blob: 7e83aebb82cb02d92fb626fb49b8c2a4343ab6de [file] [log] [blame]
/*
* Disk Array driver for HP SA 5xxx and 6xxx Controllers
* Copyright 2000, 2005 Hewlett-Packard Development Company, L.P.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Questions/Comments/Bugfixes to Cciss-discuss@lists.sourceforge.net
*
*/
#include <linux/config.h> /* CONFIG_PROC_FS */
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/blkpg.h>
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/hdreg.h>
#include <linux/spinlock.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/smp_lock.h>
#include <linux/blk.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
#define DRIVER_NAME "HP CISS Driver (v 2.4.60)"
#define DRIVER_VERSION CCISS_DRIVER_VERSION(2,4,60)
/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP SA5xxx SA6xxx Controllers version 2.4.52");
MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400 6i SA6422 P600 P400 P400i E200i E200");
MODULE_LICENSE("GPL");
#include "cciss_cmd.h"
#include "cciss.h"
#include <linux/cciss_ioctl.h>
/* define the PCI info for the cards we can control */
const struct pci_device_id cciss_pci_device_id[] = {
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,
0x0E11, 0x4070, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
0x0E11, 0x4080, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
0x0E11, 0x4082, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
0x0E11, 0x4083, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
0x0E11, 0x409A, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
0x0E11, 0x409B, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
0x0E11, 0x409C, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
0x0E11, 0x409D, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
0x0E11, 0x4091, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
0x0E11, 0x409E, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA,
0x103C, 0x3225, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
0x103C, 0x3234, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
0x103C, 0x3235, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
0x103C, 0x3211, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
0x103C, 0x3212, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
0x103C, 0x3213, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
0x103C, 0x3214, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
0x103C, 0x3215, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
{0,}
};
MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
#define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type))
/* board_id = Subsystem Device ID & Vendor ID
* product = Marketing Name for the board
* access = Address of the struct of function pointers
*/
static struct board_type products[] = {
{ 0x40700E11, "Smart Array 5300", &SA5_access},
{ 0x40800E11, "Smart Array 5i", &SA5B_access},
{ 0x40820E11, "Smart Array 532", &SA5B_access},
{ 0x40830E11, "Smart Array 5312", &SA5B_access},
{ 0x409A0E11, "Smart Array 641", &SA5_access},
{ 0x409B0E11, "Smart Array 642", &SA5_access},
{ 0x409C0E11, "Smart Array 6400", &SA5_access},
{ 0x409D0E11, "Smart Array 6400 EM", &SA5_access},
{ 0x40910E11, "Smart Array 6i", &SA5_access},
{ 0x409E0E11, "Smart Array 6422", &SA5_access},
{ 0x3234103c, "Smart Array P400", &SA5_access},
{ 0x3235103c, "Smart Array P400i", &SA5_access},
{ 0x3211103c, "Smart Array E200i", &SA5_access},
{ 0x3212103c, "Smart Array E200", &SA5_access},
{ 0x3213103c, "Smart Array E200i", &SA5_access},
{ 0x3214103c, "Smart Array E200i", &SA5_access},
{ 0x3215103c, "Smart Array E200i", &SA5_access},
{ 0xFFFF103C, "Unknown Smart Array", &SA5_access},
};
/* How long to wait (in millesconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000
/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3
#define READ_AHEAD 128
#define NR_CMDS 128 /* #commands that can be outstanding */
#define MAX_CTLR 32
/* No sense in giving up our preallocated major numbers */
#if MAX_CTLR < 8
#error"cciss.c: MAX_CTLR must be 8 or greater"
#endif
/* Originally cciss driver only supports 8 major number */
#define MAX_CTLR_ORIG COMPAQ_CISS_MAJOR7 - COMPAQ_CISS_MAJOR + 1
#define CCISS_DMA_MASK 0xFFFFFFFFFFFFFFFFULL /* 64 bit DMA */
#ifdef CONFIG_CISS_MONITOR_THREAD
static int cciss_monitor(void *ctlr);
static int start_monitor_thread(ctlr_info_t *h, unsigned char *cmd,
unsigned long count, int (*cciss_monitor)(void *), int *rc);
static u32 heartbeat_timer = 0;
#else
#define cciss_monitor(x)
#define kill_monitor_thead(x)
#endif
static ctlr_info_t *hba[MAX_CTLR];
static int map_major_to_ctlr[MAX_BLKDEV] = {0}; /* gets ctlr num from maj num */
static struct proc_dir_entry *proc_cciss;
static void do_cciss_request(request_queue_t *q);
static int cciss_open(struct inode *inode, struct file *filep);
static int cciss_release(struct inode *inode, struct file *filep);
static int cciss_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg);
static int revalidate_logvol(kdev_t dev, int maxusage);
static int frevalidate_logvol(kdev_t dev);
static int deregister_disk(int ctlr, int logvol);
static int register_new_disk(int cltr, int opened_vol, __u64 requested_lun);
static int cciss_rescan_disk(int cltr, int logvol);
static void cciss_getgeometry(int cntl_num);
static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c);
static void start_io( ctlr_info_t *h);
#ifdef CONFIG_PROC_FS
static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
int length, int *eof, void *data);
static void cciss_procinit(int i);
#else
static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
int length, int *eof, void *data) { return 0;}
static void cciss_procinit(int i) {}
#endif /* CONFIG_PROC_FS */
/*
* Enqueuing and dequeuing functions for cmdlists.
*/
static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
{
if (*Qptr == NULL) {
*Qptr = c;
c->next = c->prev = c;
} else {
c->prev = (*Qptr)->prev;
c->next = (*Qptr);
(*Qptr)->prev->next = c;
(*Qptr)->prev = c;
}
}
static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
CommandList_struct *c)
{
if (c && c->next != c) {
if (*Qptr == c) *Qptr = c->next;
c->prev->next = c->next;
c->next->prev = c->prev;
} else {
*Qptr = NULL;
}
return c;
}
static struct block_device_operations cciss_fops = {
owner: THIS_MODULE,
open: cciss_open,
release: cciss_release,
ioctl: cciss_ioctl,
revalidate: frevalidate_logvol,
};
#include "cciss_scsi.c" /* For SCSI tape support */
#define ENG_GIG 1048576000
#define ENG_GIG_FACTOR (ENG_GIG/512)
#define RAID_UNKNOWN 6
static const char *raid_label[] = {"0","4","1(0+1)","5","5+1","ADG",
"UNKNOWN"};
/*
* Report information about this controller.
*/
#ifdef CONFIG_PROC_FS
static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
int length, int *eof, void *data)
{
off_t pos = 0;
off_t len = 0;
int size, i, ctlr;
ctlr_info_t *h = (ctlr_info_t*)data;
drive_info_struct *drv;
unsigned long flags;
unsigned int vol_sz, vol_sz_frac;
spin_lock_irqsave(&io_request_lock, flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(&io_request_lock, flags);
return -EBUSY;
}
h->busy_configuring = 1;
spin_unlock_irqrestore(&io_request_lock, flags);
ctlr = h->ctlr;
size = sprintf(buffer, "%s: HP %s Controller\n"
"Board ID: 0x%08lx\n"
"Firmware Version: %c%c%c%c\n"
"IRQ: %d\n"
"Logical drives: %d\n"
"Current Q depth: %d\n"
"Current # commands on controller: %d\n"
"Max Q depth since init: %d\n"
"Max # commands on controller since init: %d\n"
"Max SG entries since init: %d\n"
MONITOR_PERIOD_PATTERN
MONITOR_DEADLINE_PATTERN
MONITOR_STATUS_PATTERN
"\n",
h->devname,
h->product_name,
(unsigned long)h->board_id,
h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3],
(unsigned int)h->intr,
h->num_luns,
h->Qdepth, h->commands_outstanding,
h->maxQsinceinit, h->max_outstanding, h->maxSG,
MONITOR_PERIOD_VALUE(h),
MONITOR_DEADLINE_VALUE(h),
CTLR_STATUS(h));
pos += size; len += size;
cciss_proc_tape_report(ctlr, buffer, &pos, &len);
for(i=0; i<=h->highest_lun; i++) {
drv = &h->drv[i];
if (drv->nr_blocks == 0)
continue;
vol_sz = drv->nr_blocks/ENG_GIG_FACTOR;
vol_sz_frac = (drv->nr_blocks%ENG_GIG_FACTOR)*100/ENG_GIG_FACTOR;
if (drv->raid_level > 5)
drv->raid_level = RAID_UNKNOWN;
size = sprintf(buffer+len, "cciss/c%dd%d:"
"\t%4d.%02dGB\tRAID %s\n",
ctlr, i, vol_sz,vol_sz_frac,
raid_label[drv->raid_level]);
pos += size, len += size;
}
*eof = 1;
*start = buffer+offset;
len -= offset;
if (len>length)
len = length;
h->busy_configuring = 0;
return len;
}
static int
cciss_proc_write(struct file *file, const char *buffer,
unsigned long count, void *data)
{
unsigned char cmd[80];
int len;
ctlr_info_t *h = (ctlr_info_t *) data;
int rc;
if (count > sizeof(cmd)-1)
return -EINVAL;
if (copy_from_user(cmd, buffer, count))
return -EFAULT;
cmd[count] = '\0';
len = strlen(cmd);
if (cmd[len-1] == '\n')
cmd[--len] = '\0';
# ifdef CONFIG_CISS_SCSI_TAPE
if (strcmp("engage scsi", cmd)==0) {
rc = cciss_engage_scsi(h->ctlr);
if (rc != 0)
return -rc;
return count;
}
/* might be nice to have "disengage" too, but it's not
safely possible. (only 1 module use count, lock issues.) */
# endif
if (START_MONITOR_THREAD(h, cmd, count, cciss_monitor, &rc) == 0)
return rc;
return -EINVAL;
}
/*
* Get us a file in /proc/cciss that says something about each controller.
* Create /proc/cciss if it doesn't exist yet.
*/
static void __init cciss_procinit(int i)
{
struct proc_dir_entry *pde;
if (proc_cciss == NULL) {
proc_cciss = proc_mkdir("cciss", proc_root_driver);
if (!proc_cciss) {
printk("cciss: proc_mkdir failed\n");
return;
}
}
pde = create_proc_read_entry(hba[i]->devname,
S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
proc_cciss, cciss_proc_get_info, hba[i]);
pde->write_proc = cciss_proc_write;
}
#endif /* CONFIG_PROC_FS */
/*
* For operations that cannot sleep, a command block is allocated at init,
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
* which ones are free or in use. For operations that can wait for kmalloc
* to possible sleep, this routine can be called with get_from_pool set to 0.
* cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
*/
static CommandList_struct * cmd_alloc(ctlr_info_t *h, int get_from_pool)
{
CommandList_struct *c;
int i;
u64bit temp64;
dma_addr_t cmd_dma_handle, err_dma_handle;
if (!get_from_pool) {
c = (CommandList_struct *) pci_alloc_consistent(
h->pdev, sizeof(CommandList_struct), &cmd_dma_handle);
if (c==NULL)
return NULL;
memset(c, 0, sizeof(CommandList_struct));
c->err_info = (ErrorInfo_struct *)pci_alloc_consistent(
h->pdev, sizeof(ErrorInfo_struct),
&err_dma_handle);
if (c->err_info == NULL)
{
pci_free_consistent(h->pdev,
sizeof(CommandList_struct), c, cmd_dma_handle);
return NULL;
}
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
} else /* get it out of the controllers pool */
{
do {
i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS);
if (i == NR_CMDS)
return NULL;
} while(test_and_set_bit(i%32, h->cmd_pool_bits+(i/32)) != 0);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
#endif
c = h->cmd_pool + i;
memset(c, 0, sizeof(CommandList_struct));
cmd_dma_handle = h->cmd_pool_dhandle
+ i*sizeof(CommandList_struct);
c->err_info = h->errinfo_pool + i;
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
err_dma_handle = h->errinfo_pool_dhandle
+ i*sizeof(ErrorInfo_struct);
h->nr_allocs++;
}
c->busaddr = (__u32) cmd_dma_handle;
temp64.val = (__u64) err_dma_handle;
c->ErrDesc.Addr.lower = temp64.val32.lower;
c->ErrDesc.Addr.upper = temp64.val32.upper;
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
c->ctlr = h->ctlr;
return c;
}
/*
* Frees a command block that was previously allocated with cmd_alloc().
*/
static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
{
int i;
u64bit temp64;
if (!got_from_pool) {
temp64.val32.lower = c->ErrDesc.Addr.lower;
temp64.val32.upper = c->ErrDesc.Addr.upper;
pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
c->err_info, (dma_addr_t) temp64.val);
pci_free_consistent(h->pdev, sizeof(CommandList_struct),
c, (dma_addr_t) c->busaddr);
} else
{
i = c - h->cmd_pool;
clear_bit(i%32, h->cmd_pool_bits+(i/32));
h->nr_frees++;
}
}
/*
* fills in the disk information.
*/
static void cciss_geninit( int ctlr)
{
drive_info_struct *drv;
int i,j;
/* Loop through each real device */
hba[ctlr]->gendisk.nr_real = 0;
for(i=0; i< NWD; i++) {
drv = &(hba[ctlr]->drv[i]);
if (!(drv->nr_blocks))
continue;
hba[ctlr]->hd[i << NWD_SHIFT].nr_sects =
hba[ctlr]->sizes[i << NWD_SHIFT] = drv->nr_blocks;
/* for each partition */
for(j=0; j<MAX_PART; j++) {
hba[ctlr]->blocksizes[(i<<NWD_SHIFT) + j] = 1024;
hba[ctlr]->hardsizes[ (i<<NWD_SHIFT) + j] =
drv->block_size;
}
}
hba[ctlr]->gendisk.nr_real = hba[ctlr]->highest_lun+1;
}
/*
* Open. Make sure the device is really there.
*/
static int cciss_open(struct inode *inode, struct file *filep)
{
int ctlr = map_major_to_ctlr[MAJOR(inode->i_rdev)];
int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_open %x (%x:%x)\n", inode->i_rdev, ctlr, dsk);
#endif /* CCISS_DEBUG */
if (ctlr > MAX_CTLR || hba[ctlr] == NULL || !CTLR_IS_ALIVE(hba[ctlr]))
return -ENXIO;
/*
* Root is allowed to open raw volume zero even if its not configured
* so array config can still work. Root is also allowed to open any
* volume that has a LUN ID, so it can issue IOCTL to reread the
* disk information. I don't think I really like this.
* but I'm already using way to many device nodes to claim another one
* for "raw controller".
*/
if (hba[ctlr]->sizes[MINOR(inode->i_rdev)] == 0) { /* not online? */
if (MINOR(inode->i_rdev) != 0) { /* not node 0? */
/* if not node 0 make sure it is a partition = 0 */
if (MINOR(inode->i_rdev) & 0x0f) {
return -ENXIO;
/* if it is, make sure we have a LUN ID */
} else if (hba[ctlr]->drv[MINOR(inode->i_rdev)
>> NWD_SHIFT].LunID == 0) {
return -ENXIO;
}
}
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
}
hba[ctlr]->drv[dsk].usage_count++;
hba[ctlr]->usage_count++;
return 0;
}
/*
* Close. Sync first.
*/
static int cciss_release(struct inode *inode, struct file *filep)
{
int ctlr = map_major_to_ctlr[MAJOR(inode->i_rdev)];
int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_release %x (%x:%x)\n", inode->i_rdev, ctlr, dsk);
#endif /* CCISS_DEBUG */
/* fsync_dev(inode->i_rdev); */
hba[ctlr]->drv[dsk].usage_count--;
hba[ctlr]->usage_count--;
return 0;
}
#ifdef __x86_64__
/* for AMD 64 bit kernel compatibility with 32-bit userland ioctls */
extern int sys_ioctl(unsigned int fd, unsigned cmd, unsigned long arg);
extern int
register_ioctl32_conversion(unsigned int cmd, int (*handler)(unsigned int,
unsigned int, unsigned long, struct file *));
extern int unregister_ioctl32_conversion(unsigned int cmd);
static int cciss_ioctl32_passthru(unsigned int fd, unsigned cmd, unsigned long arg, struct file *file);
static int cciss_ioctl32_big_passthru(unsigned int fd, unsigned cmd, unsigned long arg, struct file *file);
typedef int (*handler_type) (unsigned int, unsigned int, unsigned long,
struct file *);
static struct ioctl32_map {
unsigned int cmd;
handler_type handler;
int registered;
} cciss_ioctl32_map[] = {
{ CCISS_GETPCIINFO, (handler_type) sys_ioctl, 0 },
{ CCISS_GETINTINFO, (handler_type) sys_ioctl, 0 },
{ CCISS_SETINTINFO, (handler_type) sys_ioctl, 0 },
{ CCISS_GETNODENAME, (handler_type) sys_ioctl, 0 },
{ CCISS_SETNODENAME, (handler_type) sys_ioctl, 0 },
{ CCISS_GETHEARTBEAT, (handler_type) sys_ioctl, 0 },
{ CCISS_GETBUSTYPES, (handler_type) sys_ioctl, 0 },
{ CCISS_GETFIRMVER, (handler_type) sys_ioctl, 0 },
{ CCISS_GETDRIVVER, (handler_type) sys_ioctl, 0 },
{ CCISS_REVALIDVOLS, (handler_type) sys_ioctl, 0 },
{ CCISS_PASSTHRU32, cciss_ioctl32_passthru, 0 },
{ CCISS_DEREGDISK, (handler_type) sys_ioctl, 0 },
{ CCISS_REGNEWDISK, (handler_type) sys_ioctl, 0 },
{ CCISS_REGNEWD, (handler_type) sys_ioctl, 0 },
{ CCISS_RESCANDISK, (handler_type) sys_ioctl, 0 },
{ CCISS_GETLUNINFO, (handler_type) sys_ioctl, 0 },
{ CCISS_BIG_PASSTHRU32, cciss_ioctl32_big_passthru, 0 },
};
#define NCCISS_IOCTL32_ENTRIES (sizeof(cciss_ioctl32_map) / sizeof(cciss_ioctl32_map[0]))
static void register_cciss_ioctl32(void)
{
int i, rc;
for (i=0; i < NCCISS_IOCTL32_ENTRIES; i++) {
rc = register_ioctl32_conversion(
cciss_ioctl32_map[i].cmd,
cciss_ioctl32_map[i].handler);
if (rc != 0) {
printk(KERN_WARNING "cciss: failed to register "
"32 bit compatible ioctl 0x%08x\n",
cciss_ioctl32_map[i].cmd);
cciss_ioctl32_map[i].registered = 0;
} else
cciss_ioctl32_map[i].registered = 1;
}
}
static void unregister_cciss_ioctl32(void)
{
int i, rc;
for (i=0; i < NCCISS_IOCTL32_ENTRIES; i++) {
if (!cciss_ioctl32_map[i].registered)
continue;
rc = unregister_ioctl32_conversion(
cciss_ioctl32_map[i].cmd);
if (rc == 0) {
cciss_ioctl32_map[i].registered = 0;
continue;
}
printk(KERN_WARNING "cciss: failed to unregister "
"32 bit compatible ioctl 0x%08x\n",
cciss_ioctl32_map[i].cmd);
}
}
int cciss_ioctl32_passthru(unsigned int fd, unsigned cmd, unsigned long arg,
struct file *file)
{
IOCTL32_Command_struct *arg32 =
(IOCTL32_Command_struct *) arg;
IOCTL_Command_struct arg64;
mm_segment_t old_fs;
int err;
__u64 tmp_ptr;
err = 0;
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(tmp_ptr, &arg32->buf);
arg64.buf = (BYTE *) tmp_ptr;
if (err)
return -EFAULT;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_ioctl(fd, CCISS_PASSTHRU, (unsigned long) &arg64);
set_fs(old_fs);
if (err)
return err;
err |= copy_to_user(&arg32->error_info, &arg64.error_info, sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
int cciss_ioctl32_big_passthru(unsigned int fd, unsigned cmd, unsigned long arg,
struct file *file)
{
BIG_IOCTL32_Command_struct *arg32 =
(BIG_IOCTL32_Command_struct *) arg;
BIG_IOCTL_Command_struct arg64;
mm_segment_t old_fs;
int err;
__u64 tmp_ptr;
err = 0;
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(arg64.malloc_size, &arg32->malloc_size);
err |= get_user(tmp_ptr, &arg32->buf);
arg64.buf = (BYTE *) tmp_ptr;
if (err) return -EFAULT;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_ioctl(fd, CCISS_BIG_PASSTHRU, (unsigned long) &arg64);
set_fs(old_fs);
if (err)
return err;
err |= copy_to_user(&arg32->error_info, &arg64.error_info, sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
#else
static inline void register_cciss_ioctl32(void) {}
static inline void unregister_cciss_ioctl32(void) {}
#endif
/*
* ioctl
*/
static int cciss_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg)
{
int ctlr = map_major_to_ctlr[MAJOR(inode->i_rdev)];
int dsk = MINOR(inode->i_rdev) >> NWD_SHIFT;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
#endif /* CCISS_DEBUG */
switch(cmd) {
case HDIO_GETGEO:
{
struct hd_geometry driver_geo;
memset(&driver_geo, 0, sizeof(driver_geo));
if (hba[ctlr]->drv[dsk].cylinders) {
driver_geo.heads = hba[ctlr]->drv[dsk].heads;
driver_geo.sectors = hba[ctlr]->drv[dsk].sectors;
driver_geo.cylinders = hba[ctlr]->drv[dsk].cylinders;
} else
return -ENXIO;
driver_geo.start=
hba[ctlr]->hd[MINOR(inode->i_rdev)].start_sect;
if (copy_to_user((void *) arg, &driver_geo,
sizeof( struct hd_geometry)))
return -EFAULT;
return 0;
}
case HDIO_GETGEO_BIG:
{
struct hd_big_geometry driver_geo;
memset(&driver_geo, 0, sizeof(driver_geo));
if (hba[ctlr]->drv[dsk].cylinders) {
driver_geo.heads = hba[ctlr]->drv[dsk].heads;
driver_geo.sectors = hba[ctlr]->drv[dsk].sectors;
driver_geo.cylinders = hba[ctlr]->drv[dsk].cylinders;
} else
return -ENXIO;
driver_geo.start=
hba[ctlr]->hd[MINOR(inode->i_rdev)].start_sect;
if (copy_to_user((void *) arg, &driver_geo,
sizeof( struct hd_big_geometry)))
return -EFAULT;
return 0;
}
case BLKRRPART:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
return revalidate_logvol(inode->i_rdev, 1);
case BLKGETSIZE:
case BLKGETSIZE64:
case BLKFLSBUF:
case BLKBSZSET:
case BLKBSZGET:
case BLKROSET:
case BLKROGET:
case BLKRASET:
case BLKRAGET:
case BLKPG:
case BLKELVGET:
case BLKELVSET:
return blk_ioctl(inode->i_rdev, cmd, arg);
case CCISS_GETPCIINFO:
{
cciss_pci_info_struct pciinfo;
if (!arg)
return -EINVAL;
pciinfo.bus = hba[ctlr]->pdev->bus->number;
pciinfo.dev_fn = hba[ctlr]->pdev->devfn;
pciinfo.board_id = hba[ctlr]->board_id;
if (copy_to_user((void *) arg, &pciinfo, sizeof( cciss_pci_info_struct )))
return -EFAULT;
return 0;
}
case CCISS_GETINTINFO:
{
cciss_coalint_struct intinfo;
ctlr_info_t *c = hba[ctlr];
if (!arg)
return -EINVAL;
intinfo.delay = readl(&c->cfgtable->HostWrite.CoalIntDelay);
intinfo.count = readl(&c->cfgtable->HostWrite.CoalIntCount);
if (copy_to_user((void *) arg, &intinfo, sizeof( cciss_coalint_struct )))
return -EFAULT;
return 0;
}
case CCISS_SETINTINFO:
{
cciss_coalint_struct intinfo;
ctlr_info_t *c = hba[ctlr];
unsigned long flags;
int i;
if (!arg)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&intinfo, (void *) arg, sizeof( cciss_coalint_struct)))
return -EFAULT;
if ( (intinfo.delay == 0 ) && (intinfo.count == 0)) {
return -EINVAL;
}
spin_lock_irqsave(&io_request_lock, flags);
/* Can only safely update if no commands outstanding */
if (c->commands_outstanding > 0 ) {
spin_unlock_irqrestore(&io_request_lock, flags);
return -EINVAL;
}
/* Update the field, and then ring the doorbell */
writel( intinfo.delay,
&(c->cfgtable->HostWrite.CoalIntDelay));
writel( intinfo.count,
&(c->cfgtable->HostWrite.CoalIntCount));
writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
if (!(readl(c->vaddr + SA5_DOORBELL)
& CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
spin_unlock_irqrestore(&io_request_lock, flags);
if (i >= MAX_IOCTL_CONFIG_WAIT)
/* there is an unlikely case where this can happen,
* involving hot replacing a failed 144 GB drive in a
* RAID 5 set just as we attempt this ioctl. */
return -EAGAIN;
return 0;
}
case CCISS_GETNODENAME:
{
NodeName_type NodeName;
ctlr_info_t *c = hba[ctlr];
int i;
if (!arg)
return -EINVAL;
for(i=0;i<16;i++)
NodeName[i] = readb(&c->cfgtable->ServerName[i]);
if (copy_to_user((void *) arg, NodeName, sizeof( NodeName_type)))
return -EFAULT;
return 0;
}
case CCISS_SETNODENAME:
{
NodeName_type NodeName;
ctlr_info_t *c = hba[ctlr];
unsigned long flags;
int i;
if (!arg)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(NodeName, (void *) arg, sizeof( NodeName_type)))
return -EFAULT;
spin_lock_irqsave(&io_request_lock, flags);
/* Update the field, and then ring the doorbell */
for(i=0;i<16;i++)
writeb( NodeName[i], &c->cfgtable->ServerName[i]);
writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
if (!(readl(c->vaddr + SA5_DOORBELL)
& CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
spin_unlock_irqrestore(&io_request_lock, flags);
if (i >= MAX_IOCTL_CONFIG_WAIT)
/* there is an unlikely case where this can happen,
* involving hot replacing a failed 144 GB drive in a
* RAID 5 set just as we attempt this ioctl. */
return -EAGAIN;
return 0;
}
case CCISS_GETHEARTBEAT:
{
Heartbeat_type heartbeat;
ctlr_info_t *c = hba[ctlr];
if (!arg)
return -EINVAL;
heartbeat = readl(&c->cfgtable->HeartBeat);
if (copy_to_user((void *) arg, &heartbeat, sizeof( Heartbeat_type)))
return -EFAULT;
return 0;
}
case CCISS_GETBUSTYPES:
{
BusTypes_type BusTypes;
ctlr_info_t *c = hba[ctlr];
if (!arg)
return -EINVAL;
BusTypes = readl(&c->cfgtable->BusTypes);
if (copy_to_user((void *) arg, &BusTypes, sizeof( BusTypes_type) ))
return -EFAULT;
return 0;
}
case CCISS_GETFIRMVER:
{
FirmwareVer_type firmware;
if (!arg)
return -EINVAL;
memcpy(firmware, hba[ctlr]->firm_ver, 4);
if (copy_to_user((void *) arg, firmware, sizeof( FirmwareVer_type)))
return -EFAULT;
return 0;
}
case CCISS_GETDRIVVER:
{
DriverVer_type DriverVer = DRIVER_VERSION;
if (!arg)
return -EINVAL;
if (copy_to_user((void *) arg, &DriverVer, sizeof( DriverVer_type) ))
return -EFAULT;
return 0;
}
case CCISS_RESCANDISK:
{
return cciss_rescan_disk(ctlr, dsk);
}
case CCISS_DEREGDISK:
return deregister_disk(ctlr,dsk);
case CCISS_REGNEWD:
return register_new_disk(ctlr, dsk, 0);
case CCISS_REGNEWDISK:
{
__u64 new_logvol;
if (!arg)
return -EINVAL;
if (copy_from_user(&new_logvol, (void *) arg,
sizeof( __u64)))
return -EFAULT;
return register_new_disk(ctlr, dsk, new_logvol);
}
case CCISS_GETLUNINFO:
{
LogvolInfo_struct luninfo;
int num_parts = 0;
int i, start;
luninfo.LunID = hba[ctlr]->drv[dsk].LunID;
luninfo.num_opens = hba[ctlr]->drv[dsk].usage_count;
/* count partitions 1 to 15 with sizes > 0 */
start = (dsk << NWD_SHIFT);
for(i=1; i <MAX_PART; i++) {
int minor = start+i;
if (hba[ctlr]->sizes[minor] != 0)
num_parts++;
}
luninfo.num_parts = num_parts;
if (copy_to_user((void *) arg, &luninfo,
sizeof( LogvolInfo_struct) ))
return -EFAULT;
return 0;
}
case CCISS_PASSTHRU:
{
IOCTL_Command_struct iocommand;
ctlr_info_t *h = hba[ctlr];
CommandList_struct *c;
char *buff = NULL;
u64bit temp64;
unsigned long flags;
DECLARE_COMPLETION(wait);
if (!arg)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (copy_from_user(&iocommand, (void *) arg, sizeof( IOCTL_Command_struct) ))
return -EFAULT;
if ((iocommand.buf_size < 1) &&
(iocommand.Request.Type.Direction
!= XFER_NONE)) {
return -EINVAL;
}
/* Check kmalloc limits */
if (iocommand.buf_size > 128000)
return -EINVAL;
if (iocommand.buf_size > 0) {
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
if (buff == NULL)
return -ENOMEM;
}
if (iocommand.Request.Type.Direction == XFER_WRITE) {
/* Copy the data into the buffer we created */
if (copy_from_user(buff, iocommand.buf, iocommand.buf_size))
{
kfree(buff);
return -EFAULT;
}
}
else
memset(buff, 0, iocommand.buf_size);
if ((c = cmd_alloc(h , 0)) == NULL) {
kfree(buff);
return -ENOMEM;
}
/* Fill in the command type */
c->cmd_type = CMD_IOCTL_PEND;
/* Fill in Command Header */
c->Header.ReplyQueue = 0; /* unused in simple mode */
if (iocommand.buf_size > 0) { /* buffer to fill */
c->Header.SGList = 1;
c->Header.SGTotal= 1;
} else { /* no buffers to fill */
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.LUN = iocommand.LUN_info;
c->Header.Tag.lower = c->busaddr; /* use the kernel address */
/* the cmd block for tag */
/* Fill in Request block */
c->Request = iocommand.Request;
/* Fill in the scatter gather information */
if (iocommand.buf_size > 0 ) {
temp64.val = pci_map_single( h->pdev, buff,
iocommand.buf_size,
PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = temp64.val32.lower;
c->SG[0].Addr.upper = temp64.val32.upper;
c->SG[0].Len = iocommand.buf_size;
c->SG[0].Ext = 0; /* we are not chaining */
}
c->waiting = &wait;
/* Put the request on the tail of the request queue */
spin_lock_irqsave(&io_request_lock, flags);
addQ(&h->reqQ, c);
h->Qdepth++;
start_io(h);
spin_unlock_irqrestore(&io_request_lock, flags);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
temp64.val32.lower = c->SG[0].Addr.lower;
temp64.val32.upper = c->SG[0].Addr.upper;
pci_unmap_single( h->pdev, (dma_addr_t) temp64.val,
iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
/* Copy the error information out */
iocommand.error_info = *(c->err_info);
if (copy_to_user((void *) arg, &iocommand,
sizeof( IOCTL_Command_struct) ) ) {
kfree(buff);
cmd_free(h, c, 0);
return( -EFAULT);
}
if (iocommand.Request.Type.Direction == XFER_READ) {
/* Copy the data out of the buffer we created */
if (copy_to_user(iocommand.buf, buff,
iocommand.buf_size)) {
kfree(buff);
cmd_free(h, c, 0);
return -EFAULT;
}
}
kfree(buff);
cmd_free(h, c, 0);
return 0;
}
case CCISS_BIG_PASSTHRU:
{
BIG_IOCTL_Command_struct iocommand;
ctlr_info_t *h = hba[ctlr];
CommandList_struct *c;
char *buff[MAXSGENTRIES] = {NULL,};
int buff_size[MAXSGENTRIES] = {0,};
u64bit temp64;
unsigned long flags;
BYTE sg_used = 0;
int status = 0;
int i;
DECLARE_COMPLETION(wait);
if (!arg)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (copy_from_user(&iocommand, (void *) arg, sizeof( BIG_IOCTL_Command_struct) ))
return -EFAULT;
if ((iocommand.buf_size < 1) &&
(iocommand.Request.Type.Direction != XFER_NONE)) {
return -EINVAL;
}
/* Check kmalloc limits using all SGs */
if (iocommand.malloc_size > MAX_KMALLOC_SIZE)
return -EINVAL;
if (iocommand.buf_size > iocommand.malloc_size * MAXSGENTRIES)
return -EINVAL;
if (iocommand.buf_size > 0) {
__u32 size_left_alloc = iocommand.buf_size;
BYTE *data_ptr = (BYTE *) iocommand.buf;
while (size_left_alloc > 0) {
buff_size[sg_used] = (size_left_alloc
> iocommand.malloc_size)
? iocommand.malloc_size : size_left_alloc;
buff[sg_used] = kmalloc( buff_size[sg_used],
GFP_KERNEL);
if (buff[sg_used] == NULL) {
status = -ENOMEM;
goto cleanup1;
}
if (iocommand.Request.Type.Direction ==
XFER_WRITE) {
/* Copy the data into the buffer created */
if (copy_from_user(buff[sg_used], data_ptr,
buff_size[sg_used])) {
status = -EFAULT;
goto cleanup1;
}
}
else
memset(buff[sg_used], 0, buff_size[sg_used]);
size_left_alloc -= buff_size[sg_used];
data_ptr += buff_size[sg_used];
sg_used++;
}
}
if ((c = cmd_alloc(h , 0)) == NULL) {
status = -ENOMEM;
goto cleanup1;
}
/* Fill in the command type */
c->cmd_type = CMD_IOCTL_PEND;
/* Fill in Command Header */
c->Header.ReplyQueue = 0; /* unused in simple mode */
if (iocommand.buf_size > 0) { /* buffer to fill */
c->Header.SGList = sg_used;
c->Header.SGTotal= sg_used;
} else { /* no buffers to fill */
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.LUN = iocommand.LUN_info;
c->Header.Tag.lower = c->busaddr; /* use the kernel address */
/* the cmd block for tag */
/* Fill in Request block */
c->Request = iocommand.Request;
/* Fill in the scatter gather information */
if (iocommand.buf_size > 0 ) {
int i;
for(i=0; i< sg_used; i++) {
temp64.val = pci_map_single( h->pdev, buff[i],
buff_size[i],
PCI_DMA_BIDIRECTIONAL);
c->SG[i].Addr.lower = temp64.val32.lower;
c->SG[i].Addr.upper = temp64.val32.upper;
c->SG[i].Len = buff_size[i];
c->SG[i].Ext = 0; /* we are not chaining */
}
}
c->waiting = &wait;
/* Put the request on the tail of the request queue */
spin_lock_irqsave(&io_request_lock, flags);
addQ(&h->reqQ, c);
h->Qdepth++;
start_io(h);
spin_unlock_irqrestore(&io_request_lock, flags);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
for(i=0; i< sg_used; i++) {
temp64.val32.lower = c->SG[i].Addr.lower;
temp64.val32.upper = c->SG[i].Addr.upper;
pci_unmap_single( h->pdev, (dma_addr_t) temp64.val,
buff_size[i], PCI_DMA_BIDIRECTIONAL);
}
/* Copy the error information out */
iocommand.error_info = *(c->err_info);
if (copy_to_user((void *) arg, &iocommand,
sizeof( IOCTL_Command_struct) ) ) {
cmd_free(h, c, 0);
status = -EFAULT;
goto cleanup1;
}
if (iocommand.Request.Type.Direction == XFER_READ) {
/* Copy the data out of the buffer we created */
BYTE *ptr = (BYTE *) iocommand.buf;
for(i=0; i< sg_used; i++) {
if (copy_to_user(ptr, buff[i], buff_size[i])) {
cmd_free(h, c, 0);
status = -EFAULT;
goto cleanup1;
}
ptr += buff_size[i];
}
}
cmd_free(h, c, 0);
status = 0;
cleanup1:
for(i=0; i< sg_used; i++) {
if (buff[i] != NULL)
kfree(buff[i]);
}
return status;
}
default:
return -EBADRQC;
}
}
/* Borrowed and adapted from sd.c */
static int revalidate_logvol(kdev_t dev, int maxusage)
{
int ctlr, target;
struct gendisk *gdev;
unsigned long flags;
int max_p;
int start;
int i;
target = MINOR(dev) >> NWD_SHIFT;
ctlr = map_major_to_ctlr[MAJOR(dev)];
gdev = &(hba[ctlr]->gendisk);
spin_lock_irqsave(&io_request_lock, flags);
if (hba[ctlr]->drv[target].usage_count > maxusage) {
spin_unlock_irqrestore(&io_request_lock, flags);
printk(KERN_WARNING "cciss: Device busy for "
"revalidation (usage=%d)\n",
hba[ctlr]->drv[target].usage_count);
return -EBUSY;
}
hba[ctlr]->drv[target].usage_count++;
spin_unlock_irqrestore(&io_request_lock, flags);
max_p = gdev->max_p;
start = target << gdev->minor_shift;
for(i=max_p-1; i>=0; i--) {
int minor = start+i;
invalidate_device(MKDEV(hba[ctlr]->major, minor), 1);
gdev->part[minor].start_sect = 0;
gdev->part[minor].nr_sects = 0;
/* reset the blocksize so we can read the partition table */
blksize_size[hba[ctlr]->major][minor] = 1024;
}
/* setup partitions per disk */
grok_partitions(gdev, target, MAX_PART,
hba[ctlr]->drv[target].nr_blocks);
hba[ctlr]->drv[target].usage_count--;
return 0;
}
static int frevalidate_logvol(kdev_t dev)
{
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: frevalidate has been called\n");
#endif /* CCISS_DEBUG */
return revalidate_logvol(dev, 0);
}
static int deregister_disk(int ctlr, int logvol)
{
unsigned long flags;
struct gendisk *gdev = &(hba[ctlr]->gendisk);
ctlr_info_t *h = hba[ctlr];
int start, max_p, i;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
spin_lock_irqsave(&io_request_lock, flags);
/* make sure logical volume is NOT is use */
if (h->drv[logvol].usage_count > 1 || h->busy_configuring) {
spin_unlock_irqrestore(&io_request_lock, flags);
return -EBUSY;
}
h->busy_configuring = 1;
spin_unlock_irqrestore(&io_request_lock, flags);
/* invalidate the devices and deregister the disk */
max_p = gdev->max_p;
start = logvol << gdev->minor_shift;
for (i=max_p-1; i>=0; i--) {
int minor = start+i;
/* printk("invalidating( %d %d)\n", ctlr, minor); */
invalidate_device(MKDEV(hba[ctlr]->major, minor), 1);
/* so open will now fail */
h->sizes[minor] = 0;
/* so it will no longer appear in /proc/partitions */
gdev->part[minor].start_sect = 0;
gdev->part[minor].nr_sects = 0;
}
/* check to see if it was the last disk */
if (logvol == h->highest_lun) {
/* if so, find the new hightest lun */
int i, newhighest =-1;
for(i=0; i<h->highest_lun; i++) {
/* if the disk has size > 0, it is available */
if (h->sizes[i << gdev->minor_shift] != 0)
newhighest = i;
}
h->highest_lun = newhighest;
}
--h->num_luns;
gdev->nr_real = h->highest_lun+1;
/* zero out the disk size info */
h->drv[logvol].nr_blocks = 0;
h->drv[logvol].block_size = 0;
h->drv[logvol].cylinders = 0;
h->drv[logvol].LunID = 0;
h->busy_configuring = 0;
return 0;
}
static int sendcmd_withirq(__u8 cmd,
int ctlr,
void *buff,
size_t size,
unsigned int use_unit_num,
unsigned int log_unit,
__u8 page_code,
__u8 cmdtype)
{
ctlr_info_t *h = hba[ctlr];
CommandList_struct *c;
u64bit buff_dma_handle;
unsigned long flags;
int return_status = IO_OK;
DECLARE_COMPLETION(wait);
if ((c = cmd_alloc(h , 0)) == NULL)
return -ENOMEM;
c->cmd_type = CMD_IOCTL_PEND;
/* Fill in Command Header */
c->Header.ReplyQueue = 0; /* unused in simple mode */
if (buff != NULL) { /* buffer to fill */
c->Header.SGList = 1;
c->Header.SGTotal= 1;
} else {
/* no buffers to fill */
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.Tag.lower = c->busaddr; /* tag is phys addr of cmd */
/* Fill in Request block */
c->Request.CDB[0] = cmd;
c->Request.Type.Type = cmdtype;
if (cmdtype == TYPE_CMD) {
switch (cmd) {
case CISS_INQUIRY:
/* If the logical unit number is 0 then, this is going
to controller so It's a physical command
mode = 0 target = 0.
So we have nothing to write.
Otherwise
mode = 1 target = LUNID
*/
if (use_unit_num != 0) {
c->Header.LUN.LogDev.VolId =
hba[ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
}
if (page_code != 0) {
c->Request.CDB[1] = 0x01;
c->Request.CDB[2] = page_code;
}
c->Request.CDBLen = 6;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; /* Read */
c->Request.Timeout = 0; /* Don't time out */
c->Request.CDB[4] = size & 0xFF;
break;
case CISS_REPORT_LOG:
/* Talking to controller so It's a physical command
mode = 00 target = 0.
So we have nothing to write.
*/
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; /* Read */
c->Request.Timeout = 0; /* Don't time out */
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
c->Request.CDB[7] = (size >> 16) & 0xFF;
c->Request.CDB[8] = (size >> 8) & 0xFF;
c->Request.CDB[9] = size & 0xFF;
break;
case CCISS_READ_CAPACITY:
c->Header.LUN.LogDev.VolId=
hba[ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
c->Request.CDBLen = 10;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; /* Read */
c->Request.Timeout = 0; /* Don't time out */
break;
default:
printk(KERN_WARNING
"cciss: Unknown Command 0x%x sent attempted\n", cmd);
cmd_free(h, c, 1);
return IO_ERROR;
}
} else if (cmdtype == TYPE_MSG) {
switch (cmd) {
case 3: /* No-Op message */
c->Request.CDBLen = 1;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
default:
printk(KERN_WARNING
"cciss%d: unknown message type %d\n",
ctlr, cmd);
cmd_free(h, c, 1);
return IO_ERROR;
}
} else {
printk(KERN_WARNING
"cciss%d: unknown command type %d\n", ctlr, cmdtype);
cmd_free(h, c, 1);
return IO_ERROR;
}
/* Fill in the scatter gather information */
if (size > 0) {
buff_dma_handle.val = (__u64) pci_map_single( h->pdev,
buff, size, PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
c->SG[0].Len = size;
c->SG[0].Ext = 0; /* we are not chaining */
}
resend_cmd2:
c->waiting = &wait;
/* Put the request on the tail of the queue and send it */
spin_lock_irqsave(&io_request_lock, flags);
addQ(&h->reqQ, c);
h->Qdepth++;
start_io(h);
spin_unlock_irqrestore(&io_request_lock, flags);
wait_for_completion(&wait);
if (c->err_info->CommandStatus != 0) {
/* an error has occurred */
switch (c->err_info->CommandStatus) {
case CMD_TARGET_STATUS:
printk(KERN_WARNING "cciss: cmd %p has "
" completed with errors\n", c);
if (c->err_info->ScsiStatus) {
printk(KERN_WARNING "cciss: cmd %p "
"has SCSI Status = %x\n", c,
c->err_info->ScsiStatus);
}
break;
case CMD_DATA_UNDERRUN:
case CMD_DATA_OVERRUN:
/* expected for inquire and report lun commands */
break;
case CMD_INVALID:
printk(KERN_WARNING "cciss: cmd %p is "
"reported invalid\n", c);
return_status = IO_ERROR;
break;
case CMD_PROTOCOL_ERR:
printk(KERN_WARNING "cciss: cmd %p has "
"protocol error \n", c);
return_status = IO_ERROR;
break;
case CMD_HARDWARE_ERR:
printk(KERN_WARNING "cciss: cmd %p had "
" hardware error\n", c);
return_status = IO_ERROR;
break;
case CMD_CONNECTION_LOST:
printk(KERN_WARNING "cciss: cmd %p had "
"connection lost\n", c);
return_status = IO_ERROR;
break;
case CMD_ABORTED:
printk(KERN_WARNING "cciss: cmd %p was "
"aborted\n", c);
return_status = IO_ERROR;
break;
case CMD_ABORT_FAILED:
printk(KERN_WARNING "cciss: cmd %p reports "
"abort failed\n", c);
return_status = IO_ERROR;
break;
case CMD_UNSOLICITED_ABORT:
printk(KERN_WARNING "cciss: cmd %p aborted "
"do to an unsolicited abort\n", c);
if (c->retry_count < MAX_CMD_RETRIES)
{
printk(KERN_WARNING "retrying cmd\n");
c->retry_count++;
/* erase the old error */
/* information */
memset(c->err_info, 0,
sizeof(ErrorInfo_struct));
return_status = IO_OK;
INIT_COMPLETION(wait);
goto resend_cmd2;
}
return_status = IO_ERROR;
break;
default:
printk(KERN_WARNING "cciss: cmd %p returned "
"unknown status %x\n", c,
c->err_info->CommandStatus);
return_status = IO_ERROR;
}
}
/* unlock the buffers from DMA */
pci_unmap_single( h->pdev, (dma_addr_t) buff_dma_handle.val,
size, PCI_DMA_BIDIRECTIONAL);
cmd_free(h, c, 0);
return return_status;
}
static int register_new_disk(int ctlr, int opened_vol, __u64 requested_lun)
{
struct gendisk *gdev = &(hba[ctlr]->gendisk);
ctlr_info_t *h = hba[ctlr];
int start, max_p, i;
int num_luns;
int logvol;
int new_lun_found = 0;
int new_lun_index = 0;
int free_index_found = 0;
int free_index = 0;
ReportLunData_struct *ld_buff;
ReadCapdata_struct *size_buff;
InquiryData_struct *inq_buff;
int return_code;
int listlength = 0;
__u32 lunid = 0;
unsigned int block_size;
unsigned int total_size;
unsigned long flags;
int req_lunid = (int) (requested_lun & (__u64) 0xffffffff);
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
/* if we have no space in our disk array left to add anything */
spin_lock_irqsave(&io_request_lock, flags);
if (h->num_luns >= CISS_MAX_LUN) {
spin_unlock_irqrestore(&io_request_lock, flags);
return -EINVAL;
}
if (h->busy_configuring) {
spin_unlock_irqrestore(&io_request_lock, flags);
return -EBUSY;
}
h->busy_configuring = 1;
spin_unlock_irqrestore(&io_request_lock, flags);
ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
if (ld_buff == NULL) {
printk(KERN_ERR "cciss: out of memory\n");
h->busy_configuring = 0;
return -ENOMEM;
}
memset(ld_buff, 0, sizeof(ReportLunData_struct));
size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
if (size_buff == NULL) {
printk(KERN_ERR "cciss: out of memory\n");
kfree(ld_buff);
h->busy_configuring = 0;
return -ENOMEM;
}
inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL) {
printk(KERN_ERR "cciss: out of memory\n");
kfree(ld_buff);
kfree(size_buff);
h->busy_configuring = 0;
return -ENOMEM;
}
return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
sizeof(ReportLunData_struct), 0, 0, 0, TYPE_CMD);
if (return_code == IO_OK) {
listlength = be32_to_cpu(*((__u32 *) &ld_buff->LUNListLength[0]));
} else {
/* reading number of logical volumes failed */
printk(KERN_WARNING "cciss: report logical volume"
" command failed\n");
listlength = 0;
h->busy_configuring = 0;
return -1;
}
num_luns = listlength / 8; /* 8 bytes pre entry */
if (num_luns > CISS_MAX_LUN)
num_luns = CISS_MAX_LUN;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0],
ld_buff->LUNListLength[1], ld_buff->LUNListLength[2],
ld_buff->LUNListLength[3], num_luns);
#endif
for(i=0; i< num_luns; i++) {
int j;
int lunID_found = 0;
lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8;
lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
/* check to see if this is a new lun */
for(j=0; j <= h->highest_lun; j++) {
#ifdef CCISS_DEBUG
printk("Checking %d %x against %x\n", j,h->drv[j].LunID,
lunid);
#endif /* CCISS_DEBUG */
if (h->drv[j].LunID == lunid) {
lunID_found = 1;
break;
}
}
if (lunID_found == 1)
continue;
else { /* new lun found */
#ifdef CCISS_DEBUG
printk("new lun found at %d\n", i);
#endif /* CCISS_DEBUG */
if (req_lunid) /* we are looking for a specific lun */
{
if (lunid != req_lunid)
{
#ifdef CCISS_DEBUG
printk("new lun %x is not %x\n",
lunid, req_lunid);
#endif /* CCISS_DEBUG */
continue;
}
}
new_lun_index = i;
new_lun_found = 1;
break;
}
}
if (!new_lun_found) {
printk(KERN_DEBUG "cciss: New Logical Volume not found\n");
h->busy_configuring = 0;
return -1;
}
/* Now find the free index */
for(i=0; i <CISS_MAX_LUN; i++) {
#ifdef CCISS_DEBUG
printk("Checking Index %d\n", i);
#endif /* CCISS_DEBUG */
if (hba[ctlr]->drv[i].LunID == 0) {
#ifdef CCISS_DEBUG
printk("free index found at %d\n", i);
#endif /* CCISS_DEBUG */
free_index_found = 1;
free_index = i;
break;
}
}
if (!free_index_found) {
printk(KERN_WARNING "cciss: unable to find free slot for disk\n");
h->busy_configuring = 0;
return -1;
}
logvol = free_index;
hba[ctlr]->drv[logvol].LunID = lunid;
/* there could be gaps in lun numbers, track hightest */
if (hba[ctlr]->highest_lun < logvol)
hba[ctlr]->highest_lun = logvol;
memset(size_buff, 0, sizeof(ReadCapdata_struct));
return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr,
size_buff, sizeof(ReadCapdata_struct), 1,
logvol, 0, TYPE_CMD);
if (return_code == IO_OK) {
total_size = (0xff &
(unsigned int) size_buff->total_size[0]) << 24;
total_size |= (0xff &
(unsigned int) size_buff->total_size[1]) << 16;
total_size |= (0xff &
(unsigned int) size_buff->total_size[2]) << 8;
total_size |= (0xff &
(unsigned int) size_buff->total_size[3]);
total_size++; /* command returns highest block address */
block_size = (0xff &
(unsigned int) size_buff->block_size[0]) << 24;
block_size |= (0xff &
(unsigned int) size_buff->block_size[1]) << 16;
block_size |= (0xff &
(unsigned int) size_buff->block_size[2]) << 8;
block_size |= (0xff &
(unsigned int) size_buff->block_size[3]);
} else {
/* read capacity command failed */
printk(KERN_WARNING "cciss: read capacity failed\n");
total_size = 0;
block_size = BLOCK_SIZE;
}
printk(KERN_INFO " blocks= %d block_size= %d\n",
total_size, block_size);
/* Execute the command to read the disk geometry */
memset(inq_buff, 0, sizeof(InquiryData_struct));
return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
sizeof(InquiryData_struct), 1, logvol ,0xC1, TYPE_CMD);
if (return_code == IO_OK) {
if (inq_buff->data_byte[8] == 0xFF) {
printk(KERN_WARNING
"cciss: reading geometry failed, "
"volume does not support reading geometry\n");
hba[ctlr]->drv[logvol].block_size = block_size;
hba[ctlr]->drv[logvol].nr_blocks = total_size;
hba[ctlr]->drv[logvol].heads = 255;
hba[ctlr]->drv[logvol].sectors = 32; /* secs/trk */
hba[ctlr]->drv[logvol].cylinders = total_size / 255 /32;
hba[ctlr]->drv[logvol].raid_level = RAID_UNKNOWN;
} else {
hba[ctlr]->drv[logvol].block_size = block_size;
hba[ctlr]->drv[logvol].nr_blocks = total_size;
hba[ctlr]->drv[logvol].heads = inq_buff->data_byte[6];
hba[ctlr]->drv[logvol].sectors = inq_buff->data_byte[7];
hba[ctlr]->drv[logvol].cylinders =
(inq_buff->data_byte[4] & 0xff) << 8;
hba[ctlr]->drv[logvol].cylinders +=
inq_buff->data_byte[5];
hba[ctlr]->drv[logvol].raid_level =
inq_buff->data_byte[8];
}
} else {
/* Get geometry failed */
printk(KERN_WARNING "cciss: reading geometry failed, "
"continuing with default geometry\n");
hba[ctlr]->drv[logvol].block_size = block_size;
hba[ctlr]->drv[logvol].nr_blocks = total_size;
hba[ctlr]->drv[logvol].heads = 255;
hba[ctlr]->drv[logvol].sectors = 32; /* Sectors per track */
hba[ctlr]->drv[logvol].cylinders = total_size / 255 / 32;
}
if (hba[ctlr]->drv[logvol].raid_level > 5)
hba[ctlr]->drv[logvol].raid_level = RAID_UNKNOWN;
printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d RAID %s\n\n",
hba[ctlr]->drv[logvol].heads,
hba[ctlr]->drv[logvol].sectors,
hba[ctlr]->drv[logvol].cylinders,
raid_label[hba[ctlr]->drv[logvol].raid_level]);
/* special case for c?d0, which may be opened even when
it does not "exist". In that case, don't mess with usage count.
Also, /dev/c1d1 could be used to re-add c0d0 so we can't just
check whether logvol == 0, must check logvol != opened_vol */
if (logvol != opened_vol)
hba[ctlr]->drv[logvol].usage_count = 0;
max_p = gdev->max_p;
start = logvol<< gdev->minor_shift;
hba[ctlr]->hd[start].nr_sects = total_size;
hba[ctlr]->sizes[start] = total_size;
for(i=max_p-1; i>=0; i--) {
int minor = start+i;
invalidate_device(MKDEV(hba[ctlr]->major, minor), 1);
gdev->part[minor].start_sect = 0;
gdev->part[minor].nr_sects = 0;
/* reset the blocksize so we can read the partition table */
blksize_size[hba[ctlr]->major][minor] = block_size;
hba[ctlr]->hardsizes[minor] = block_size;
}
++hba[ctlr]->num_luns;
gdev->nr_real = hba[ctlr]->highest_lun + 1;
/* setup partitions per disk */
grok_partitions(gdev, logvol, MAX_PART,
hba[ctlr]->drv[logvol].nr_blocks);
kfree(ld_buff);
kfree(size_buff);
kfree(inq_buff);
h->busy_configuring = 0;
return logvol;
}
static int cciss_rescan_disk(int ctlr, int logvol)
{
struct gendisk *gdev = &(hba[ctlr]->gendisk);
int start, max_p, i;
ReadCapdata_struct *size_buff;
InquiryData_struct *inq_buff;
int return_code;
unsigned int block_size;
unsigned int total_size;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (hba[ctlr]->sizes[logvol << NWD_SHIFT] != 0) {
/* disk is possible on line, return just a warning */
return 1;
}
size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
if (size_buff == NULL) {
printk(KERN_ERR "cciss: out of memory\n");
return -1;
}
inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL) {
printk(KERN_ERR "cciss: out of memory\n");
kfree(size_buff);
return -1;
}
memset(size_buff, 0, sizeof(ReadCapdata_struct));
return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, size_buff,
sizeof( ReadCapdata_struct), 1, logvol, 0,
TYPE_CMD);
if (return_code == IO_OK) {
total_size = (0xff &
(unsigned int)(size_buff->total_size[0])) << 24;
total_size |= (0xff &
(unsigned int)(size_buff->total_size[1])) << 16;
total_size |= (0xff &
(unsigned int)(size_buff->total_size[2])) << 8;
total_size |= (0xff & (unsigned int)
(size_buff->total_size[3]));
total_size++; /* command returns highest block address */
block_size = (0xff &
(unsigned int)(size_buff->block_size[0])) << 24;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[1])) << 16;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[2])) << 8;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[3]));
} else { /* read capacity command failed */
printk(KERN_WARNING "cciss: read capacity failed\n");
total_size = block_size = 0;
}
printk(KERN_INFO " blocks= %d block_size= %d\n",
total_size, block_size);
/* Execute the command to read the disk geometry */
memset(inq_buff, 0, sizeof(InquiryData_struct));
return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
sizeof(InquiryData_struct), 1, logvol ,0xC1, TYPE_CMD);
if (return_code == IO_OK) {
if (inq_buff->data_byte[8] == 0xFF) {
printk(KERN_WARNING "cciss: reading geometry failed, "
"volume does not support reading geometry\n");
hba[ctlr]->drv[logvol].nr_blocks = total_size;
hba[ctlr]->drv[logvol].heads = 255;
hba[ctlr]->drv[logvol].sectors = 32; /* Sectors/track */
hba[ctlr]->drv[logvol].cylinders = total_size / 255 /32;
} else {
hba[ctlr]->drv[logvol].nr_blocks = total_size;
hba[ctlr]->drv[logvol].heads = inq_buff->data_byte[6];
hba[ctlr]->drv[logvol].sectors = inq_buff->data_byte[7];
hba[ctlr]->drv[logvol].cylinders =
(inq_buff->data_byte[4] & 0xff) << 8;
hba[ctlr]->drv[logvol].cylinders +=
inq_buff->data_byte[5];
}
} else { /* Get geometry failed */
printk(KERN_WARNING "cciss: reading geometry failed, "
"continuing with default geometry\n");
hba[ctlr]->drv[logvol].nr_blocks = total_size;
hba[ctlr]->drv[logvol].heads = 255;
hba[ctlr]->drv[logvol].sectors = 32; /* Sectors / track */
hba[ctlr]->drv[logvol].cylinders = total_size / 255 /32;
}
printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d \n\n",
hba[ctlr]->drv[logvol].heads,
hba[ctlr]->drv[logvol].sectors,
hba[ctlr]->drv[logvol].cylinders);
max_p = gdev->max_p;
start = logvol<< gdev->minor_shift;
hba[ctlr]->hd[start].nr_sects = hba[ctlr]->sizes[start]= total_size;
for (i=max_p-1; i>=0; i--) {
int minor = start+i;
invalidate_device(MKDEV(hba[ctlr]->major, minor), 1);
gdev->part[minor].start_sect = 0;
gdev->part[minor].nr_sects = 0;
/* reset the blocksize so we can read the partition table */
blksize_size[hba[ctlr]->major][minor] = block_size;
hba[ctlr]->hardsizes[minor] = block_size;
}
/* setup partitions per disk */
grok_partitions(gdev, logvol, MAX_PART,
hba[ctlr]->drv[logvol].nr_blocks );
kfree(size_buff);
kfree(inq_buff);
return 0;
}
/*
* Wait polling for a command to complete.
* The memory mapped FIFO is polled for the completion.
* Used only at init time, interrupts disabled.
*/
static unsigned long pollcomplete(int ctlr)
{
unsigned long done;
int i;
/* Wait (up to 20 seconds) for a command to complete */
for (i = 20 * HZ; i > 0; i--) {
done = hba[ctlr]->access.command_completed(hba[ctlr]);
if (done == FIFO_EMPTY) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(1);
} else
return done;
}
/* Invalid address to tell caller we ran out of time */
return 1;
}
/*
* Send a command to the controller, and wait for it to complete.
* Only used at init time.
*/
static int sendcmd(
__u8 cmd,
int ctlr,
void *buff,
size_t size,
unsigned int use_unit_num, /* 0: address the controller,
1: address logical volume log_unit,
2: periph device address is scsi3addr */
unsigned int log_unit,
__u8 page_code,
unsigned char *scsi3addr)
{
CommandList_struct *c;
int i;
unsigned long complete;
ctlr_info_t *info_p= hba[ctlr];
u64bit buff_dma_handle;
int status = IO_OK;
c = cmd_alloc(info_p, 1);
if (c == NULL) {
printk(KERN_WARNING "cciss: unable to get memory");
return IO_ERROR;
}
/* Fill in Command Header */
c->Header.ReplyQueue = 0; /* unused in simple mode */
if (buff != NULL) { /* buffer to fill */
c->Header.SGList = 1;
c->Header.SGTotal= 1;
} else { /* no buffers to fill */
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.Tag.lower = c->busaddr; /* use the kernel address */
/* the cmd block for tag */
/* Fill in Request block */
switch (cmd) {
case CISS_INQUIRY:
/* If the logical unit number is 0 then, this is going
to controller so It's a physical command
mode = 0 target = 0.
So we have nothing to write.
otherwise, if use_unit_num == 1,
mode = 1(volume set addressing) target = LUNID
otherwise, if use_unit_num == 2,
mode = 0(periph dev addr) target = scsi3addr
*/
if (use_unit_num == 1) {
c->Header.LUN.LogDev.VolId=
hba[ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
}
else if (use_unit_num == 2) {
memcpy(c->Header.LUN.LunAddrBytes,scsi3addr,8);
c->Header.LUN.LogDev.Mode = 0;
/* phys dev addr */
}
/* are we trying to read a vital product page */
if (page_code != 0) {
c->Request.CDB[1] = 0x01;
c->Request.CDB[2] = page_code;
}
c->Request.CDBLen = 6;
c->Request.Type.Type = TYPE_CMD; /* It is a command. */
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; /* Read */
c->Request.Timeout = 0; /* Don't time out */
c->Request.CDB[0] = CISS_INQUIRY;
c->Request.CDB[4] = size & 0xFF;
break;
case CISS_REPORT_LOG:
case CISS_REPORT_PHYS:
/* Talking to controller so It's a physical command
mode = 00 target = 0.
So we have nothing to write.
*/
c->Request.CDBLen = 12;
c->Request.Type.Type = TYPE_CMD; /* It is a command. */
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; /* Read */
c->Request.Timeout = 0; /* Don't time out */
c->Request.CDB[0] = cmd;
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
c->Request.CDB[7] = (size >> 16) & 0xFF;
c->Request.CDB[8] = (size >> 8) & 0xFF;
c->Request.CDB[9] = size & 0xFF;
break;
case CCISS_READ_CAPACITY:
c->Header.LUN.LogDev.VolId=
hba[ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
c->Request.CDBLen = 10;
c->Request.Type.Type = TYPE_CMD; /* It is a command. */
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; /* Read */
c->Request.Timeout = 0; /* Don't time out */
c->Request.CDB[0] = CCISS_READ_CAPACITY;
break;
case CCISS_CACHE_FLUSH:
c->Request.CDBLen = 12;
c->Request.Type.Type = TYPE_CMD; /* It is a command. */
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE; /* No data */
c->Request.Timeout = 0; /* Don't time out */
c->Request.CDB[0] = BMIC_WRITE; /* BMIC Passthru */
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
break;
default:
printk(KERN_WARNING
"cciss: Unknown Command 0x%x sent attempted\n",
cmd);
cmd_free(info_p, c, 1);
return IO_ERROR;
};
/* Fill in the scatter gather information */
if (size > 0) {
buff_dma_handle.val = (__u64) pci_map_single( info_p->pdev,
buff, size, PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
c->SG[0].Len = size;
c->SG[0].Ext = 0; /* we are not chaining */
}
resend_cmd1:
/*
* Disable interrupt
*/
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: turning intr off\n");
#endif /* CCISS_DEBUG */
info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
/* Make sure there is room in the command FIFO */
/* Actually it should be completely empty at this time. */
for (i = 200000; i > 0; i--) {
/* if fifo isn't full go */
if (!(info_p->access.fifo_full(info_p))) {
break;
}
udelay(10);
printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
" waiting!\n", ctlr);
}
/*
* Send the cmd
*/
info_p->access.submit_command(info_p, c);
complete = pollcomplete(ctlr);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: command completed\n");
#endif /* CCISS_DEBUG */
if (complete != 1) {
if ( (complete & CISS_ERROR_BIT)
&& (complete & ~CISS_ERROR_BIT) == c->busaddr) {
/* if data overrun or underun on Report command
ignore it
*/
if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
(c->Request.CDB[0] == CISS_REPORT_PHYS) ||
(c->Request.CDB[0] == CISS_INQUIRY)) &&
((c->err_info->CommandStatus ==
CMD_DATA_OVERRUN) ||
(c->err_info->CommandStatus ==
CMD_DATA_UNDERRUN)
)) {
complete = c->busaddr;
} else {
if (c->err_info->CommandStatus ==
CMD_UNSOLICITED_ABORT) {
printk(KERN_WARNING "cciss: "
"cmd %p aborted do "
"to an unsolicited abort \n", c);
if (c->retry_count < MAX_CMD_RETRIES) {
printk(KERN_WARNING
"retrying cmd\n");
c->retry_count++;
/* erase the old error */
/* information */
memset(c->err_info, 0,
sizeof(ErrorInfo_struct));
goto resend_cmd1;
} else {
printk(KERN_WARNING
"retried to many times\n");
status = IO_ERROR;
goto cleanup1;
}
}
printk(KERN_WARNING "cciss cciss%d: sendcmd"
" Error %x \n", ctlr,
c->err_info->CommandStatus);
printk(KERN_WARNING "cciss cciss%d: sendcmd"
" offensive info\n"
" size %x\n num %x value %x\n", ctlr,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_size,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_num,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_value);
status = IO_ERROR;
goto cleanup1;
}
}
if (complete != c->busaddr) {
printk( KERN_WARNING "cciss cciss%d: SendCmd "
"Invalid command list address returned! (%lx)\n",
ctlr, complete);
status = IO_ERROR;
goto cleanup1;
}
} else {
printk( KERN_WARNING
"cciss cciss%d: SendCmd Timeout out, "
"No command list address returned!\n",
ctlr);
status = IO_ERROR;
}
cleanup1:
/* unlock the data buffer from DMA */
pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
size, PCI_DMA_BIDIRECTIONAL);
cmd_free(info_p, c, 1);
return status;
}
/*
* Map (physical) PCI mem into (virtual) kernel space
*/
static ulong remap_pci_mem(ulong base, ulong size)
{
ulong page_base = ((ulong) base) & PAGE_MASK;
ulong page_offs = ((ulong) base) - page_base;
ulong page_remapped = (ulong) ioremap(page_base, page_offs+size);
return (ulong) (page_remapped ? (page_remapped + page_offs) : 0UL);
}
/*
* Takes jobs of the Q and sends them to the hardware, then puts it on
* the Q to wait for completion.
*/
static void start_io( ctlr_info_t *h)
{
CommandList_struct *c;
while(( c = h->reqQ) != NULL ) {
/* can't do anything if fifo is full */
if ((h->access.fifo_full(h))) {
printk(KERN_WARNING "cciss: fifo full \n");
return;
}
/* Get the frist entry from the Request Q */
removeQ(&(h->reqQ), c);
h->Qdepth--;
/* Tell the controller execute command */
h->access.submit_command(h, c);
/* Put job onto the completed Q */
addQ (&(h->cmpQ), c);
}
}
static inline void complete_buffers( struct buffer_head *bh, int status)
{
struct buffer_head *xbh;
while(bh) {
xbh = bh->b_reqnext;
bh->b_reqnext = NULL;
blk_finished_io(bh->b_size >> 9);
bh->b_end_io(bh, status);
bh = xbh;
}
}
/* This code assumes io_request_lock is already held */
/* Zeros out the error record and then resends the command back */
/* to the controller */
static inline void resend_cciss_cmd( ctlr_info_t *h, CommandList_struct *c)
{
/* erase the old error information */
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
/* add it to software queue and then send it to the controller */
addQ(&(h->reqQ),c);
h->Qdepth++;
if (h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
start_io(h);
}
/* checks the status of the job and calls complete buffers to mark all
* buffers for the completed job.
*/
static inline void complete_command( ctlr_info_t *h, CommandList_struct *cmd,
int timeout)
{
int status = 1;
int retry_cmd = 0;
int i, ddir;
u64bit temp64;
if (timeout)
status = 0;
if (cmd->err_info->CommandStatus != 0) {
/* an error has occurred */
switch (cmd->err_info->CommandStatus) {
unsigned char sense_key;
case CMD_TARGET_STATUS:
status = 0;
if (cmd->err_info->ScsiStatus == 0x02) {
printk(KERN_WARNING "cciss: cmd %p "
"has CHECK CONDITION,"
" sense key = 0x%x\n", cmd,
cmd->err_info->SenseInfo[2]);
/* check the sense key */
sense_key = 0xf &
cmd->err_info->SenseInfo[2];
/* recovered error */
if ( sense_key == 0x1)
status = 1;
} else {
printk(KERN_WARNING "cciss: cmd %p "
"has SCSI Status 0x%x\n",
cmd, cmd->err_info->ScsiStatus);
}
break;
case CMD_DATA_UNDERRUN:
printk(KERN_WARNING "cciss: cmd %p has"
" completed with data underrun "
"reported\n", cmd);
break;
case CMD_DATA_OVERRUN:
printk(KERN_WARNING "cciss: cmd %p has"
" completed with data overrun "
"reported\n", cmd);
break;
case CMD_INVALID:
printk(KERN_WARNING "cciss: cmd %p is "
"reported invalid\n", cmd);
status = 0;
break;
case CMD_PROTOCOL_ERR:
printk(KERN_WARNING "cciss: cmd %p has "
"protocol error \n", cmd);
status = 0;
break;
case CMD_HARDWARE_ERR:
printk(KERN_WARNING "cciss: cmd %p had "
" hardware error\n", cmd);
status = 0;
break;
case CMD_CONNECTION_LOST:
printk(KERN_WARNING "cciss: cmd %p had "
"connection lost\n", cmd);
status=0;
break;
case CMD_ABORTED:
printk(KERN_WARNING "cciss: cmd %p was "
"aborted\n", cmd);
status=0;
break;
case CMD_ABORT_FAILED:
printk(KERN_WARNING "cciss: cmd %p reports "
"abort failed\n", cmd);
status=0;
break;
case CMD_UNSOLICITED_ABORT:
printk(KERN_WARNING "cciss: cmd %p aborted do "
"to an unsolicited abort \n",
cmd);
if (cmd->retry_count < MAX_CMD_RETRIES) {
retry_cmd=1;
printk(KERN_WARNING
"retrying cmd\n");
cmd->retry_count++;
} else {
printk(KERN_WARNING
"retried to many times\n");
}
status=0;
break;
case CMD_TIMEOUT:
printk(KERN_WARNING "cciss: cmd %p timedout\n",
cmd);
status=0;
break;
default:
printk(KERN_WARNING "cciss: cmd %p returned "
"unknown status %x\n", cmd,
cmd->err_info->CommandStatus);
status=0;
}
}
/* We need to return this command */
if (retry_cmd) {
resend_cciss_cmd(h,cmd);
return;
}
/* command did not need to be retried */
/* unmap the DMA mapping for all the scatter gather elements */
if (cmd->Request.Type.Direction == XFER_READ)
ddir = PCI_DMA_FROMDEVICE;
else
ddir = PCI_DMA_TODEVICE;
for(i=0; i<cmd->Header.SGList; i++) {
temp64.val32.lower = cmd->SG[i].Addr.lower;
temp64.val32.upper = cmd->SG[i].Addr.upper;
pci_unmap_page(hba[cmd->ctlr]->pdev,
temp64.val, cmd->SG[i].Len, ddir);
}
complete_buffers(cmd->rq->bh, status);
#ifdef CCISS_DEBUG
printk("Done with %p\n", cmd->rq);
#endif /* CCISS_DEBUG */
end_that_request_last(cmd->rq);
cmd_free(h,cmd,1);
}
static inline int cpq_new_segment(request_queue_t *q, struct request *rq,
int max_segments)
{
if (rq->nr_segments < MAXSGENTRIES) {
rq->nr_segments++;
return 1;
}
return 0;
}
static int cpq_back_merge_fn(request_queue_t *q, struct request *rq,
struct buffer_head *bh, int max_segments)
{
if (blk_seg_merge_ok(rq->bhtail, bh))
return 1;
return cpq_new_segment(q, rq, max_segments);
}
static int cpq_front_merge_fn(request_queue_t *q, struct request *rq,
struct buffer_head *bh, int max_segments)
{
if (blk_seg_merge_ok(bh, rq->bh))
return 1;
return cpq_new_segment(q, rq, max_segments);
}
static int cpq_merge_requests_fn(request_queue_t *q, struct request *rq,
struct request *nxt, int max_segments)
{
int total_segments = rq->nr_segments + nxt->nr_segments;
if (blk_seg_merge_ok(rq->bhtail, nxt->bh))
total_segments--;
if (total_segments > MAXSGENTRIES)
return 0;
rq->nr_segments = total_segments;
return 1;
}
/*
* Get a request and submit it to the controller.
* Currently we do one request at a time. Ideally we would like to send
* everything to the controller on the first call, but there is a danger
* of holding the io_request_lock for to long.
*/
static void do_cciss_request(request_queue_t *q)
{
ctlr_info_t *h= q->queuedata;
CommandList_struct *c;
int log_unit, start_blk, seg;
unsigned long long lastdataend;
struct buffer_head *bh;
struct list_head *queue_head = &q->queue_head;
struct request *creq;
u64bit temp64;
struct scatterlist tmp_sg[MAXSGENTRIES];
int i, ddir;
if (q->plugged)
goto startio;
next:
if (list_empty(queue_head))
goto startio;
creq = blkdev_entry_next_request(queue_head);
if (creq->nr_segments > MAXSGENTRIES)
BUG();
if( h->ctlr != map_major_to_ctlr[MAJOR(creq->rq_dev)] ) {
printk(KERN_WARNING "doreq cmd for %d, %x at %p\n",
h->ctlr, creq->rq_dev, creq);
blkdev_dequeue_request(creq);
complete_buffers(creq->bh, 0);
end_that_request_last(creq);
goto startio;
}
/* make sure controller is alive. */
if (!CTLR_IS_ALIVE(h)) {
printk(KERN_WARNING "cciss%d: I/O quit ", h->ctlr);
blkdev_dequeue_request(creq);
complete_buffers(creq->bh, 0);
end_that_request_last(creq);
return;
}
if (( c = cmd_alloc(h, 1)) == NULL)
goto startio;
blkdev_dequeue_request(creq);
spin_unlock_irq(&io_request_lock);
c->cmd_type = CMD_RWREQ;
c->rq = creq;
bh = creq->bh;
/* fill in the request */
log_unit = MINOR(creq->rq_dev) >> NWD_SHIFT;
c->Header.ReplyQueue = 0; /* unused in simple mode */
c->Header.Tag.lower = c->busaddr; /* use the physical address */
/* the cmd block for tag */
c->Header.LUN.LogDev.VolId= hba[h->ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
c->Request.CDBLen = 10; /* 12 byte commands not in FW yet. */
c->Request.Type.Type = TYPE_CMD; /* It is a command. */
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction =
(creq->cmd == READ) ? XFER_READ: XFER_WRITE;
c->Request.Timeout = 0; /* Don't time out */
c->Request.CDB[0] = (creq->cmd == READ) ? CCISS_READ : CCISS_WRITE;
start_blk = hba[h->ctlr]->hd[MINOR(creq->rq_dev)].start_sect + creq->sector;
#ifdef CCISS_DEBUG
if (bh == NULL)
panic("cciss: bh== NULL?");
printk(KERN_DEBUG "cciss: sector =%d nr_sectors=%d\n",(int) creq->sector,
(int) creq->nr_sectors);
#endif /* CCISS_DEBUG */
seg = 0;
lastdataend = ~0ULL;
while(bh) {
if (bh_phys(bh) == lastdataend)
{ /* tack it on to the last segment */
tmp_sg[seg-1].length +=bh->b_size;
lastdataend += bh->b_size;
} else {
if (seg == MAXSGENTRIES)
BUG();
tmp_sg[seg].page = bh->b_page;
tmp_sg[seg].length = bh->b_size;
tmp_sg[seg].offset = bh_offset(bh);
lastdataend = bh_phys(bh) + bh->b_size;
seg++;
}
bh = bh->b_reqnext;
}
/* get the DMA records for the setup */
if (c->Request.Type.Direction == XFER_READ)
ddir = PCI_DMA_FROMDEVICE;
else
ddir = PCI_DMA_TODEVICE;
for (i=0; i<seg; i++) {
c->SG[i].Len = tmp_sg[i].length;
temp64.val = pci_map_page(h->pdev, tmp_sg[i].page,
tmp_sg[i].offset, tmp_sg[i].length, ddir);
c->SG[i].Addr.lower = temp64.val32.lower;
c->SG[i].Addr.upper = temp64.val32.upper;
c->SG[i].Ext = 0; /* we are not chaining */
}
/* track how many SG entries we are using */
if (seg > h->maxSG)
h->maxSG = seg;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n", sect, seg);
#endif /* CCISS_DEBUG */
c->Header.SGList = c->Header.SGTotal = seg;
c->Request.CDB[1]= 0;
c->Request.CDB[2]= (start_blk >> 24) & 0xff; /* MSB */
c->Request.CDB[3]= (start_blk >> 16) & 0xff;
c->Request.CDB[4]= (start_blk >> 8) & 0xff;
c->Request.CDB[5]= start_blk & 0xff;
c->Request.CDB[6]= 0; /* (sect >> 24) & 0xff; MSB */
c->Request.CDB[7]= (creq->nr_sectors >> 8) & 0xff;
c->Request.CDB[8]= creq->nr_sectors & 0xff;
c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
spin_lock_irq(&io_request_lock);
addQ(&(h->reqQ),c);
h->Qdepth++;
if (h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
goto next;
startio:
start_io(h);
}
static void do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs)
{
ctlr_info_t *h = dev_id;
CommandList_struct *c;
unsigned long flags;
__u32 a, a1;
/* Is this interrupt for us? */
if ((h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0))
return;
/*
* If there are completed commands in the completion queue,
* we had better do something about it.
*/
spin_lock_irqsave(&io_request_lock, flags);
while( h->access.intr_pending(h)) {
while((a = h->access.command_completed(h)) != FIFO_EMPTY) {
a1 = a;
a &= ~3;
if ((c = h->cmpQ) == NULL) {
printk(KERN_WARNING "cciss: Completion of %08lx ignored\n", (unsigned long)a1);
continue;
}
while(c->busaddr != a) {
c = c->next;
if (c == h->cmpQ)
break;
}
/*
* If we've found the command, take it off the
* completion Q and free it
*/
if (c->busaddr == a) {
removeQ(&h->cmpQ, c);
if (c->cmd_type == CMD_RWREQ) {
complete_command(h, c, 0);
} else if (c->cmd_type == CMD_IOCTL_PEND) {
complete(c->waiting);
}
# ifdef CONFIG_CISS_SCSI_TAPE
else if (c->cmd_type == CMD_SCSI) {
complete_scsi_command(c, 0, a1);
}
# endif
continue;
}
}
}
/*
* See if we can queue up some more IO
*/
do_cciss_request(BLK_DEFAULT_QUEUE(h->major));
spin_unlock_irqrestore(&io_request_lock, flags);
}
/*
* We cannot read the structure directly, for portablity we must use
* the io functions.
* This is for debug only.
*/
#ifdef CCISS_DEBUG
static void print_cfg_table( CfgTable_struct *tb)
{
int i;
char temp_name[17];
printk("Controller Configuration information\n");
printk("------------------------------------\n");
for(i=0;i<4;i++)
temp_name[i] = readb(&(tb->Signature[i]));
temp_name[4]='\0';
printk(" Signature = %s\n", temp_name);
printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
printk(" Transport methods supported = 0x%x\n",
readl(&(tb-> TransportSupport)));
printk(" Transport methods active = 0x%x\n",
readl(&(tb->TransportActive)));
printk(" Requested transport Method = 0x%x\n",
readl(&(tb->HostWrite.TransportRequest)));
printk(" Coalese Interrupt Delay = 0x%x\n",
readl(&(tb->HostWrite.CoalIntDelay)));
printk(" Coalese Interrupt Count = 0x%x\n",
readl(&(tb->HostWrite.CoalIntCount)));
printk(" Max outstanding commands = 0x%d\n",
readl(&(tb->CmdsOutMax)));
printk(" Bus Types = 0x%x\n", readl(&(tb-> BusTypes)));
for(i=0;i<16;i++)
temp_name[i] = readb(&(tb->ServerName[i]));
temp_name[16] = '\0';
printk(" Server Name = %s\n", temp_name);
printk(" Heartbeat Counter = 0x%x\n\n\n",
readl(&(tb->HeartBeat)));
}
#endif /* CCISS_DEBUG */
static void release_io_mem(ctlr_info_t *c)
{
/* if IO mem was not protected do nothing */
if (c->io_mem_addr == 0)
return;
release_region(c->io_mem_addr, c->io_mem_length);
c->io_mem_addr = 0;
c->io_mem_length = 0;
}
static int find_PCI_BAR_index(struct pci_dev *pdev,
unsigned long pci_bar_addr)
{
int i, offset, mem_type, bar_type;
if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
return 0;
offset = 0;
for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
bar_type = pci_resource_flags(pdev, i) &
PCI_BASE_ADDRESS_SPACE;
if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
offset += 4;
else {
mem_type = pci_resource_flags(pdev, i) &
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
switch (mem_type) {
case PCI_BASE_ADDRESS_MEM_TYPE_32:
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
offset += 4; /* 32 bit */
break;
case PCI_BASE_ADDRESS_MEM_TYPE_64:
offset += 8;
break;
default: /* reserved in PCI 2.2 */
printk(KERN_WARNING "Base address is invalid\n");
return -1;
break;
}
}
if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
return i+1;
}
return -1;
}
static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
{
ushort subsystem_vendor_id, subsystem_device_id, command;
int ready = 0;
__u32 board_id, scratchpad;
__u64 cfg_offset;
__u32 cfg_base_addr;
__u64 cfg_base_addr_index;
int i;
/* check to see if controller has been disabled */
/* BEFORE we try to enable it */
(void) pci_read_config_word(pdev, PCI_COMMAND,&command);
if (!(command & 0x02)) {
printk(KERN_WARNING "cciss: controller appears to be disabled\n");
return -1;
}
if (pci_enable_device(pdev)) {
printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
return -1;
}
if (pci_set_dma_mask(pdev, CCISS_DMA_MASK ) != 0) {
printk(KERN_ERR "cciss: Unable to set DMA mask\n");
return -1;
}
subsystem_vendor_id = pdev->subsystem_vendor;
subsystem_device_id = pdev->subsystem_device;
board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
subsystem_vendor_id );
/* search for our IO range so we can protect it */
for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
/* is this an IO range */
if (pci_resource_flags(pdev, i) & 0x01) {
c->io_mem_addr = pci_resource_start(pdev, i);
c->io_mem_length = pci_resource_end(pdev, i) -
pci_resource_start(pdev, i) + 1;
#ifdef CCISS_DEBUG
printk("IO value found base_addr[%d] %lx %lx\n", i,
c->io_mem_addr, c->io_mem_length);
#endif /* CCISS_DEBUG */
/* register the IO range */
if