blob: da51c29c6258af45f3706271e7128709f4a68624 [file] [log] [blame]
/*
* mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
*
* (C) 2001 San Mehat <nettwerk@valinux.com>
* (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
* (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
*
* This driver for the Micro Memory PCI Memory Module with Battery Backup
* is Copyright Micro Memory Inc 2001-2002. All rights reserved.
*
* This driver is released to the public under the terms of the
* GNU GENERAL PUBLIC LICENSE version 2
* See the file COPYING for details.
*
* This driver provides a standard block device interface for Micro Memory(tm)
* PCI based RAM boards.
* 10/05/01: Phap Nguyen - Rebuilt the driver
* 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
* 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
* - use stand disk partitioning (so fdisk works).
* 08nov2001:NeilBrown - change driver name from "mm" to "umem"
* - incorporate into main kernel
* 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
* - use spin_lock_bh instead of _irq
* - Never block on make_request. queue
* bh's instead.
* - unregister umem from devfs at mod unload
* - Change version to 2.3
* 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
* 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
*/
#include <linux/config.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/smp_lock.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <linux/hdreg.h> /* HDIO_GETGEO */
#include <linux/umem.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#define PRINTK(x...) do {} while (0)
#define dprintk(x...) do {} while (0)
/*#define dprintk(x...) printk(x) */
#define MM_MAXCARDS 4
#define MM_RAHEAD 2 /* two sectors */
#define MM_BLKSIZE 1024 /* 1k blocks */
#define MM_HARDSECT 512 /* 512-byte hardware sectors */
#define MM_SHIFT 6 /* max 64 partitions on 4 cards */
#define DEVICE_NR(device) (MINOR(device)>>MM_SHIFT)
/*
* Version Information
*/
#define DRIVER_VERSION "v2.3"
#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
static int debug;
/* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
#define HW_TRACE(x)
#define DEBUG_LED_ON_TRANSFER 0x01
#define DEBUG_BATTERY_POLLING 0x02
MODULE_PARM(debug, "i");
MODULE_PARM_DESC(debug, "Debug bitmask");
static int init_mem = 0;
MODULE_PARM(init_mem, "i");
MODULE_PARM_DESC(init_mem, "Initialize memory");
static int pci_read_cmd = 0x0C; /* Read Multiple */
MODULE_PARM(pci_read_cmd, "i");
MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
static int pci_write_cmd = 0x0F; /* Write and Invalidate */
MODULE_PARM(pci_write_cmd, "i");
MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
static int pci_cmds;
#define MAJOR_NR UMEM_MAJOR
#include <linux/blk.h>
#include <linux/blkpg.h>
static devfs_handle_t devfs_handle; /* For the directory */
struct cardinfo {
int card_number;
struct pci_dev *dev;
int irq;
unsigned long csr_base;
unsigned char *csr_remap;
unsigned long csr_len;
#ifdef CONFIG_MM_MAP_MEMORY
unsigned long mem_base;
unsigned char *mem_remap;
unsigned long mem_len;
#endif
unsigned int win_size; /* PCI window size */
unsigned int mm_size; /* size in kbytes */
struct buffer_head *bh, **bhtail;
struct mm_page {
dma_addr_t page_dma;
struct mm_dma_desc *desc;
int cnt, headcnt;
struct buffer_head *bh, **bhtail;
} mm_pages[2];
#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
int Active, Ready;
struct tasklet_struct tasklet;
unsigned int dma_status;
struct tq_struct plug_tq;
struct {
int good;
int warned;
unsigned long last_change;
} battery[2];
atomic_t usage;
spinlock_t lock;
int check_batteries;
int flags;
};
static struct cardinfo cards[MM_MAXCARDS];
static struct block_device_operations mm_fops;
static struct timer_list battery_timer;
static int mm_hardsect [MM_MAXCARDS << MM_SHIFT];
static int mm_blocksizes[MM_MAXCARDS << MM_SHIFT];
static int mm_sizes[MM_MAXCARDS << MM_SHIFT];
static struct hd_struct mm_partitions[MM_MAXCARDS << MM_SHIFT];
static int num_cards = 0;
struct gendisk mm_gendisk = {
major: MAJOR_NR, /* Major number assigned later */
major_name: "umem", /* Name of the major device */
minor_shift: MM_SHIFT, /* Shift to get device number */
max_p: 1 << MM_SHIFT, /* Number of partitions */
fops: &mm_fops, /* Block dev operations */
/* everything else is dynamic */
};
static void check_batteries(struct cardinfo *card);
/*
-----------------------------------------------------------------------------------
-- get_userbit
-----------------------------------------------------------------------------------
*/
static int get_userbit(struct cardinfo *card, int bit)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
return led & bit;
}
/*
-----------------------------------------------------------------------------------
-- set_userbit
-----------------------------------------------------------------------------------
*/
static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
if (state)
led |= bit;
else
led &= ~bit;
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
return 0;
}
/*
-----------------------------------------------------------------------------------
-- set_led
-----------------------------------------------------------------------------------
*/
/*
* NOTE: For the power LED, use the LED_POWER_* macros since they differ
*/
static void set_led(struct cardinfo *card, int shift, unsigned char state)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
if (state == LED_FLIP)
led ^= (1<<shift);
else {
led &= ~(0x03 << shift);
led |= (state << shift);
}
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
}
#ifdef MM_DIAG
/*
-----------------------------------------------------------------------------------
-- dump_regs
-----------------------------------------------------------------------------------
*/
static void dump_regs(struct cardinfo *card)
{
unsigned char *p;
int i, i1;
p = card->csr_remap;
for (i = 0; i < 8; i++) {
printk(KERN_DEBUG "%p ", p);
for (i1 = 0; i1 < 16; i1++)
printk("%02x ", *p++);
printk("\n");
}
}
#endif
/*
-----------------------------------------------------------------------------------
-- dump_dmastat
-----------------------------------------------------------------------------------
*/
static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
{
printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
if (dmastat & DMASCR_ANY_ERR)
printk("ANY_ERR ");
if (dmastat & DMASCR_MBE_ERR)
printk("MBE_ERR ");
if (dmastat & DMASCR_PARITY_ERR_REP)
printk("PARITY_ERR_REP ");
if (dmastat & DMASCR_PARITY_ERR_DET)
printk("PARITY_ERR_DET ");
if (dmastat & DMASCR_SYSTEM_ERR_SIG)
printk("SYSTEM_ERR_SIG ");
if (dmastat & DMASCR_TARGET_ABT)
printk("TARGET_ABT ");
if (dmastat & DMASCR_MASTER_ABT)
printk("MASTER_ABT ");
if (dmastat & DMASCR_CHAIN_COMPLETE)
printk("CHAIN_COMPLETE ");
if (dmastat & DMASCR_DMA_COMPLETE)
printk("DMA_COMPLETE ");
printk("\n");
}
/*
* Theory of request handling
*
* Each buffer_head is assigned to one mm_dma_desc.
* We have two pages of mm_dma_desc, holding about 64 descriptors
* each. These are allocated at init time.
* One page is "Ready" and is either full, or can have request added.
* The other page might be "Active", which DMA is happening on it.
*
* Whenever IO on the active page completes, the Ready page is activated
* and the ex-Active page is clean out and made Ready.
* Otherwise the Ready page is only activated when it becomes full, or
* when mm_unplug_device is called via run_task_queue(&tq_disk).
*
* If a request arrives while both pages a full, it is queued, and b_rdev is
* overloaded to record whether it was a read or a write.
*
* The interrupt handler only polls the device to clear the interrupt.
* The processing of the result is done in a tasklet.
*/
static void mm_start_io(struct cardinfo *card)
{
/* we have the lock, we know there is
* no IO active, and we know that card->Active
* is set
*/
struct mm_dma_desc *desc;
struct mm_page *page;
int offset;
/* make the last descriptor end the chain */
page = &card->mm_pages[card->Active];
PRINTK("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
desc = &page->desc[page->cnt-1];
desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
desc->sem_control_bits = desc->control_bits;
if (debug & DEBUG_LED_ON_TRANSFER)
set_led(card, LED_REMOVE, LED_ON);
desc = &page->desc[page->headcnt];
writel(0, card->csr_remap + DMA_PCI_ADDR);
writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
writel(0, card->csr_remap + DMA_LOCAL_ADDR);
writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
offset = ((char*)desc) - ((char*)page->desc);
writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
card->csr_remap + DMA_DESCRIPTOR_ADDR);
writel(cpu_to_le32((page->page_dma)>>31>>1),
card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
/* Go, go, go */
writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
card->csr_remap + DMA_STATUS_CTRL);
}
static int add_bh(struct cardinfo *card);
static void activate(struct cardinfo *card)
{
/* if No page is Active, and Ready is
* not empty, then switch Ready page
* to active and start IO.
* Then add any bh's that are available to Ready
*/
do {
while (add_bh(card))
;
if (card->Active == -1 &&
card->mm_pages[card->Ready].cnt > 0) {
card->Active = card->Ready;
card->Ready = 1-card->Ready;
mm_start_io(card);
}
} while (card->Active == -1 && add_bh(card));
}
static inline void reset_page(struct mm_page *page)
{
page->cnt = 0;
page->headcnt = 0;
page->bh = NULL;
page->bhtail = & page->bh;
}
static void mm_unplug_device(void *data)
{
struct cardinfo *card = data;
spin_lock_bh(&card->lock);
activate(card);
spin_unlock_bh(&card->lock);
}
/*
* If there is room on Ready page, take
* one bh off list and add it.
* return 1 if there was room, else 0.
*/
static int add_bh(struct cardinfo *card)
{
struct mm_page *p;
struct mm_dma_desc *desc;
dma_addr_t dma_handle;
int offset;
struct buffer_head *bh;
int rw;
bh = card->bh;
if (!bh)
return 0;
if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
return 0;
card->bh = bh->b_reqnext;
if (card->bh == NULL)
card->bhtail = &card->bh;
rw = bh->b_rdev;
dma_handle = pci_map_page(card->dev, bh->b_page, bh_offset(bh),
bh->b_size,
(rw==READ) ?
PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
p = &card->mm_pages[card->Ready];
desc = &p->desc[p->cnt];
p->cnt++;
*(p->bhtail) = bh;
p->bhtail = &(bh->b_reqnext);
bh->b_reqnext = NULL;
desc->data_dma_handle = dma_handle;
desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
desc->local_addr= cpu_to_le64(bh->b_rsector << 9);
desc->transfer_size = cpu_to_le32(bh->b_size);
offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
desc->zero1 = desc->zero2 = 0;
offset = ( ((char*)(desc+1)) - ((char*)p->desc));
desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
DMASCR_PARITY_INT_EN|
DMASCR_CHAIN_EN |
DMASCR_SEM_EN |
pci_cmds);
if (rw == WRITE)
desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
desc->sem_control_bits = desc->control_bits;
return 1;
}
static void process_page(unsigned long data)
{
/* check if any of the requests in the page are DMA_COMPLETE,
* and deal with them appropriately.
* If we find a descriptor without DMA_COMPLETE in the semaphore, then
* dma must have hit an error on that descriptor, so use dma_status instead
* and assume that all following descriptors must be re-tried.
*/
struct mm_page *page;
struct buffer_head *ok=NULL, *fail=NULL;
struct cardinfo *card = (struct cardinfo *)data;
unsigned int dma_status = card->dma_status;
spin_lock_bh(&card->lock);
if (card->Active < 0)
goto out_unlock;
page = &card->mm_pages[card->Active];
while (page->bh != NULL) {
struct buffer_head *bh = page->bh;
struct mm_dma_desc *desc = &page->desc[page->headcnt];
int control = le32_to_cpu(desc->sem_control_bits);
int last=0;
if (!(control & DMASCR_DMA_COMPLETE)) {
control = dma_status;
last=1;
}
page->headcnt++;
page->bh = bh->b_reqnext;
pci_unmap_page(card->dev, desc->data_dma_handle, bh->b_size,
(control& DMASCR_TRANSFER_READ) ?
PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
if (!(control & DMASCR_HARD_ERROR)) {
/* it worked just fine */
bh->b_reqnext = ok;
ok = bh;
} else {
/* error */
bh->b_reqnext = fail;
fail = bh;
printk(KERN_WARNING "MM%d: I/O error on sector %lx/%x\n",
card->card_number, bh->b_rsector, bh->b_size);
dump_dmastat(card, control);
}
if (last) break;
}
if (debug & DEBUG_LED_ON_TRANSFER)
set_led(card, LED_REMOVE, LED_OFF);
if (card->check_batteries) {
card->check_batteries = 0;
check_batteries(card);
}
if (page->headcnt >= page->cnt) {
reset_page(page);
card->Active = -1;
activate(card);
} else {
/* haven't finished with this one yet */
PRINTK("do some more\n");
mm_start_io(card);
}
out_unlock:
spin_unlock_bh(&card->lock);
while(ok) {
struct buffer_head *bh = ok;
ok = bh->b_reqnext;
bh->b_reqnext = NULL;
bh->b_end_io(bh, 1);
}
while(fail) {
struct buffer_head *bh = fail;
fail = bh->b_reqnext;
bh->b_reqnext = NULL;
bh->b_end_io(bh, 0);
}
}
/*
-----------------------------------------------------------------------------------
-- mm_make_request
-----------------------------------------------------------------------------------
*/
static int mm_make_request(request_queue_t *q, int rw, struct buffer_head *bh)
{
struct cardinfo *card = &cards[DEVICE_NR(bh->b_rdev)];
PRINTK("mm_make_request %d %ld %d\n", rw, bh->b_rsector, bh->b_size);
bh->b_rsector += mm_partitions[MINOR(bh->b_rdev)].start_sect;
bh->b_rdev = rw; /* overloading... */
spin_lock_bh(&card->lock);
*card->bhtail = bh;
bh->b_reqnext = NULL;
card->bhtail = &bh->b_reqnext;
spin_unlock_bh(&card->lock);
queue_task(&card->plug_tq, &tq_disk);
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_interrupt
-----------------------------------------------------------------------------------
*/
static void mm_interrupt(int irq, void *__card, struct pt_regs *regs)
{
struct cardinfo *card = (struct cardinfo *) __card;
unsigned int dma_status;
unsigned short cfg_status;
HW_TRACE(0x30);
dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
/* interrupt wasn't for me ... */
return;
}
/* clear COMPLETION interrupts */
if (card->flags & UM_FLAG_NO_BYTE_STATUS)
writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
card->csr_remap+ DMA_STATUS_CTRL);
else
writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
card->csr_remap+ DMA_STATUS_CTRL + 2);
/* log errors and clear interrupt status */
if (dma_status & DMASCR_ANY_ERR) {
unsigned int data_log1, data_log2;
unsigned int addr_log1, addr_log2;
unsigned char stat, count, syndrome, check;
stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
count = readb(card->csr_remap + ERROR_COUNT);
syndrome = readb(card->csr_remap + ERROR_SYNDROME);
check = readb(card->csr_remap + ERROR_CHECK);
dump_dmastat(card, dma_status);
if (stat & 0x01)
printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
card->card_number, count);
if (stat & 0x02)
printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
card->card_number);
printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
card->card_number, addr_log2, addr_log1, data_log2, data_log1);
printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
card->card_number, check, syndrome);
writeb(0, card->csr_remap + ERROR_COUNT);
}
if (dma_status & DMASCR_PARITY_ERR_REP) {
printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_PARITY_ERR_DET) {
printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_TARGET_ABT) {
printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_MASTER_ABT) {
printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
/* and process the DMA descriptors */
card->dma_status = dma_status;
tasklet_schedule(&card->tasklet);
HW_TRACE(0x36);
}
/*
-----------------------------------------------------------------------------------
-- set_fault_to_battery_status
-----------------------------------------------------------------------------------
*/
/*
* If both batteries are good, no LED
* If either battery has been warned, solid LED
* If both batteries are bad, flash the LED quickly
* If either battery is bad, flash the LED semi quickly
*/
static void set_fault_to_battery_status(struct cardinfo *card)
{
if (card->battery[0].good && card->battery[1].good)
set_led(card, LED_FAULT, LED_OFF);
else if (card->battery[0].warned || card->battery[1].warned)
set_led(card, LED_FAULT, LED_ON);
else if (!card->battery[0].good && !card->battery[1].good)
set_led(card, LED_FAULT, LED_FLASH_7_0);
else
set_led(card, LED_FAULT, LED_FLASH_3_5);
}
static void init_battery_timer(void);
/*
-----------------------------------------------------------------------------------
-- check_battery
-----------------------------------------------------------------------------------
*/
static int check_battery(struct cardinfo *card, int battery, int status)
{
if (status != card->battery[battery].good) {
card->battery[battery].good = !card->battery[battery].good;
card->battery[battery].last_change = jiffies;
if (card->battery[battery].good) {
printk(KERN_ERR "MM%d: Battery %d now good\n",
card->card_number, battery + 1);
card->battery[battery].warned = 0;
} else
printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
card->card_number, battery + 1);
return 1;
} else if (!card->battery[battery].good &&
!card->battery[battery].warned &&
time_after_eq(jiffies, card->battery[battery].last_change +
(HZ * 60 * 60 * 5))) {
printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
card->card_number, battery + 1);
card->battery[battery].warned = 1;
return 1;
}
return 0;
}
/*
-----------------------------------------------------------------------------------
-- check_batteries
-----------------------------------------------------------------------------------
*/
static void check_batteries(struct cardinfo *card)
{
/* NOTE: this must *never* be called while the card
* is doing (bus-to-card) DMA, or you will need the
* reset switch
*/
unsigned char status;
int ret1, ret2;
status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
if (debug & DEBUG_BATTERY_POLLING)
printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
card->card_number,
(status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
(status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
if (ret1 || ret2)
set_fault_to_battery_status(card);
}
static void check_all_batteries(unsigned long ptr)
{
int i;
for (i = 0; i < num_cards; i++)
if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
struct cardinfo *card = &cards[i];
spin_lock_bh(&card->lock);
if (card->Active >= 0)
card->check_batteries = 1;
else
check_batteries(card);
spin_unlock_bh(&card->lock);
}
init_battery_timer();
}
/*
-----------------------------------------------------------------------------------
-- init_battery_timer
-----------------------------------------------------------------------------------
*/
static void init_battery_timer(void)
{
init_timer(&battery_timer);
battery_timer.function = check_all_batteries;
battery_timer.expires = jiffies + (HZ * 60);
add_timer(&battery_timer);
}
/*
-----------------------------------------------------------------------------------
-- del_battery_timer
-----------------------------------------------------------------------------------
*/
static void del_battery_timer(void)
{
del_timer(&battery_timer);
}
/*
-----------------------------------------------------------------------------------
-- mm_revalidate
-----------------------------------------------------------------------------------
*/
/*
* Note no locks taken out here. In a worst case scenario, we could drop
* a chunk of system memory. But that should never happen, since validation
* happens at open or mount time, when locks are held.
*/
static int mm_revalidate(kdev_t i_rdev)
{
int i;
int card_number = DEVICE_NR(i_rdev);
/* first partition, # of partitions */
int part1 = (DEVICE_NR(i_rdev) << MM_SHIFT) + 1;
int npart = (1 << MM_SHIFT) -1;
/* first clear old partition information */
for (i=0; i<npart ;i++) {
mm_gendisk.sizes[part1+i]=0;
mm_gendisk.part[part1+i].start_sect = 0;
mm_gendisk.part[part1+i].nr_sects = 0;
}
mm_gendisk.part[card_number << MM_SHIFT].nr_sects =
cards[card_number].mm_size << 1;
/* then fill new info */
printk(KERN_INFO "mm partition check: (%d)\n", DEVICE_NR(i_rdev));
grok_partitions(&mm_gendisk, card_number, 1<<MM_SHIFT,
mm_gendisk.sizes[card_number<<MM_SHIFT]);
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_ioctl
-----------------------------------------------------------------------------------
*/
static int mm_ioctl(struct inode *i, struct file *f, unsigned int cmd, unsigned long arg)
{
int err, size, card_number;
struct hd_geometry geo;
unsigned int minor;
if (!i || !i->i_rdev)
return -EINVAL;
minor = MINOR(i->i_rdev);
card_number = (minor >> MM_SHIFT);
switch(cmd) {
case BLKGETSIZE:
/* Return the device size, expressed in sectors */
err = ! access_ok (VERIFY_WRITE, arg, sizeof(long));
if (err) return -EFAULT;
size = mm_gendisk.part[minor].nr_sects;
if (copy_to_user((long *) arg, &size, sizeof (long)))
return -EFAULT;
return 0;
case BLKRAGET: /* return the readahead value */
err = ! access_ok(VERIFY_WRITE, arg, sizeof(long));
if (err) return -EFAULT;
copy_to_user((long *)arg, &read_ahead[MAJOR(i->i_rdev)],sizeof(long));
return 0;
case BLKRASET: /* set the readahead value */
if (!capable(CAP_SYS_RAWIO)) return -EACCES;
if (arg > 0xff) return -EINVAL; /* limit it */
read_ahead[MAJOR(i->i_rdev)] = arg;
return 0;
case BLKRRPART:
return (mm_revalidate(i->i_rdev));
case HDIO_GETGEO:
/*
* get geometry: we have to fake one... trim the size to a
* multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
* whatever cylinders.
*/
memset(&geo, 0, sizeof(geo));
err = ! access_ok(VERIFY_WRITE, arg, sizeof(geo));
if (err) return -EFAULT;
size = cards[card_number].mm_size * (1024 / MM_HARDSECT);
geo.heads = 64;
geo.sectors = 32;
geo.start = mm_gendisk.part[minor].start_sect;
geo.cylinders = size / (geo.heads * geo.sectors);
if (copy_to_user((void *) arg, &geo, sizeof(geo)))
return -EFAULT;
return 0;
default:
return blk_ioctl(i->i_rdev, cmd, arg);
}
return -ENOTTY; /* unknown command */
}
/*
-----------------------------------------------------------------------------------
-- mm_check_change
-----------------------------------------------------------------------------------
Future support for removable devices
*/
static int mm_check_change(kdev_t i_rdev)
{
int card_number = DEVICE_NR(i_rdev);
/* struct cardinfo *dev = cards + card_number; */
if (card_number >= num_cards) /* paranoid */
return 0;
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_open
-----------------------------------------------------------------------------------
*/
static int mm_open(struct inode *i, struct file *filp)
{
int num;
struct cardinfo *card;
num = DEVICE_NR(i->i_rdev);
if (num >= num_cards)
return -ENXIO;
card = cards + num;
atomic_inc(&card->usage);
MOD_INC_USE_COUNT;
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_do_release
-----------------------------------------------------------------------------------
*/
static int mm_do_release(struct inode *i, struct file *filp)
{
int num;
struct cardinfo *card;
num = DEVICE_NR(i->i_rdev);
card = cards + num;
if (atomic_dec_and_test(&card->usage))
invalidate_device(i->i_rdev, 1);
MOD_DEC_USE_COUNT;
return 0;
}
#define INITIALIZE_BHS 32
/*
-----------------------------------------------------------------------------------
-- mm_init_mem
-----------------------------------------------------------------------------------
*/
static void mm_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
{
mark_buffer_uptodate(bh, uptodate);
unlock_buffer(bh);
}
static int __devinit mm_init_mem(struct cardinfo *card)
{
struct buffer_head *bhlist, *bhactive, *bh;
unsigned int i;
int rc = 0;
struct page *zero_page;
/* Turn this off when we flush the contents of memory and have */
/* the card rebuild ECC */
writeb(EDC_NONE_DEFAULT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
printk("MM%d: initializing memory\n", card->card_number);
zero_page = alloc_page(GFP_KERNEL);
if (!zero_page) {
printk(KERN_ERR "unable to allocate page for zeroing memory\n");
rc = -ENOMEM;
goto out_alloc_zero_page;
}
memset(page_address(zero_page), 0, PAGE_SIZE);
i=0; bhlist = NULL;
while (i < INITIALIZE_BHS) {
bh = kmem_cache_alloc(bh_cachep, SLAB_KERNEL);
if (bh == NULL)
break;
bh->b_next = bhlist;
bhlist = bh;
bh->b_size = PAGE_SIZE;
init_buffer(bh, mm_end_buffer_io_sync, NULL);
set_bh_page(bh, zero_page, 0);
bh->b_dev = bh->b_rdev =
MKDEV(MAJOR_NR, card->card_number<<MM_SHIFT);
init_waitqueue_head(&bh->b_wait);
i++;
}
if (bhlist == NULL) {
printk(KERN_ERR "MM: count not allocate buffer heads!!\n");
rc = -ENOMEM;
goto out_alloc_bh;
}
bhactive = NULL;
for (i = 0; i < card->mm_size / (PAGE_SIZE / 1024);i++) {
if (bhlist == NULL) {
/* time to wait for some buffers */
while (bhactive) {
bh = bhactive;
bhactive = bh->b_next;
wait_on_buffer(bh);
if (!test_bit(BH_Uptodate, &bh->b_state))
rc = -EIO;
bh->b_next = bhlist;
bhlist = bh;
}
}
bh = bhlist;
bhlist = bh->b_next;
bh->b_blocknr = i;
bh->b_rsector = i*(PAGE_SIZE/512);
set_bit(BH_Lock, &bh->b_state);
clear_bit(BH_Uptodate, &bh->b_state);
mm_make_request(NULL, WRITE, bh);
bh->b_next = bhactive;
bhactive = bh;
}
while (bhactive) {
bh = bhactive;
bhactive = bh->b_next;
wait_on_buffer(bh);
bh->b_next = bhlist;
bhlist = bh;
}
if (!rc)
set_userbit(card, MEMORY_INITIALIZED, 1);
while (bhlist) {
bh = bhlist;
bhlist = bh->b_next;
kmem_cache_free(bh_cachep, bh);
}
out_alloc_bh:
free_page((unsigned long) zero_page);
out_alloc_zero_page:
return rc;
}
/*
-----------------------------------------------------------------------------------
-- mm_fops
-----------------------------------------------------------------------------------
*/
static struct block_device_operations mm_fops = {
owner: THIS_MODULE,
open: mm_open,
release: mm_do_release,
ioctl: mm_ioctl,
revalidate: mm_revalidate,
check_media_change: mm_check_change,
};
/*
-----------------------------------------------------------------------------------
-- mm_pci_probe
-----------------------------------------------------------------------------------
*/
static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
int ret = -ENODEV;
struct cardinfo *card = &cards[num_cards];
unsigned char mem_present;
unsigned char batt_status;
unsigned int saved_bar, data;
int magic_number;
if (pci_enable_device(dev) < 0)
return -ENODEV;
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
pci_set_master(dev);
card->dev = dev;
card->card_number = num_cards;
card->csr_base = pci_resource_start(dev, 0);
card->csr_len = pci_resource_len(dev, 0);
#ifdef CONFIG_MM_MAP_MEMORY
card->mem_base = pci_resource_start(dev, 1);
card->mem_len = pci_resource_len(dev, 1);
#endif
printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
card->card_number, dev->bus->number, dev->devfn);
if (pci_set_dma_mask(dev, 0xffffffffffffffffLL) &&
!pci_set_dma_mask(dev, 0xffffffffLL)) {
printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
return -ENOMEM;
}
if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_req_csr;
}
card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
if (!card->csr_remap) {
printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_remap_csr;
}
printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
card->csr_base, card->csr_remap, card->csr_len);
#ifdef CONFIG_MM_MAP_MEMORY
if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_req_mem;
}
if (!(card->mem_remap = (unsigned char *)ioremap(card->mem_base, cards->mem_len))) {
printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_remap_mem;
}
printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
card->mem_base, card->mem_remap, card->mem_len);
#else
printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
card->card_number);
#endif
switch(card->dev->device) {
case 0x5415:
card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
magic_number = 0x59;
break;
case 0x5425:
magic_number = 0x5C;
break;
case 0x6155:
card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
magic_number = 0x99;
break;
default:
magic_number = 0x100;
break;
}
if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
ret = -ENOMEM;
goto failed_magic;
}
card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
PAGE_SIZE*2,
&card->mm_pages[0].page_dma);
card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
PAGE_SIZE*2,
&card->mm_pages[1].page_dma);
if (card->mm_pages[0].desc == NULL ||
card->mm_pages[1].desc == NULL) {
printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
goto failed_alloc;
}
reset_page(&card->mm_pages[0]);
reset_page(&card->mm_pages[1]);
card->Ready = 0; /* page 0 is ready */
card->Active = -1; /* no page is active */
card->bh = NULL;
card->bhtail = &card->bh;
tasklet_init(&card->tasklet, process_page, (unsigned long)card);
card->plug_tq.sync = 0;
card->plug_tq.routine = &mm_unplug_device;
card->plug_tq.data = card;
card->check_batteries = 0;
mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
switch (mem_present) {
case MEM_128_MB:
card->mm_size = 1024 * 128;
break;
case MEM_256_MB:
card->mm_size = 1024 * 256;
break;
case MEM_512_MB:
card->mm_size = 1024 * 512;
break;
case MEM_1_GB:
card->mm_size = 1024 * 1024;
break;
case MEM_2_GB:
card->mm_size = 1024 * 2048;
break;
default:
card->mm_size = 0;
break;
}
/* Clear the LED's we control */
set_led(card, LED_REMOVE, LED_OFF);
set_led(card, LED_FAULT, LED_OFF);
batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
card->battery[0].last_change = card->battery[1].last_change = jiffies;
if (card->flags & UM_FLAG_NO_BATT)
printk(KERN_INFO "MM%d: Size %d KB\n",
card->card_number, card->mm_size);
else {
printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
card->card_number, card->mm_size,
(batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
card->battery[0].good ? "OK" : "FAILURE",
(batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
card->battery[1].good ? "OK" : "FAILURE");
set_fault_to_battery_status(card);
}
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
data = 0xffffffff;
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
data &= 0xfffffff0;
data = ~data;
data += 1;
card->win_size = data;
if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) {
printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
ret = -ENODEV;
goto failed_req_irq;
}
card->irq = dev->irq;
printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
card->win_size, card->irq);
spin_lock_init(&card->lock);
pci_set_drvdata(dev, card);
if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
pci_write_cmd = 0x07; /* then Memory Write command */
if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
unsigned short cfg_command;
pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
pci_write_config_word(dev, PCI_COMMAND, cfg_command);
}
pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
num_cards++;
if (init_mem)
mm_init_mem(card);
else {
if (!get_userbit(card, MEMORY_INITIALIZED))
printk(KERN_INFO "MM%d: memory NOT initialized. perhaps load with init_mem=1?\n", card->card_number);
else
printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
}
/* Enable ECC */
writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
return 0;
failed_req_irq:
failed_alloc:
if (card->mm_pages[0].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[0].desc,
card->mm_pages[0].page_dma);
if (card->mm_pages[1].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[1].desc,
card->mm_pages[1].page_dma);
failed_magic:
#ifdef CONFIG_MM_MAP_MEMORY
iounmap((void *) card->mem_remap);
failed_remap_mem:
release_mem_region(card->mem_base, card->mem_len);
failed_req_mem:
#endif
iounmap((void *) card->csr_remap);
failed_remap_csr:
release_mem_region(card->csr_base, card->csr_len);
failed_req_csr:
return ret;
}
/*
-----------------------------------------------------------------------------------
-- mm_pci_remove
-----------------------------------------------------------------------------------
*/
static void mm_pci_remove(struct pci_dev *dev)
{
struct cardinfo *card = pci_get_drvdata(dev);
tasklet_kill(&card->tasklet);
iounmap(card->csr_remap);
release_mem_region(card->csr_base, card->csr_len);
#ifdef CONFIG_MM_MAP_MEMORY
iounmap(card->mem_remap);
release_mem_region(card->mem_base, card->mem_len);
#endif
free_irq(card->irq, card);
if (card->mm_pages[0].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[0].desc,
card->mm_pages[0].page_dma);
if (card->mm_pages[1].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[1].desc,
card->mm_pages[1].page_dma);
}
static const struct pci_device_id __devinitdata mm_pci_ids[] = { {
vendor: PCI_VENDOR_ID_MICRO_MEMORY,
device: PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
}, {
vendor: PCI_VENDOR_ID_MICRO_MEMORY,
device: PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
}, {
.vendor = PCI_VENDOR_ID_MICRO_MEMORY,
.device = PCI_DEVICE_ID_MICRO_MEMORY_6155,
}, {
.vendor = 0x8086,
.device = 0xB555,
.subvendor= 0x1332,
.subdevice= 0x5460,
.class = 0x050000,
.class_mask= 0,
}, { /* end: all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, mm_pci_ids);
static struct pci_driver mm_pci_driver = {
name: "umem",
id_table: mm_pci_ids,
probe: mm_pci_probe,
remove: mm_pci_remove,
};
/*
-----------------------------------------------------------------------------------
-- mm_init
-----------------------------------------------------------------------------------
*/
int __init mm_init(void)
{
int retval, i;
int err;
printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
memset (cards, 0, MM_MAXCARDS * sizeof(struct cardinfo));
memset (mm_sizes, 0, (MM_MAXCARDS << MM_SHIFT) * sizeof (int));
memset (mm_partitions, 0,
(MM_MAXCARDS << MM_SHIFT) * sizeof(struct hd_struct));
retval = pci_module_init(&mm_pci_driver);
if (retval)
return -ENOMEM;
err = devfs_register_blkdev(MAJOR_NR, "umem", &mm_fops);
if (err < 0) {
printk(KERN_ERR "MM: Could not register block device\n");
return -EIO;
}
devfs_handle = devfs_mk_dir(NULL, "umem", NULL);
read_ahead[MAJOR_NR] = MM_RAHEAD;
/* Initialize partition size: partion 0 of each card is the entire card */
for (i = 0; i < num_cards; i++) {
mm_sizes[i << MM_SHIFT] = cards[i].mm_size;
}
mm_gendisk.sizes = mm_sizes;
for (i = 0; i < num_cards; i++) {
spin_lock_init(&cards[i].lock);
mm_partitions[i << MM_SHIFT].nr_sects =
cards[i].mm_size * (1024 / MM_HARDSECT);
}
mm_gendisk.part = mm_partitions;
mm_gendisk.nr_real = num_cards;
add_gendisk(&mm_gendisk);
blk_queue_make_request(BLK_DEFAULT_QUEUE(MAJOR_NR),
mm_make_request);
for (i = 0; i < num_cards << MM_SHIFT; i++) {
mm_hardsect[i] = MM_HARDSECT;
mm_blocksizes[i] = MM_BLKSIZE;
}
hardsect_size[MAJOR_NR] = mm_hardsect;
blksize_size[MAJOR_NR] = mm_blocksizes;
blk_size[MAJOR_NR] = mm_gendisk.sizes;
for (i = 0; i < num_cards; i++) {
register_disk(&mm_gendisk, MKDEV(MAJOR_NR, i<<MM_SHIFT), MM_SHIFT,
&mm_fops, cards[i].mm_size << 1);
}
init_battery_timer();
printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
/* printk("mm_init: Done. 10-19-01 9:00\n"); */
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_cleanup
-----------------------------------------------------------------------------------
*/
void __exit mm_cleanup(void)
{
int i;
del_battery_timer();
for (i=0; i < num_cards ; i++)
devfs_register_partitions(&mm_gendisk, i<<MM_SHIFT, 1);
if (devfs_handle)
devfs_unregister(devfs_handle);
devfs_handle = NULL;
pci_unregister_driver(&mm_pci_driver);
devfs_unregister_blkdev(MAJOR_NR, "umem");
for (i = 0; i < (num_cards << MM_SHIFT); i++)
invalidate_device (MKDEV(MAJOR_NR,i), 1);
hardsect_size[MAJOR_NR] = NULL;
blksize_size [MAJOR_NR] = NULL;
blk_size [MAJOR_NR] = NULL;
read_ahead [MAJOR_NR] = 0;
/*
* Get our gendisk structure off the list.
*/
del_gendisk(&mm_gendisk);
}
module_init(mm_init);
module_exit(mm_cleanup);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");