_t *drive, void *, unsigned int); |
| static void e100_ide_output_data (ide_drive_t *drive, void *, unsigned int); |
| static void e100_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int); |
| static void e100_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int); |
| |
| /* |
| * good_dma_drives() lists the model names (from "hdparm -i") |
| * of drives which do not support mword2 DMA but which are |
| * known to work fine with this interface under Linux. |
| */ |
| |
| const char *good_dma_drives[] = {"Micropolis 2112A", |
| "CONNER CTMA 4000", |
| "CONNER CTT8000-A", |
| NULL}; |
| |
| static void tune_e100_ide(ide_drive_t *drive, byte pio) |
| { |
| pio = 4; |
| /* pio = ide_get_best_pio_mode(drive, pio, 4, NULL); */ |
| |
| /* set pio mode! */ |
| |
| switch(pio) { |
| case 0: |
| *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO0_SETUP ) | |
| IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO0_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO0_HOLD ) ); |
| break; |
| case 1: |
| *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO1_SETUP ) | |
| IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO1_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO1_HOLD ) ); |
| break; |
| case 2: |
| *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO2_SETUP ) | |
| IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO2_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO2_HOLD ) ); |
| break; |
| case 3: |
| *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO3_SETUP ) | |
| IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO3_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO3_HOLD ) ); |
| break; |
| case 4: |
| *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO4_SETUP ) | |
| IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO4_HOLD ) ); |
| break; |
| } |
| } |
| |
| void __init |
| init_e100_ide (void) |
| { |
| volatile unsigned int dummy; |
| int h; |
| |
| printk("ide: ETRAX 100LX built-in ATA DMA controller\n"); |
| |
| /* first fill in some stuff in the ide_hwifs fields */ |
| |
| for(h = 0; h < MAX_HWIFS; h++) { |
| ide_hwif_t *hwif = &ide_hwifs[h]; |
| hwif->chipset = ide_etrax100; |
| hwif->tuneproc = &tune_e100_ide; |
| hwif->ata_input_data = &e100_ide_input_data; |
| hwif->ata_output_data = &e100_ide_output_data; |
| hwif->atapi_input_bytes = &e100_atapi_input_bytes; |
| hwif->atapi_output_bytes = &e100_atapi_output_bytes; |
| hwif->ide_dma_check = &e100_dma_check; |
| hwif->ide_dma_end = &e100_dma_end; |
| hwif->ide_dma_write = &e100_dma_write; |
| hwif->ide_dma_read = &e100_dma_read; |
| hwif->ide_dma_begin = &e100_dma_begin; |
| } |
| |
| /* actually reset and configure the etrax100 ide/ata interface */ |
| |
| *R_ATA_CTRL_DATA = 0; |
| *R_ATA_TRANSFER_CNT = 0; |
| *R_ATA_CONFIG = 0; |
| |
| genconfig_shadow = (genconfig_shadow & |
| ~IO_MASK(R_GEN_CONFIG, dma2) & |
| ~IO_MASK(R_GEN_CONFIG, dma3) & |
| ~IO_MASK(R_GEN_CONFIG, ata)) | |
| ( IO_STATE( R_GEN_CONFIG, dma3, ata ) | |
| IO_STATE( R_GEN_CONFIG, dma2, ata ) | |
| IO_STATE( R_GEN_CONFIG, ata, select ) ); |
| |
| *R_GEN_CONFIG = genconfig_shadow; |
| |
| /* pull the chosen /reset-line low */ |
| |
| #ifdef CONFIG_ETRAX_IDE_G27_RESET |
| REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 0); |
| #endif |
| #ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET |
| REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 0); |
| #endif |
| #ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET |
| REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 0); |
| #endif |
| #ifdef CONFIG_ETRAX_IDE_PB7_RESET |
| port_pb_dir_shadow = port_pb_dir_shadow | |
| IO_STATE(R_PORT_PB_DIR, dir7, output); |
| *R_PORT_PB_DIR = port_pb_dir_shadow; |
| REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, 1); |
| #endif |
| |
| /* wait some */ |
| |
| udelay(25); |
| |
| /* de-assert bus-reset */ |
| |
| #ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET |
| REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 1); |
| #endif |
| #ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET |
| REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 1); |
| #endif |
| #ifdef CONFIG_ETRAX_IDE_G27_RESET |
| REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 1); |
| #endif |
| |
| /* make a dummy read to set the ata controller in a proper state */ |
| dummy = *R_ATA_STATUS_DATA; |
| |
| *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO4_SETUP ) | |
| IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) | |
| IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO4_HOLD ) ); |
| |
| *R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw, read) | |
| IO_FIELD( R_ATA_CTRL_DATA, addr, 1 ) ); |
| |
| while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/ |
| |
| *R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) | |
| IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) | |
| IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) | |
| IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) ); |
| |
| printk("ide: waiting %d seconds for drives to regain consciousness\n", |
| CONFIG_ETRAX_IDE_DELAY); |
| |
| h = jiffies + (CONFIG_ETRAX_IDE_DELAY * HZ); |
| while(time_before(jiffies, h)) /* nothing */ ; |
| |
| /* reset the dma channels we will use */ |
| |
| RESET_DMA(ATA_TX_DMA_NBR); |
| RESET_DMA(ATA_RX_DMA_NBR); |
| WAIT_DMA(ATA_TX_DMA_NBR); |
| WAIT_DMA(ATA_RX_DMA_NBR); |
| |
| } |
| |
| static etrax_dma_descr mydescr; |
| |
| /* |
| * The following routines are mainly used by the ATAPI drivers. |
| * |
| * These routines will round up any request for an odd number of bytes, |
| * so if an odd bytecount is specified, be sure that there's at least one |
| * extra byte allocated for the buffer. |
| */ |
| static void |
| e100_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) |
| { |
| ide_ioreg_t data_reg = IDE_DATA_REG; |
| |
| D(printk("atapi_input_bytes, dreg 0x%x, buffer 0x%x, count %d\n", |
| data_reg, buffer, bytecount)); |
| |
| if(bytecount & 1) { |
| printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount); |
| bytecount++; /* to round off */ |
| } |
| |
| /* make sure the DMA channel is available */ |
| RESET_DMA(ATA_RX_DMA_NBR); |
| WAIT_DMA(ATA_RX_DMA_NBR); |
| |
| /* setup DMA descriptor */ |
| |
| mydescr.sw_len = bytecount; |
| mydescr.ctrl = d_eol; |
| mydescr.buf = virt_to_phys(buffer); |
| |
| /* start the dma channel */ |
| |
| *R_DMA_CH3_FIRST = virt_to_phys(&mydescr); |
| *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start); |
| |
| /* initiate a multi word dma read using PIO handshaking */ |
| |
| *R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1); |
| |
| *R_ATA_CTRL_DATA = data_reg | |
| IO_STATE(R_ATA_CTRL_DATA, rw, read) | |
| IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | |
| IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | |
| IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| |
| /* wait for completion */ |
| |
| LED_DISK_READ(1); |
| WAIT_DMA(ATA_RX_DMA_NBR); |
| LED_DISK_READ(0); |
| |
| #if 0 |
| /* old polled transfer code |
| * this should be moved into a new function that can do polled |
| * transfers if DMA is not available |
| */ |
| |
| /* initiate a multi word read */ |
| |
| *R_ATA_TRANSFER_CNT = wcount << 1; |
| |
| *R_ATA_CTRL_DATA = data_reg | |
| IO_STATE(R_ATA_CTRL_DATA, rw, read) | |
| IO_STATE(R_ATA_CTRL_DATA, src_dst, register) | |
| IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | |
| IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| |
| /* svinto has a latency until the busy bit actually is set */ |
| |
| nop(); nop(); |
| nop(); nop(); |
| nop(); nop(); |
| nop(); nop(); |
| nop(); nop(); |
| |
| /* unit should be busy during multi transfer */ |
| while((status = *R_ATA_STATUS_DATA) & IO_MASK(R_ATA_STATUS_DATA, busy)) { |
| while(!(status & IO_MASK(R_ATA_STATUS_DATA, dav))) |
| status = *R_ATA_STATUS_DATA; |
| *ptr++ = (unsigned short)(status & 0xffff); |
| } |
| #endif |
| } |
| |
| static void |
| e100_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) |
| { |
| ide_ioreg_t data_reg = IDE_DATA_REG; |
| |
| D(printk("atapi_output_bytes, dreg 0x%x, buffer 0x%x, count %d\n", |
| data_reg, buffer, bytecount)); |
| |
| if(bytecount & 1) { |
| printk("odd bytecount %d in atapi_out_bytes!\n", bytecount); |
| bytecount++; |
| } |
| |
| /* make sure the DMA channel is available */ |
| RESET_DMA(ATA_TX_DMA_NBR); |
| WAIT_DMA(ATA_TX_DMA_NBR); |
| |
| /* setup DMA descriptor */ |
| |
| mydescr.sw_len = bytecount; |
| mydescr.ctrl = d_eol; |
| mydescr.buf = virt_to_phys(buffer); |
| |
| /* start the dma channel */ |
| |
| *R_DMA_CH2_FIRST = virt_to_phys(&mydescr); |
| *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start); |
| |
| /* initiate a multi word dma write using PIO handshaking */ |
| |
| *R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1); |
| |
| *R_ATA_CTRL_DATA = data_reg | |
| IO_STATE(R_ATA_CTRL_DATA, rw, write) | |
| IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | |
| IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | |
| IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| |
| /* wait for completion */ |
| |
| LED_DISK_WRITE(1); |
| WAIT_DMA(ATA_TX_DMA_NBR); |
| LED_DISK_WRITE(0); |
| |
| #if 0 |
| /* old polled write code - see comment in input_bytes */ |
| |
| /* wait for busy flag */ |
| while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); |
| |
| /* initiate a multi word write */ |
| |
| *R_ATA_TRANSFER_CNT = bytecount >> 1; |
| |
| ctrl = data_reg | |
| IO_STATE(R_ATA_CTRL_DATA, rw, write) | |
| IO_STATE(R_ATA_CTRL_DATA, src_dst, register) | |
| IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | |
| IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| |
| LED_DISK_WRITE(1); |
| |
| /* Etrax will set busy = 1 until the multi pio transfer has finished |
| * and tr_rdy = 1 after each successful word transfer. |
| * When the last byte has been transferred Etrax will first set tr_tdy = 1 |
| * and then busy = 0 (not in the same cycle). If we read busy before it |
| * has been set to 0 we will think that we should transfer more bytes |
| * and then tr_rdy would be 0 forever. This is solved by checking busy |
| * in the inner loop. |
| */ |
| |
| do { |
| *R_ATA_CTRL_DATA = ctrl | *ptr++; |
| while(!(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy)) && |
| (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy))); |
| } while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); |
| |
| LED_DISK_WRITE(0); |
| #endif |
| |
| } |
| |
| /* |
| * This is used for most PIO data transfers *from* the IDE interface |
| */ |
| static void |
| e100_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount) |
| { |
| e100_atapi_input_bytes(drive, buffer, wcount << 2); |
| } |
| |
| /* |
| * This is used for most PIO data transfers *to* the IDE interface |
| */ |
| static void |
| e100_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount) |
| { |
| e100_atapi_output_bytes(drive, buffer, wcount << 2); |
| } |
| |
| /* we only have one DMA channel on the chip for ATA, so we can keep these statically */ |
| static etrax_dma_descr ata_descrs[MAX_DMA_DESCRS]; |
| static unsigned int ata_tot_size; |
| |
| /* |
| * e100_ide_build_dmatable() prepares a dma request. |
| * Returns 0 if all went okay, returns 1 otherwise. |
| */ |
| static int e100_ide_build_dmatable (ide_drive_t *drive) |
| { |
| struct request *rq = HWGROUP(drive)->rq; |
| struct buffer_head *bh = rq->bh; |
| unsigned long size, addr; |
| unsigned int count = 0; |
| |
| ata_tot_size = 0; |
| |
| do { |
| /* |
| * Determine addr and size of next buffer area. We assume that |
| * individual virtual buffers are always composed linearly in |
| * physical memory. For example, we assume that any 8kB buffer |
| * is always composed of two adjacent physical 4kB pages rather |
| * than two possibly non-adjacent physical 4kB pages. |
| */ |
| if (bh == NULL) { /* paging and tape requests have (rq->bh == NULL) */ |
| addr = virt_to_phys (rq->buffer); |
| size = rq->nr_sectors << 9; |
| } else { |
| /* group sequential buffers into one large buffer */ |
| addr = virt_to_phys (bh->b_data); |
| size = bh->b_size; |
| while ((bh = bh->b_reqnext) != NULL) { |
| if ((addr + size) != virt_to_phys (bh->b_data)) |
| break; |
| size += bh->b_size; |
| } |
| } |
| |
| /* did we run out of descriptors? */ |
| |
| if(count >= MAX_DMA_DESCRS) { |
| printk("%s: too few DMA descriptors\n", drive->name); |
| return 1; |
| } |
| |
| /* however, this case is more difficult - R_ATA_TRANSFER_CNT cannot be more |
| than 65536 words per transfer, so in that case we need to either |
| 1) use a DMA interrupt to re-trigger R_ATA_TRANSFER_CNT and continue with |
| the descriptors, or |
| 2) simply do the request here, and get dma_intr to only ide_end_request on |
| those blocks that were actually set-up for transfer. |
| */ |
| |
| if(ata_tot_size + size > 131072) { |
| printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, size); |
| return 1; |
| } |
| |
| /* If size > 65536 it has to be splitted into new descriptors. Since we don't handle |
| size > 131072 only one split is necessary */ |
| |
| if(size > 65536) { |
| /* ok we want to do IO at addr, size bytes. set up a new descriptor entry */ |
| ata_descrs[count].sw_len = 0; /* 0 means 65536, this is a 16-bit field */ |
| ata_descrs[count].ctrl = 0; |
| ata_descrs[count].buf = addr; |
| ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]); |
| count++; |
| ata_tot_size += 65536; |
| /* size and addr should refere to not handled data */ |
| size -= 65536; |
| addr += 65536; |
| } |
| /* ok we want to do IO at addr, size bytes. set up a new descriptor entry */ |
| if(size == 65536) { |
| ata_descrs[count].sw_len = 0; /* 0 means 65536, this is a 16-bit field */ |
| } else { |
| ata_descrs[count].sw_len = size; |
| } |
| ata_descrs[count].ctrl = 0; |
| ata_descrs[count].buf = addr; |
| ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]); |
| count++; |
| ata_tot_size += size; |
| |
| } while (bh != NULL); |
| |
| if (count) { |
| /* set the end-of-list flag on the last descriptor */ |
| ata_descrs[count - 1].ctrl |= d_eol; |
| /* return and say all is ok */ |
| return 0; |
| } |
| |
| printk("%s: empty DMA table?\n", drive->name); |
| return 1; /* let the PIO routines handle this weirdness */ |
| } |
| |
| static int config_drive_for_dma (ide_drive_t *drive) |
| { |
| const char **list; |
| struct hd_driveid *id = drive->id; |
| |
| if (id && (id->capability & 1)) { |
| /* Enable DMA on any drive that supports mword2 DMA */ |
| if ((id->field_valid & 2) && (id->dma_mword & 0x404) == 0x404) { |
| drive->using_dma = 1; |
| return 0; /* DMA enabled */ |
| } |
| |
| /* Consult the list of known "good" drives */ |
| list = good_dma_drives; |
| while (*list) { |
| if (!strcmp(*list++,id->model)) { |
| drive->using_dma = 1; |
| return 0; /* DMA enabled */ |
| } |
| } |
| } |
| return 1; /* DMA not enabled */ |
| } |
| |
| /* |
| * etrax_dma_intr() is the handler for disk read/write DMA interrupts |
| */ |
| static ide_startstop_t etrax_dma_intr (ide_drive_t *drive) |
| { |
| int i, dma_stat; |
| byte stat; |
| |
| LED_DISK_READ(0); |
| LED_DISK_WRITE(0); |
| |
| dma_stat = HWIF(drive)->ide_dma_end(drive); |
| stat = HWIF(drive)->INB(IDE_STATUS_REG); /* get drive status */ |
| if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) { |
| if (!dma_stat) { |
| struct request *rq; |
| rq = HWGROUP(drive)->rq; |
| for (i = rq->nr_sectors; i > 0;) { |
| i -= rq->current_nr_sectors; |
| DRIVER(drive)->end_request(drive, 1); |
| } |
| return ide_stopped; |
| } |
| printk("%s: bad DMA status\n", drive->name); |
| } |
| return DRIVER(drive)->error(drive, "dma_intr", stat); |
| } |
| |
| /* |
| * Functions below initiates/aborts DMA read/write operations on a drive. |
| * |
| * The caller is assumed to have selected the drive and programmed the drive's |
| * sector address using CHS or LBA. All that remains is to prepare for DMA |
| * and then issue the actual read/write DMA/PIO command to the drive. |
| * |
| * For ATAPI devices, we just prepare for DMA and return. The caller should |
| * then issue the packet command to the drive and call us again with |
| * ide_dma_begin afterwards. |
| * |
| * Returns 0 if all went well. |
| * Returns 1 if DMA read/write could not be started, in which case |
| * the caller should revert to PIO for the current request. |
| */ |
| |
| static int e100_dma_check(ide_drive_t *drive) |
| { |
| return config_drive_for_dma (drive); |
| } |
| |
| static int e100_dma_end(ide_drive_t *drive) |
| { |
| /* TODO: check if something went wrong with the DMA */ |
| return 0; |
| } |
| |
| static int e100_start_dma(ide_drive_t *drive, int atapi, int reading) |
| { |
| if(reading) { |
| |
| RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ |
| WAIT_DMA(ATA_RX_DMA_NBR); |
| |
| /* set up the Etrax DMA descriptors */ |
| |
| if(e100_ide_build_dmatable (drive)) |
| return 1; |
| |
| if(!atapi) { |
| /* set the irq handler which will finish the request when DMA is done */ |
| |
| ide_set_handler(drive, &etrax_dma_intr, WAIT_CMD, NULL); |
| |
| /* issue cmd to drive */ |
| if ((HWGROUP(drive)->rq->cmd == IDE_DRIVE_TASKFILE) && |
| (drive->addressing == 1)) { |
| ide_task_t *args = HWGROUP(drive)->rq->special; |
| OUT_BYTE(args->tfRegister[IDE_COMMAND_OFFSET], IDE_COMMAND_REG); |
| } else if (drive->addressing) { |
| OUT_BYTE(WIN_READDMA_EXT, IDE_COMMAND_REG); |
| } else { |
| OUT_BYTE(WIN_READDMA, IDE_COMMAND_REG); |
| } |
| } |
| |
| /* begin DMA */ |
| |
| /* need to do this before RX DMA due to a chip bug |
| * it is enough to just flush the part of the cache that |
| * corresponds to the buffers we start, but since HD transfers |
| * usually are more than 8 kB, it is easier to optimize for the |
| * normal case and just flush the entire cache. its the only |
| * way to be sure! (OB movie quote) |
| */ |
| flush_etrax_cache(); |
| *R_DMA_CH3_FIRST = virt_to_phys(ata_descrs); |
| *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start); |
| |
| /* initiate a multi word dma read using DMA handshaking */ |
| |
| *R_ATA_TRANSFER_CNT = |
| IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1); |
| |
| *R_ATA_CTRL_DATA = |
| IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) | |
| IO_STATE(R_ATA_CTRL_DATA, rw, read) | |
| IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | |
| IO_STATE(R_ATA_CTRL_DATA, handsh, dma) | |
| IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| |
| LED_DISK_READ(1); |
| |
| D(printk("dma read of %d bytes.\n", ata_tot_size)); |
| |
| } else { |
| /* writing */ |
| |
| RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ |
| WAIT_DMA(ATA_TX_DMA_NBR); |
| |
| /* set up the Etrax DMA descriptors */ |
| |
| if(e100_ide_build_dmatable (drive)) |
| return 1; |
| |
| if(!atapi) { |
| /* set the irq handler which will finish the request when DMA is done */ |
| |
| ide_set_handler(drive, &etrax_dma_intr, WAIT_CMD, NULL); |
| |
| /* issue cmd to drive */ |
| if ((HWGROUP(drive)->rq->cmd == IDE_DRIVE_TASKFILE) && |
| (drive->addressing == 1)) { |
| ide_task_t *args = HWGROUP(drive)->rq->special; |
| OUT_BYTE(args->tfRegister[IDE_COMMAND_OFFSET], IDE_COMMAND_REG); |
| } else if (drive->addressing) { |
| OUT_BYTE(WIN_WRITEDMA_EXT, IDE_COMMAND_REG); |
| } else { |
| OUT_BYTE(WIN_WRITEDMA, IDE_COMMAND_REG); |
| } |
| } |
| |
| /* begin DMA */ |
| |
| *R_DMA_CH2_FIRST = virt_to_phys(ata_descrs); |
| *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start); |
| |
| /* initiate a multi word dma write using DMA handshaking */ |
| |
| *R_ATA_TRANSFER_CNT = |
| IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1); |
| |
| *R_ATA_CTRL_DATA = |
| IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) | |
| IO_STATE(R_ATA_CTRL_DATA, rw, write) | |
| IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | |
| IO_STATE(R_ATA_CTRL_DATA, handsh, dma) | |
| IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| |
| LED_DISK_WRITE(1); |
| |
| D(printk("dma write of %d bytes.\n", ata_tot_size)); |
| } |
| return 0; |
| } |
| |
| static int e100_dma_write(ide_drive_t *drive) |
| { |
| e100_read_command = 0; |
| /* ATAPI-devices (not disks) first call ide_dma_read/write to set the direction |
| * then they call ide_dma_begin after they have issued the appropriate drive command |
| * themselves to actually start the chipset DMA. so we just return here if we're |
| * not a diskdrive. |
| */ |
| if (drive->media != ide_disk) |
| return 0; |
| return e100_start_dma(drive, 0, 0); |
| } |
| |
| static int e100_dma_read(ide_drive_t *drive) |
| { |
| e100_read_command = 1; |
| /* ATAPI-devices (not disks) first call ide_dma_read/write to set the direction |
| * then they call ide_dma_begin after they have issued the appropriate drive command |
| * themselves to actually start the chipset DMA. so we just return here if we're |
| * not a diskdrive. |
| */ |
| if (drive->media != ide_disk) |
| return 0; |
| return e100_start_dma(drive, 0, 1); |
| } |
| |
| static int e100_dma_begin(ide_drive_t *drive) |
| { |
| /* begin DMA, used by ATAPI devices which want to issue the |
| * appropriate IDE command themselves. |
| * |
| * they have already called ide_dma_read/write to set the |
| * static reading flag, now they call ide_dma_begin to do |
| * the real stuff. we tell our code below not to issue |
| * any IDE commands itself and jump into it. |
| */ |
| return e100_start_dma(drive, 1, e100_read_command); |
| } |