blob: f7ed9d321abccd19f538ec9fe453b30f2e8e4e45 [file] [log] [blame]
/*
* vacserial.c: VAC UART serial driver
* This code stealed and adopted from linux/drivers/char/serial.c
* See that for author info
*
* Copyright (C) 1998 Gleb Raiko & Vladimir Roganov
*/
#undef SERIAL_PARANOIA_CHECK
#define CONFIG_SERIAL_NOPAUSE_IO
#define SERIAL_DO_RESTART
#ifndef CONFIG_SERIAL_SHARE_IRQ
#define CONFIG_SERIAL_SHARE_IRQ
#endif
/* Set of debugging defines */
#undef SERIAL_DEBUG_INTR
#undef SERIAL_DEBUG_OPEN
#undef SERIAL_DEBUG_FLOW
#undef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
#define RS_STROBE_TIME (10*HZ)
#define RS_ISR_PASS_LIMIT 2 /* Beget is not a super-computer (old=256) */
#define IRQ_T(state) \
((state->flags & ASYNC_SHARE_IRQ) ? SA_SHIRQ : SA_INTERRUPT)
#define SERIAL_INLINE
#if defined(MODULE) && defined(SERIAL_DEBUG_MCOUNT)
#define DBG_CNT(s) baget_printk("(%s):[%x] refc=%d, serc=%d, ttyc=%d-> %s\n", \
kdevname(tty->device),(info->flags),serial_refcount,info->count,tty->count,s)
#else
#define DBG_CNT(s)
#endif
#define QUAD_UART_SPEED /* Useful for Baget */
/*
* End of serial driver configuration section.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/delay.h>
#ifdef CONFIG_SERIAL_CONSOLE
#include <linux/console.h>
#endif
#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/bitops.h>
#include <asm/serial.h>
#include <asm/baget/baget.h>
#define BAGET_VAC_UART_IRQ 0x35
/*
* Implementation note:
* It was descovered by means of advanced electronic tools,
* if the driver works via TX_READY interrupts then VIC generates
* strange self-eliminating traps. Thus, the driver is rewritten to work
* via TX_EMPTY
*/
/* VAC-specific check/debug switches */
#undef CHECK_REG_INDEX
#undef DEBUG_IO_PORT_A
#ifdef SERIAL_INLINE
#define _INLINE_ inline
#endif
static char *serial_name = "VAC Serial driver";
static char *serial_version = "4.26";
static DECLARE_TASK_QUEUE(tq_serial);
static struct tty_driver serial_driver, callout_driver;
static int serial_refcount;
/* number of characters left in xmit buffer before we ask for more */
#define WAKEUP_CHARS 256
/*
* IRQ_timeout - How long the timeout should be for each IRQ
* should be after the IRQ has been active.
*/
static struct async_struct *IRQ_ports[NR_IRQS];
static int IRQ_timeout[NR_IRQS];
#ifdef CONFIG_SERIAL_CONSOLE
static struct console sercons;
#endif
static void autoconfig(struct serial_state * info);
static void change_speed(struct async_struct *info);
static void rs_wait_until_sent(struct tty_struct *tty, int timeout);
static void rs_timer(unsigned long dummy);
static struct timer_list vacs_timer;
/*
* Here we define the default xmit fifo size used for each type of
* UART
*/
static struct serial_uart_config uart_config[] = {
{ "unknown", 1, 0 }, /* Must go first -- used as unasigned */
{ "VAC UART", 1, 0 }
};
#define VAC_UART_TYPE 1 /* Just index in above array */
static struct serial_state rs_table[] = {
/*
* VAC has tricky layout for pair of his SIO registers,
* so we need special function to access ones.
* To identify port we use their TX offset
*/
{ 0, 9600, VAC_UART_B_TX, BAGET_VAC_UART_IRQ,
STD_COM_FLAGS }, /* VAC UART B */
{ 0, 9600, VAC_UART_A_TX, BAGET_VAC_UART_IRQ,
STD_COM_FLAGS } /* VAC UART A */
};
#define NR_PORTS (sizeof(rs_table)/sizeof(struct serial_state))
static struct tty_struct *serial_table[NR_PORTS];
static struct termios *serial_termios[NR_PORTS];
static struct termios *serial_termios_locked[NR_PORTS];
#ifndef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif
/*
* tmp_buf is used as a temporary buffer by serial_write. We need to
* lock it in case the copy_from_user blocks while swapping in a page,
* and some other program tries to do a serial write at the same time.
* Since the lock will only come under contention when the system is
* swapping and available memory is low, it makes sense to share one
* buffer across all the serial ports, since it significantly saves
* memory if large numbers of serial ports are open.
*/
static unsigned char *tmp_buf;
static DECLARE_MUTEX(tmp_buf_sem);
static inline int serial_paranoia_check(struct async_struct *info,
kdev_t device, const char *routine)
{
#ifdef SERIAL_PARANOIA_CHECK
static const char *badmagic =
"Warning: bad magic number for serial struct (%s) in %s\n";
static const char *badinfo =
"Warning: null async_struct for (%s) in %s\n";
if (!info) {
printk(badinfo, kdevname(device), routine);
return 1;
}
if (info->magic != SERIAL_MAGIC) {
printk(badmagic, kdevname(device), routine);
return 1;
}
#endif
return 0;
}
/*
To unify UART A/B access we will use following function
to compute register offsets by register index.
*/
#define VAC_UART_MODE 0
#define VAC_UART_TX 1
#define VAC_UART_RX 2
#define VAC_UART_INT_MASK 3
#define VAC_UART_INT_STATUS 4
#define VAC_UART_REG_NR 5
static inline int uart_offset_map(unsigned long port, int reg_index)
{
static const unsigned int ind_to_reg[VAC_UART_REG_NR][NR_PORTS] = {
{ VAC_UART_B_MODE, VAC_UART_A_MODE },
{ VAC_UART_B_TX, VAC_UART_A_TX },
{ VAC_UART_B_RX, VAC_UART_A_RX },
{ VAC_UART_B_INT_MASK, VAC_UART_A_INT_MASK },
{ VAC_UART_B_INT_STATUS, VAC_UART_A_INT_STATUS }
};
#ifdef CHECK_REG_INDEX
if (reg_index > VAC_UART_REG_NR) panic("vacserial: bad reg_index");
#endif
return ind_to_reg[reg_index][port == VAC_UART_B_TX ? 0 : 1];
}
static inline unsigned int serial_inw(struct async_struct *info, int offset)
{
int val = vac_inw(uart_offset_map(info->port,offset));
#ifdef DEBUG_IO_PORT_A
if (info->port == VAC_UART_A_TX)
printk("UART_A_IN: reg = 0x%04x, val = 0x%04x\n",
uart_offset_map(info->port,offset), val);
#endif
return val;
}
static inline unsigned int serial_inp(struct async_struct *info, int offset)
{
return serial_inw(info, offset);
}
static inline unsigned int serial_in(struct async_struct *info, int offset)
{
return serial_inw(info, offset);
}
static inline void serial_outw(struct async_struct *info,int offset, int value)
{
#ifdef DEBUG_IO_PORT_A
if (info->port == VAC_UART_A_TX)
printk("UART_A_OUT: offset = 0x%04x, val = 0x%04x\n",
uart_offset_map(info->port,offset), value);
#endif
vac_outw(value, uart_offset_map(info->port,offset));
}
static inline void serial_outp(struct async_struct *info,int offset, int value)
{
serial_outw(info,offset,value);
}
static inline void serial_out(struct async_struct *info,int offset, int value)
{
serial_outw(info,offset,value);
}
/*
* ------------------------------------------------------------
* rs_stop() and rs_start()
*
* This routines are called before setting or resetting tty->stopped.
* They enable or disable transmitter interrupts, as necessary.
* ------------------------------------------------------------
*/
static void rs_stop(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_stop"))
return;
save_flags(flags); cli();
if (info->IER & VAC_UART_INT_TX_EMPTY) {
info->IER &= ~VAC_UART_INT_TX_EMPTY;
serial_out(info, VAC_UART_INT_MASK, info->IER);
}
restore_flags(flags);
}
static void rs_start(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_start"))
return;
save_flags(flags); cli();
if (info->xmit_cnt && info->xmit_buf
&& !(info->IER & VAC_UART_INT_TX_EMPTY)) {
info->IER |= VAC_UART_INT_TX_EMPTY;
serial_out(info, VAC_UART_INT_MASK, info->IER);
}
restore_flags(flags);
}
/*
* ----------------------------------------------------------------------
*
* Here starts the interrupt handling routines. All of the following
* subroutines are declared as inline and are folded into
* rs_interrupt(). They were separated out for readability's sake.
*
* Note: rs_interrupt() is a "fast" interrupt, which means that it
* runs with interrupts turned off. People who may want to modify
* rs_interrupt() should try to keep the interrupt handler as fast as
* possible. After you are done making modifications, it is not a bad
* idea to do:
*
* gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c
*
* and look at the resulting assemble code in serial.s.
*
* - Ted Ts'o (tytso@mit.edu), 7-Mar-93
* -----------------------------------------------------------------------
*/
/*
* This routine is used by the interrupt handler to schedule
* processing in the software interrupt portion of the driver.
*/
static _INLINE_ void rs_sched_event(struct async_struct *info,
int event)
{
info->event |= 1 << event;
queue_task(&info->tqueue, &tq_serial);
mark_bh(SERIAL_BH);
}
static _INLINE_ void receive_chars(struct async_struct *info,
int *status)
{
struct tty_struct *tty = info->tty;
unsigned short rx;
unsigned char ch;
int ignored = 0;
struct async_icount *icount;
icount = &info->state->icount;
do {
rx = serial_inw(info, VAC_UART_RX);
ch = VAC_UART_RX_DATA_MASK & rx;
if (tty->flip.count >= TTY_FLIPBUF_SIZE)
break;
*tty->flip.char_buf_ptr = ch;
icount->rx++;
#ifdef SERIAL_DEBUG_INTR
baget_printk("DR%02x:%02x...", rx, *status);
#endif
*tty->flip.flag_buf_ptr = 0;
if (*status & (VAC_UART_STATUS_RX_BREAK_CHANGE
| VAC_UART_STATUS_RX_ERR_PARITY
| VAC_UART_STATUS_RX_ERR_FRAME
| VAC_UART_STATUS_RX_ERR_OVERRUN)) {
/*
* For statistics only
*/
if (*status & VAC_UART_STATUS_RX_BREAK_CHANGE) {
*status &= ~(VAC_UART_STATUS_RX_ERR_FRAME
| VAC_UART_STATUS_RX_ERR_PARITY);
icount->brk++;
} else if (*status & VAC_UART_STATUS_RX_ERR_PARITY)
icount->parity++;
else if (*status & VAC_UART_STATUS_RX_ERR_FRAME)
icount->frame++;
if (*status & VAC_UART_STATUS_RX_ERR_OVERRUN)
icount->overrun++;
/*
* Now check to see if character should be
* ignored, and mask off conditions which
* should be ignored.
*/
if (*status & info->ignore_status_mask) {
if (++ignored > 100)
break;
goto ignore_char;
}
*status &= info->read_status_mask;
if (*status & (VAC_UART_STATUS_RX_BREAK_CHANGE)) {
#ifdef SERIAL_DEBUG_INTR
baget_printk("handling break....");
#endif
*tty->flip.flag_buf_ptr = TTY_BREAK;
if (info->flags & ASYNC_SAK)
do_SAK(tty);
} else if (*status & VAC_UART_STATUS_RX_ERR_PARITY)
*tty->flip.flag_buf_ptr = TTY_PARITY;
else if (*status & VAC_UART_STATUS_RX_ERR_FRAME)
*tty->flip.flag_buf_ptr = TTY_FRAME;
if (*status & VAC_UART_STATUS_RX_ERR_OVERRUN) {
/*
* Overrun is special, since it's
* reported immediately, and doesn't
* affect the current character
*/
if (tty->flip.count < TTY_FLIPBUF_SIZE) {
tty->flip.count++;
tty->flip.flag_buf_ptr++;
tty->flip.char_buf_ptr++;
*tty->flip.flag_buf_ptr = TTY_OVERRUN;
}
}
}
tty->flip.flag_buf_ptr++;
tty->flip.char_buf_ptr++;
tty->flip.count++;
ignore_char:
*status = serial_inw(info, VAC_UART_INT_STATUS);
} while ((*status & VAC_UART_STATUS_RX_READY));
tty_flip_buffer_push(tty);
}
static _INLINE_ void transmit_chars(struct async_struct *info, int *intr_done)
{
int count;
if (info->x_char) {
serial_outw(info, VAC_UART_TX,
(((unsigned short)info->x_char)<<8));
info->state->icount.tx++;
info->x_char = 0;
if (intr_done)
*intr_done = 0;
return;
}
if ((info->xmit_cnt <= 0) || info->tty->stopped ||
info->tty->hw_stopped) {
info->IER &= ~VAC_UART_INT_TX_EMPTY;
serial_outw(info, VAC_UART_INT_MASK, info->IER);
return;
}
count = info->xmit_fifo_size;
do {
serial_out(info, VAC_UART_TX,
(unsigned short)info->xmit_buf[info->xmit_tail++] \
<< 8);
info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1);
info->state->icount.tx++;
if (--info->xmit_cnt <= 0)
break;
} while (--count > 0);
if (info->xmit_cnt < WAKEUP_CHARS)
rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);
#ifdef SERIAL_DEBUG_INTR
baget_printk("THRE...");
#endif
if (intr_done)
*intr_done = 0;
if (info->xmit_cnt <= 0) {
info->IER &= ~VAC_UART_INT_TX_EMPTY;
serial_outw(info, VAC_UART_INT_MASK, info->IER);
}
}
static _INLINE_ void check_modem_status(struct async_struct *info)
{
#if 0 /* VAC hasn't modem control */
wake_up_interruptible(&info->open_wait);
rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);
#endif
}
#ifdef CONFIG_SERIAL_SHARE_IRQ
/*
* Specific functions needed for VAC UART interrupt enter/leave
*/
#define VAC_INT_CTRL_UART_ENABLE \
(VAC_INT_CTRL_TIMER_PIO10|VAC_INT_CTRL_UART_B_PIO7|VAC_INT_CTRL_UART_A_PIO7)
#define VAC_INT_CTRL_UART_DISABLE(info) \
(VAC_INT_CTRL_TIMER_PIO10 | \
((info->port == VAC_UART_A_TX) ? \
(VAC_INT_CTRL_UART_A_DISABLE|VAC_INT_CTRL_UART_B_PIO7) : \
(VAC_INT_CTRL_UART_A_PIO7|VAC_INT_CTRL_UART_B_DISABLE)))
/*
* Following two functions were proposed by Pavel Osipenko
* to make VAC/VIC behaviour more regular.
*/
static void intr_begin(struct async_struct* info)
{
serial_outw(info, VAC_UART_INT_MASK, 0);
}
static void intr_end(struct async_struct* info)
{
vac_outw(VAC_INT_CTRL_UART_DISABLE(info), VAC_INT_CTRL);
vac_outw(VAC_INT_CTRL_UART_ENABLE, VAC_INT_CTRL);
serial_outw(info, VAC_UART_INT_MASK, info->IER);
}
/*
* This is the serial driver's generic interrupt routine
*/
static void rs_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
int status;
struct async_struct * info;
int pass_counter = 0;
struct async_struct *end_mark = 0;
#ifdef SERIAL_DEBUG_INTR
baget_printk("rs_interrupt(%d)...", irq);
#endif
info = IRQ_ports[irq];
if (!info)
return;
do {
intr_begin(info); /* Mark we begin port handling */
if (!info->tty ||
(serial_inw (info, VAC_UART_INT_STATUS)
& VAC_UART_STATUS_INTS) == 0)
{
if (!end_mark)
end_mark = info;
goto next;
}
end_mark = 0;
info->last_active = jiffies;
status = serial_inw(info, VAC_UART_INT_STATUS);
#ifdef SERIAL_DEBUG_INTR
baget_printk("status = %x...", status);
#endif
if (status & VAC_UART_STATUS_RX_READY) {
receive_chars(info, &status);
}
check_modem_status(info);
if (status & VAC_UART_STATUS_TX_EMPTY)
transmit_chars(info, 0);
next:
intr_end(info); /* Mark this port handled */
info = info->next_port;
if (!info) {
info = IRQ_ports[irq];
if (pass_counter++ > RS_ISR_PASS_LIMIT) {
break; /* Prevent infinite loops */
}
continue;
}
} while (end_mark != info);
#ifdef SERIAL_DEBUG_INTR
baget_printk("end.\n");
#endif
}
#endif /* #ifdef CONFIG_SERIAL_SHARE_IRQ */
/* The original driver was simplified here:
two functions were joined to reduce code */
#define rs_interrupt_single rs_interrupt
/*
* -------------------------------------------------------------------
* Here ends the serial interrupt routines.
* -------------------------------------------------------------------
*/
/*
* This routine is used to handle the "bottom half" processing for the
* serial driver, known also the "software interrupt" processing.
* This processing is done at the kernel interrupt level, after the
* rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This
* is where time-consuming activities which can not be done in the
* interrupt driver proper are done; the interrupt driver schedules
* them using rs_sched_event(), and they get done here.
*/
static void do_serial_bh(void)
{
run_task_queue(&tq_serial);
}
static void do_softint(void *private_)
{
struct async_struct *info = (struct async_struct *) private_;
struct tty_struct *tty;
tty = info->tty;
if (!tty)
return;
if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) {
if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
tty->ldisc.write_wakeup)
(tty->ldisc.write_wakeup)(tty);
wake_up_interruptible(&tty->write_wait);
}
}
/*
* ---------------------------------------------------------------
* Low level utility subroutines for the serial driver: routines to
* figure out the appropriate timeout for an interrupt chain, routines
* to initialize and startup a serial port, and routines to shutdown a
* serial port. Useful stuff like that.
* ---------------------------------------------------------------
*/
/*
* This routine figures out the correct timeout for a particular IRQ.
* It uses the smallest timeout of all of the serial ports in a
* particular interrupt chain. Now only used for IRQ 0....
*/
static void figure_IRQ_timeout(int irq)
{
struct async_struct *info;
int timeout = 60*HZ; /* 60 seconds === a long time :-) */
info = IRQ_ports[irq];
if (!info) {
IRQ_timeout[irq] = 60*HZ;
return;
}
while (info) {
if (info->timeout < timeout)
timeout = info->timeout;
info = info->next_port;
}
if (!irq)
timeout = timeout / 2;
IRQ_timeout[irq] = timeout ? timeout : 1;
}
static int startup(struct async_struct * info)
{
unsigned long flags;
int retval=0;
void (*handler)(int, void *, struct pt_regs *);
struct serial_state *state= info->state;
unsigned long page;
page = get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
save_flags(flags); cli();
if (info->flags & ASYNC_INITIALIZED) {
free_page(page);
goto errout;
}
if (!state->port || !state->type) {
if (info->tty)
set_bit(TTY_IO_ERROR, &info->tty->flags);
free_page(page);
goto errout;
}
if (info->xmit_buf)
free_page(page);
else
info->xmit_buf = (unsigned char *) page;
#ifdef SERIAL_DEBUG_OPEN
baget_printk("starting up ttys%d (irq %d)...", info->line, state->irq);
#endif
if (uart_config[info->state->type].flags & UART_STARTECH) {
/* Wake up UART */
serial_outp(info, VAC_UART_MODE, 0);
serial_outp(info, VAC_UART_INT_MASK, 0);
}
/*
* Allocate the IRQ if necessary
*/
if (state->irq && (!IRQ_ports[state->irq] ||
!IRQ_ports[state->irq]->next_port)) {
if (IRQ_ports[state->irq]) {
#ifdef CONFIG_SERIAL_SHARE_IRQ
free_irq(state->irq, NULL);
handler = rs_interrupt;
#else
retval = -EBUSY;
goto errout;
#endif /* CONFIG_SERIAL_SHARE_IRQ */
} else
handler = rs_interrupt_single;
retval = request_irq(state->irq, handler, IRQ_T(state),
"serial", NULL);
if (retval) {
if (capable(CAP_SYS_ADMIN)) {
if (info->tty)
set_bit(TTY_IO_ERROR,
&info->tty->flags);
retval = 0;
}
goto errout;
}
}
/*
* Insert serial port into IRQ chain.
*/
info->prev_port = 0;
info->next_port = IRQ_ports[state->irq];
if (info->next_port)
info->next_port->prev_port = info;
IRQ_ports[state->irq] = info;
figure_IRQ_timeout(state->irq);
/*
* Clear the interrupt registers.
*/
/* (void) serial_inw(info, VAC_UART_INT_STATUS); */ /* (see above) */
(void) serial_inw(info, VAC_UART_RX);
/*
* Now, initialize the UART
*/
serial_outp(info, VAC_UART_MODE, VAC_UART_MODE_INITIAL); /*reset DLAB*/
/*
* Finally, enable interrupts
*/
info->IER = VAC_UART_INT_RX_BREAK_CHANGE | VAC_UART_INT_RX_ERRS | \
VAC_UART_INT_RX_READY;
serial_outp(info, VAC_UART_INT_MASK, info->IER); /*enable interrupts*/
/*
* And clear the interrupt registers again for luck.
*/
(void)serial_inp(info, VAC_UART_INT_STATUS);
(void)serial_inp(info, VAC_UART_RX);
if (info->tty)
clear_bit(TTY_IO_ERROR, &info->tty->flags);
info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
/*
* Set up serial timers...
*/
mod_timer(&vacs_timer, jiffies + 2*HZ/100);
/*
* and set the speed of the serial port
*/
change_speed(info);
info->flags |= ASYNC_INITIALIZED;
restore_flags(flags);
return 0;
errout:
restore_flags(flags);
return retval;
}
/*
* This routine will shutdown a serial port; interrupts are disabled, and
* DTR is dropped if the hangup on close termio flag is on.
*/
static void shutdown(struct async_struct * info)
{
unsigned long flags;
struct serial_state *state;
int retval;
if (!(info->flags & ASYNC_INITIALIZED))
return;
state = info->state;
#ifdef SERIAL_DEBUG_OPEN
baget_printk("Shutting down serial port %d (irq %d)....", info->line,
state->irq);
#endif
save_flags(flags); cli(); /* Disable interrupts */
/*
* clear delta_msr_wait queue to avoid mem leaks: we may free the irq
* here so the queue might never be waken up
*/
wake_up_interruptible(&info->delta_msr_wait);
/*
* First unlink the serial port from the IRQ chain...
*/
if (info->next_port)
info->next_port->prev_port = info->prev_port;
if (info->prev_port)
info->prev_port->next_port = info->next_port;
else
IRQ_ports[state->irq] = info->next_port;
figure_IRQ_timeout(state->irq);
/*
* Free the IRQ, if necessary
*/
if (state->irq && (!IRQ_ports[state->irq] ||
!IRQ_ports[state->irq]->next_port)) {
if (IRQ_ports[state->irq]) {
free_irq(state->irq, NULL);
retval = request_irq(state->irq, rs_interrupt_single,
IRQ_T(state), "serial", NULL);
if (retval)
printk("serial shutdown: request_irq: error %d"
" Couldn't reacquire IRQ.\n", retval);
} else
free_irq(state->irq, NULL);
}
if (info->xmit_buf) {
free_page((unsigned long) info->xmit_buf);
info->xmit_buf = 0;
}
info->IER = 0;
serial_outp(info, VAC_UART_INT_MASK, 0x00); /* disable all intrs */
/* disable break condition */
serial_out(info, VAC_UART_MODE, serial_inp(info, VAC_UART_MODE) & \
~VAC_UART_MODE_SEND_BREAK);
if (info->tty)
set_bit(TTY_IO_ERROR, &info->tty->flags);
info->flags &= ~ASYNC_INITIALIZED;
restore_flags(flags);
}
/*
* When we set line mode, we call this function
* for Baget-specific adjustments.
*/
static inline unsigned short vac_uart_mode_fixup (unsigned short cval)
{
#ifdef QUAD_UART_SPEED
/*
* When we are using 4-x advantage in speed:
*
* Disadvantage : can't support 75, 150 bauds
* Advantage : can support 19200, 38400 bauds
*/
char speed = 7 & (cval >> 10);
cval &= ~(7 << 10);
cval |= VAC_UART_MODE_BAUD(speed-2);
#endif
/*
* In general, we have Tx and Rx ON all time
* and use int mask flag for their disabling.
*/
cval |= VAC_UART_MODE_RX_ENABLE;
cval |= VAC_UART_MODE_TX_ENABLE;
cval |= VAC_UART_MODE_CHAR_RX_ENABLE;
cval |= VAC_UART_MODE_CHAR_TX_ENABLE;
/* Low 4 bits are not used in UART */
cval &= ~0xf;
return cval;
}
/*
* This routine is called to set the UART divisor registers to match
* the specified baud rate for a serial port.
*/
static void change_speed(struct async_struct *info)
{
unsigned short port;
int quot = 0, baud_base, baud;
unsigned cflag, cval;
int bits;
unsigned long flags;
if (!info->tty || !info->tty->termios)
return;
cflag = info->tty->termios->c_cflag;
if (!(port = info->port))
return;
/* byte size and parity */
switch (cflag & CSIZE) {
case CS7: cval = 0x0; bits = 9; break;
case CS8: cval = VAC_UART_MODE_8BIT_CHAR; bits = 10; break;
/* Never happens, but GCC is too dumb to figure it out */
case CS5:
case CS6:
default: cval = 0x0; bits = 9; break;
}
cval &= ~VAC_UART_MODE_PARITY_ENABLE;
if (cflag & PARENB) {
cval |= VAC_UART_MODE_PARITY_ENABLE;
bits++;
}
if (cflag & PARODD)
cval |= VAC_UART_MODE_PARITY_ODD;
/* Determine divisor based on baud rate */
baud = tty_get_baud_rate(info->tty);
if (!baud)
baud = 9600; /* B0 transition handled in rs_set_termios */
baud_base = info->state->baud_base;
if (baud == 38400 &&
((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST))
quot = info->state->custom_divisor;
else {
if (baud == 134)
/* Special case since 134 is really 134.5 */
quot = (2*baud_base / 269);
else if (baud)
quot = baud_base / baud;
}
/* If the quotient is ever zero, default to 9600 bps */
if (!quot)
quot = baud_base / 9600;
info->quot = quot;
info->timeout = ((info->xmit_fifo_size*HZ*bits*quot) / baud_base);
info->timeout += HZ/50; /* Add .02 seconds of slop */
serial_out(info, VAC_UART_INT_MASK, info->IER);
/*
* Set up parity check flag
*/
#define RELEVANT_IFLAG(iflag) (iflag & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK))
info->read_status_mask = VAC_UART_STATUS_RX_ERR_OVERRUN | \
VAC_UART_STATUS_TX_EMPTY | VAC_UART_STATUS_RX_READY;
if (I_INPCK(info->tty))
info->read_status_mask |= VAC_UART_STATUS_RX_ERR_FRAME | \
VAC_UART_STATUS_RX_ERR_PARITY;
if (I_BRKINT(info->tty) || I_PARMRK(info->tty))
info->read_status_mask |= VAC_UART_STATUS_RX_BREAK_CHANGE;
/*
* Characters to ignore
*/
info->ignore_status_mask = 0;
if (I_IGNPAR(info->tty))
info->ignore_status_mask |= VAC_UART_STATUS_RX_ERR_PARITY | \
VAC_UART_STATUS_RX_ERR_FRAME;
if (I_IGNBRK(info->tty)) {
info->ignore_status_mask |= VAC_UART_STATUS_RX_BREAK_CHANGE;
/*
* If we're ignore parity and break indicators, ignore
* overruns too. (For real raw support).
*/
if (I_IGNPAR(info->tty))
info->ignore_status_mask |= \
VAC_UART_STATUS_RX_ERR_OVERRUN;
}
/*
* !!! ignore all characters if CREAD is not set
*/
if ((cflag & CREAD) == 0)
info->ignore_status_mask |= VAC_UART_STATUS_RX_READY;
save_flags(flags); cli();
switch (baud) {
default:
case 9600:
cval |= VAC_UART_MODE_BAUD(7);
break;
case 4800:
cval |= VAC_UART_MODE_BAUD(6);
break;
case 2400:
cval |= VAC_UART_MODE_BAUD(5);
break;
case 1200:
cval |= VAC_UART_MODE_BAUD(4);
break;
case 600:
cval |= VAC_UART_MODE_BAUD(3);
break;
case 300:
cval |= VAC_UART_MODE_BAUD(2);
break;
#ifndef QUAD_UART_SPEED
case 150:
#else
case 38400:
#endif
cval |= VAC_UART_MODE_BAUD(1);
break;
#ifndef QUAD_UART_SPEED
case 75:
#else
case 19200:
#endif
cval |= VAC_UART_MODE_BAUD(0);
break;
}
/* Baget VAC need some adjustments for computed value */
cval = vac_uart_mode_fixup(cval);
serial_outp(info, VAC_UART_MODE, cval);
restore_flags(flags);
}
static void rs_put_char(struct tty_struct *tty, unsigned char ch)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_put_char"))
return;
if (!tty || !info->xmit_buf)
return;
save_flags(flags); cli();
if (info->xmit_cnt >= SERIAL_XMIT_SIZE - 1) {
restore_flags(flags);
return;
}
info->xmit_buf[info->xmit_head++] = ch;
info->xmit_head &= SERIAL_XMIT_SIZE-1;
info->xmit_cnt++;
restore_flags(flags);
}
static void rs_flush_chars(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_flush_chars"))
return;
if (info->xmit_cnt <= 0 || tty->stopped || tty->hw_stopped ||
!info->xmit_buf)
return;
save_flags(flags); cli();
info->IER |= VAC_UART_INT_TX_EMPTY;
serial_out(info, VAC_UART_INT_MASK, info->IER);
restore_flags(flags);
}
static int rs_write(struct tty_struct * tty, int from_user,
const unsigned char *buf, int count)
{
int c, ret = 0;
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_write"))
return 0;
if (!tty || !info->xmit_buf || !tmp_buf)
return 0;
save_flags(flags);
if (from_user) {
down(&tmp_buf_sem);
while (1) {
c = MIN(count,
MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1,
SERIAL_XMIT_SIZE - info->xmit_head));
if (c <= 0)
break;
c -= copy_from_user(tmp_buf, buf, c);
if (!c) {
if (!ret)
ret = -EFAULT;
break;
}
cli();
c = MIN(c, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1,
SERIAL_XMIT_SIZE - info->xmit_head));
memcpy(info->xmit_buf + info->xmit_head, tmp_buf, c);
info->xmit_head = ((info->xmit_head + c) &
(SERIAL_XMIT_SIZE-1));
info->xmit_cnt += c;
restore_flags(flags);
buf += c;
count -= c;
ret += c;
}
up(&tmp_buf_sem);
} else {
while (1) {
cli();
c = MIN(count,
MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1,
SERIAL_XMIT_SIZE - info->xmit_head));
if (c <= 0) {
restore_flags(flags);
break;
}
memcpy(info->xmit_buf + info->xmit_head, buf, c);
info->xmit_head = ((info->xmit_head + c) &
(SERIAL_XMIT_SIZE-1));
info->xmit_cnt += c;
restore_flags(flags);
buf += c;
count -= c;
ret += c;
}
}
if (info->xmit_cnt && !tty->stopped && !tty->hw_stopped &&
!(info->IER & VAC_UART_INT_TX_EMPTY)) {
info->IER |= VAC_UART_INT_TX_EMPTY;
serial_out(info, VAC_UART_INT_MASK, info->IER);
}
return ret;
}
static int rs_write_room(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
int ret;
if (serial_paranoia_check(info, tty->device, "rs_write_room"))
return 0;
ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1;
if (ret < 0)
ret = 0;
return ret;
}
static int rs_chars_in_buffer(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "rs_chars_in_buffer"))
return 0;
return info->xmit_cnt;
}
static void rs_flush_buffer(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_flush_buffer"))
return;
save_flags(flags); cli();
info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
restore_flags(flags);
wake_up_interruptible(&tty->write_wait);
if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
tty->ldisc.write_wakeup)
(tty->ldisc.write_wakeup)(tty);
}
/*
* This function is used to send a high-priority XON/XOFF character to
* the device
*/
static void rs_send_xchar(struct tty_struct *tty, char ch)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "rs_send_char"))
return;
info->x_char = ch;
if (ch) {
/* Make sure transmit interrupts are on */
info->IER |= VAC_UART_INT_TX_EMPTY;
serial_out(info, VAC_UART_INT_MASK, info->IER);
}
}
/*
* ------------------------------------------------------------
* rs_throttle()
*
* This routine is called by the upper-layer tty layer to signal that
* incoming characters should be throttled.
* ------------------------------------------------------------
*/
static void rs_throttle(struct tty_struct * tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
#ifdef SERIAL_DEBUG_THROTTLE
char buf[64];
baget_printk("throttle %s: %d....\n", tty_name(tty, buf),
tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->device, "rs_throttle"))
return;
if (I_IXOFF(tty))
rs_send_xchar(tty, STOP_CHAR(tty));
}
static void rs_unthrottle(struct tty_struct * tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
#ifdef SERIAL_DEBUG_THROTTLE
char buf[64];
baget_printk("unthrottle %s: %d....\n", tty_name(tty, buf),
tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->device, "rs_unthrottle"))
return;
if (I_IXOFF(tty)) {
if (info->x_char)
info->x_char = 0;
else
rs_send_xchar(tty, START_CHAR(tty));
}
}
/*
* ------------------------------------------------------------
* rs_ioctl() and friends
* ------------------------------------------------------------
*/
static int get_serial_info(struct async_struct * info,
struct serial_struct * retinfo)
{
struct serial_struct tmp;
struct serial_state *state = info->state;
if (!retinfo)
return -EFAULT;
memset(&tmp, 0, sizeof(tmp));
tmp.type = state->type;
tmp.line = state->line;
tmp.port = state->port;
tmp.irq = state->irq;
tmp.flags = state->flags;
tmp.xmit_fifo_size = state->xmit_fifo_size;
tmp.baud_base = state->baud_base;
tmp.close_delay = state->close_delay;
tmp.closing_wait = state->closing_wait;
tmp.custom_divisor = state->custom_divisor;
tmp.hub6 = state->hub6;
if (copy_to_user(retinfo,&tmp,sizeof(*retinfo)))
return -EFAULT;
return 0;
}
static int set_serial_info(struct async_struct * info,
struct serial_struct * new_info)
{
struct serial_struct new_serial;
struct serial_state old_state, *state;
unsigned int i,change_irq,change_port;
int retval = 0;
if (copy_from_user(&new_serial,new_info,sizeof(new_serial)))
return -EFAULT;
state = info->state;
old_state = *state;
change_irq = new_serial.irq != state->irq;
change_port = (new_serial.port != state->port) ||
(new_serial.hub6 != state->hub6);
if (!capable(CAP_SYS_ADMIN)) {
if (change_irq || change_port ||
(new_serial.baud_base != state->baud_base) ||
(new_serial.type != state->type) ||
(new_serial.close_delay != state->close_delay) ||
(new_serial.xmit_fifo_size != state->xmit_fifo_size) ||
((new_serial.flags & ~ASYNC_USR_MASK) !=
(state->flags & ~ASYNC_USR_MASK)))
return -EPERM;
state->flags = ((state->flags & ~ASYNC_USR_MASK) |
(new_serial.flags & ASYNC_USR_MASK));
info->flags = ((state->flags & ~ASYNC_USR_MASK) |
(info->flags & ASYNC_USR_MASK));
state->custom_divisor = new_serial.custom_divisor;
goto check_and_exit;
}
new_serial.irq = new_serial.irq;
if ((new_serial.irq >= NR_IRQS) || (new_serial.port > 0xffff) ||
(new_serial.baud_base == 0) || (new_serial.type < PORT_UNKNOWN) ||
(new_serial.type > PORT_MAX) || (new_serial.type == PORT_CIRRUS) ||
(new_serial.type == PORT_STARTECH)) {
return -EINVAL;
}
if ((new_serial.type != state->type) ||
(new_serial.xmit_fifo_size <= 0))
new_serial.xmit_fifo_size =
uart_config[state->type].dfl_xmit_fifo_size;
/* Make sure address is not already in use */
if (new_serial.type) {
for (i = 0 ; i < NR_PORTS; i++)
if ((state != &rs_table[i]) &&
(rs_table[i].port == new_serial.port) &&
rs_table[i].type)
return -EADDRINUSE;
}
if ((change_port || change_irq) && (state->count > 1))
return -EBUSY;
/*
* OK, past this point, all the error checking has been done.
* At this point, we start making changes.....
*/
state->baud_base = new_serial.baud_base;
state->flags = ((state->flags & ~ASYNC_FLAGS) |
(new_serial.flags & ASYNC_FLAGS));
info->flags = ((state->flags & ~ASYNC_INTERNAL_FLAGS) |
(info->flags & ASYNC_INTERNAL_FLAGS));
state->custom_divisor = new_serial.custom_divisor;
state->type = new_serial.type;
state->close_delay = new_serial.close_delay * HZ/100;
state->closing_wait = new_serial.closing_wait * HZ/100;
info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0;
info->xmit_fifo_size = state->xmit_fifo_size =
new_serial.xmit_fifo_size;
release_region(state->port,8);
if (change_port || change_irq) {
/*
* We need to shutdown the serial port at the old
* port/irq combination.
*/
shutdown(info);
state->irq = new_serial.irq;
info->port = state->port = new_serial.port;
info->hub6 = state->hub6 = new_serial.hub6;
}
if (state->type != PORT_UNKNOWN)
request_region(state->port,8,"serial(set)");
check_and_exit:
if (!state->port || !state->type)
return 0;
if (info->flags & ASYNC_INITIALIZED) {
if (((old_state.flags & ASYNC_SPD_MASK) !=
(state->flags & ASYNC_SPD_MASK)) ||
(old_state.custom_divisor != state->custom_divisor)) {
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
info->tty->alt_speed = 57600;
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
info->tty->alt_speed = 115200;
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
info->tty->alt_speed = 230400;
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
info->tty->alt_speed = 460800;
change_speed(info);
}
} else
retval = startup(info);
return retval;
}
/*
* get_lsr_info - get line status register info
*
* Purpose: Let user call ioctl() to get info when the UART physically
* is emptied. On bus types like RS485, the transmitter must
* release the bus after transmitting. This must be done when
* the transmit shift register is empty, not be done when the
* transmit holding register is empty. This functionality
* allows an RS485 driver to be written in user space.
*/
static int get_lsr_info(struct async_struct * info, unsigned int *value)
{
unsigned short status;
unsigned int result;
unsigned long flags;
save_flags(flags); cli();
status = serial_inw(info, VAC_UART_INT_STATUS);
restore_flags(flags);
result = ((status & VAC_UART_STATUS_TX_EMPTY) ? TIOCSER_TEMT : 0);
return put_user(result,value);
}
static int get_modem_info(struct async_struct * info, unsigned int *value)
{
unsigned int result;
result = TIOCM_CAR | TIOCM_DSR;
return put_user(result,value);
}
static int set_modem_info(struct async_struct * info, unsigned int cmd,
unsigned int *value)
{
unsigned int arg;
if (get_user(arg, value))
return -EFAULT;
switch (cmd) {
default:
return -EINVAL;
}
return 0;
}
static int do_autoconfig(struct async_struct * info)
{
int retval;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (info->state->count > 1)
return -EBUSY;
shutdown(info);
autoconfig(info->state);
retval = startup(info);
if (retval)
return retval;
return 0;
}
/*
* rs_break() --- routine which turns the break handling on or off
*/
static void rs_break(struct tty_struct *tty, int break_state)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_break"))
return;
if (!info->port)
return;
save_flags(flags); cli();
if (break_state == -1)
serial_outp(info, VAC_UART_MODE,
serial_inp(info, VAC_UART_MODE) | \
VAC_UART_MODE_SEND_BREAK);
else
serial_outp(info, VAC_UART_MODE,
serial_inp(info, VAC_UART_MODE) & \
~VAC_UART_MODE_SEND_BREAK);
restore_flags(flags);
}
static int rs_ioctl(struct tty_struct *tty, struct file * file,
unsigned int cmd, unsigned long arg)
{
int error;
struct async_struct * info = (struct async_struct *)tty->driver_data;
struct async_icount cprev, cnow; /* kernel counter temps */
struct serial_icounter_struct *p_cuser; /* user space */
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_ioctl"))
return -ENODEV;
if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
(cmd != TIOCSERCONFIG) && (cmd != TIOCSERGSTRUCT) &&
(cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) {
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
}
switch (cmd) {
case TIOCMGET:
return get_modem_info(info, (unsigned int *) arg);
case TIOCMBIS:
case TIOCMBIC:
case TIOCMSET:
return set_modem_info(info, cmd, (unsigned int *) arg);
case TIOCGSERIAL:
return get_serial_info(info,
(struct serial_struct *) arg);
case TIOCSSERIAL:
return set_serial_info(info,
(struct serial_struct *) arg);
case TIOCSERCONFIG:
return do_autoconfig(info);
case TIOCSERGETLSR: /* Get line status register */
return get_lsr_info(info, (unsigned int *) arg);
case TIOCSERGSTRUCT:
if (copy_to_user((struct async_struct *) arg,
info, sizeof(struct async_struct)))
return -EFAULT;
return 0;
/*
* Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS)to change
* - mask passed in arg for lines of interest
* (use |'ed TIOCM_RNG/DSR/CD/CTS for masking)
* Caller should use TIOCGICOUNT to see which one it was
*/
case TIOCMIWAIT:
save_flags(flags); cli();
/* note the counters on entry */
cprev = info->state->icount;
restore_flags(flags);
while (1) {
interruptible_sleep_on(&info->delta_msr_wait);
/* see if a signal did it */
if (signal_pending(current))
return -ERESTARTSYS;
save_flags(flags); cli();
cnow = info->state->icount; /* atomic copy */
restore_flags(flags);
if (cnow.rng == cprev.rng &&
cnow.dsr == cprev.dsr &&
cnow.dcd == cprev.dcd &&
cnow.cts == cprev.cts)
return -EIO; /* no change => error */
if ( ((arg & TIOCM_RNG) &&
(cnow.rng != cprev.rng)) ||
((arg & TIOCM_DSR) &&
(cnow.dsr != cprev.dsr)) ||
((arg & TIOCM_CD) &&
(cnow.dcd != cprev.dcd)) ||
((arg & TIOCM_CTS) &&
(cnow.cts != cprev.cts)) ) {
return 0;
}
cprev = cnow;
}
/* NOTREACHED */
/*
* Get counter of input serial line interrupts (DCD,RI,DSR,CTS)
* Return: write counters to the user passed counter struct
* NB: both 1->0 and 0->1 transitions are counted except for
* RI where only 0->1 is counted.
*/
case TIOCGICOUNT:
save_flags(flags); cli();
cnow = info->state->icount;
restore_flags(flags);
p_cuser = (struct serial_icounter_struct *) arg;
error = put_user(cnow.cts, &p_cuser->cts);
if (error) return error;
error = put_user(cnow.dsr, &p_cuser->dsr);
if (error) return error;
error = put_user(cnow.rng, &p_cuser->rng);
if (error) return error;
error = put_user(cnow.dcd, &p_cuser->dcd);
if (error) return error;
error = put_user(cnow.rx, &p_cuser->rx);
if (error) return error;
error = put_user(cnow.tx, &p_cuser->tx);
if (error) return error;
error = put_user(cnow.frame, &p_cuser->frame);
if (error) return error;
error = put_user(cnow.overrun, &p_cuser->overrun);
if (error) return error;
error = put_user(cnow.parity, &p_cuser->parity);
if (error) return error;
error = put_user(cnow.brk, &p_cuser->brk);
if (error) return error;
error = put_user(cnow.buf_overrun, &p_cuser->buf_overrun);
if (error) return error;
return 0;
case TIOCSERGWILD:
case TIOCSERSWILD:
/* "setserial -W" is called in Debian boot */
printk ("TIOCSER?WILD ioctl obsolete, ignored.\n");
return 0;
default:
return -ENOIOCTLCMD;
}
return 0;
}
static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned int cflag = tty->termios->c_cflag;
if ( (cflag == old_termios->c_cflag)
&& ( RELEVANT_IFLAG(tty->termios->c_iflag)
== RELEVANT_IFLAG(old_termios->c_iflag)))
return;
change_speed(info);
/* Handle turning off CRTSCTS */
if ((old_termios->c_cflag & CRTSCTS) &&
!(cflag & CRTSCTS)) {
tty->hw_stopped = 0;
rs_start(tty);
}
}
/*
* ------------------------------------------------------------
* rs_close()
*
* This routine is called when the serial port gets closed. First, we
* wait for the last remaining data to be sent. Then, we unlink its
* async structure from the interrupt chain if necessary, and we free
* that IRQ if nothing is left in the chain.
* ------------------------------------------------------------
*/
static void rs_close(struct tty_struct *tty, struct file * filp)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
struct serial_state *state;
unsigned long flags;
if (!info || serial_paranoia_check(info, tty->device, "rs_close"))
return;
state = info->state;
save_flags(flags); cli();
if (tty_hung_up_p(filp)) {
DBG_CNT("before DEC-hung");
MOD_DEC_USE_COUNT;
restore_flags(flags);
return;
}
#ifdef SERIAL_DEBUG_OPEN
baget_printk("rs_close ttys%d, count = %d\n",
info->line, state->count);
#endif
if ((tty->count == 1) && (state->count != 1)) {
/*
* Uh, oh. tty->count is 1, which means that the tty
* structure will be freed. state->count should always
* be one in these conditions. If it's greater than
* one, we've got real problems, since it means the
* serial port won't be shutdown.
*/
baget_printk("rs_close: bad serial port count; "
"tty->count is 1, "
"state->count is %d\n", state->count);
state->count = 1;
}
if (--state->count < 0) {
baget_printk("rs_close: bad serial port count for "
"ttys%d: %d\n",
info->line, state->count);
state->count = 0;
}
if (state->count) {
DBG_CNT("before DEC-2");
MOD_DEC_USE_COUNT;
restore_flags(flags);
return;
}
info->flags |= ASYNC_CLOSING;
/*
* Save the termios structure, since this port may have
* separate termios for callout and dialin.
*/
if (info->flags & ASYNC_NORMAL_ACTIVE)
info->state->normal_termios = *tty->termios;
if (info->flags & ASYNC_CALLOUT_ACTIVE)
info->state->callout_termios = *tty->termios;
/*
* Now we wait for the transmit buffer to clear; and we notify
* the line discipline to only process XON/XOFF characters.
*/
tty->closing = 1;
if (state->closing_wait != ASYNC_CLOSING_WAIT_NONE)
tty_wait_until_sent(tty, state->closing_wait);
/*
* At this point we stop accepting input. To do this, we
* disable the receive line status interrupts, and tell the
* interrupt driver to stop checking the data ready bit in the
* line status register.
*/
info->IER &= ~(VAC_UART_INT_RX_BREAK_CHANGE | VAC_UART_INT_RX_ERRS);
info->read_status_mask &= ~VAC_UART_STATUS_RX_READY;
if (info->flags & ASYNC_INITIALIZED) {
serial_outw(info, VAC_UART_INT_MASK, info->IER);
/*
* Before we drop DTR, make sure the UART transmitter
* has completely drained; this is especially
* important if there is a transmit FIFO!
*/
rs_wait_until_sent(tty, info->timeout);
}
shutdown(info);
if (tty->driver.flush_buffer)
tty->driver.flush_buffer(tty);
if (tty->ldisc.flush_buffer)
tty->ldisc.flush_buffer(tty);
tty->closing = 0;
info->event = 0;
info->tty = 0;
if (info->blocked_open) {
if (state->close_delay) {
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(state->close_delay);
}
wake_up_interruptible(&info->open_wait);
}
info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE|
ASYNC_CLOSING);
wake_up_interruptible(&info->close_wait);
MOD_DEC_USE_COUNT;
restore_flags(flags);
}
/*
* rs_wait_until_sent() --- wait until the transmitter is empty
*/
static void rs_wait_until_sent(struct tty_struct *tty, int timeout)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
unsigned long orig_jiffies, char_time;
int lsr;
if (serial_paranoia_check(info, tty->device, "rs_wait_until_sent"))
return;
if (info->state->type == PORT_UNKNOWN)
return;
if (info->xmit_fifo_size == 0)
return; /* Just in case.... */
orig_jiffies = jiffies;
/*
* Set the check interval to be 1/5 of the estimated time to
* send a single character, and make it at least 1. The check
* interval should also be less than the timeout.
*
* Note: we have to use pretty tight timings here to satisfy
* the NIST-PCTS.
*/
char_time = (info->timeout - HZ/50) / info->xmit_fifo_size;
char_time = char_time / 5;
if (char_time == 0)
char_time = 1;
if (timeout)
char_time = MIN(char_time, timeout);
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
baget_printk("In rs_wait_until_sent(%d) check=%lu...",
timeout, char_time);
baget_printk("jiff=%lu...", jiffies);
#endif
while (!((lsr = serial_inp(info, VAC_UART_INT_STATUS)) & \
VAC_UART_STATUS_TX_EMPTY)) {
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
baget_printk("lsr = %d (jiff=%lu)...", lsr, jiffies);
#endif
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(char_time);
if (signal_pending(current))
break;
if (timeout && time_after(jiffies, orig_jiffies + timeout))
break;
}
current->state = TASK_RUNNING;
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
baget_printk("lsr = %d (jiff=%lu)...done\n", lsr, jiffies);
#endif
}
/*
* rs_hangup() --- called by tty_hangup() when a hangup is signaled.
*/
static void rs_hangup(struct tty_struct *tty)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
struct serial_state *state = info->state;
if (serial_paranoia_check(info, tty->device, "rs_hangup"))
return;
state = info->state;
rs_flush_buffer(tty);
shutdown(info);
info->event = 0;
state->count = 0;
info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE);
info->tty = 0;
wake_up_interruptible(&info->open_wait);
}
/*
* ------------------------------------------------------------
* rs_open() and friends
* ------------------------------------------------------------
*/
static int block_til_ready(struct tty_struct *tty, struct file * filp,
struct async_struct *info)
{
DECLARE_WAITQUEUE(wait, current);
struct serial_state *state = info->state;
int retval;
int do_clocal = 0, extra_count = 0;
unsigned long flags;
/*
* If the device is in the middle of being closed, then block
* until it's done, and then try again.
*/
if (tty_hung_up_p(filp) ||
(info->flags & ASYNC_CLOSING)) {
if (info->flags & ASYNC_CLOSING)
interruptible_sleep_on(&info->close_wait);
#ifdef SERIAL_DO_RESTART
return ((info->flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS);
#else
return -EAGAIN;
#endif
}
/*
* If this is a callout device, then just make sure the normal
* device isn't being used.
*/
if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) {
if (info->flags & ASYNC_NORMAL_ACTIVE)
return -EBUSY;
if ((info->flags & ASYNC_CALLOUT_ACTIVE) &&
(info->flags & ASYNC_SESSION_LOCKOUT) &&
(info->session != current->session))
return -EBUSY;
if ((info->flags & ASYNC_CALLOUT_ACTIVE) &&
(info->flags & ASYNC_PGRP_LOCKOUT) &&
(info->pgrp != current->pgrp))
return -EBUSY;
info->flags |= ASYNC_CALLOUT_ACTIVE;
return 0;
}
/*
* If non-blocking mode is set, or the port is not enabled,
* then make the check up front and then exit.
*/
if ((filp->f_flags & O_NONBLOCK) ||
(tty->flags & (1 << TTY_IO_ERROR))) {
if (info->flags & ASYNC_CALLOUT_ACTIVE)
return -EBUSY;
info->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
if (info->flags & ASYNC_CALLOUT_ACTIVE) {
if (state->normal_termios.c_cflag & CLOCAL)
do_clocal = 1;
} else {
if (tty->termios->c_cflag & CLOCAL)
do_clocal = 1;
}
/*
* Block waiting for the carrier detect and the line to become
* free (i.e., not in use by the callout). While we are in
* this loop, state->count is dropped by one, so that
* rs_close() knows when to free things. We restore it upon
* exit, either normal or abnormal.
*/
retval = 0;
add_wait_queue(&info->open_wait, &wait);
#ifdef SERIAL_DEBUG_OPEN
baget_printk("block_til_ready before block: ttys%d, count = %d\n",
state->line, state->count);
#endif
save_flags(flags); cli();
if (!tty_hung_up_p(filp)) {
extra_count = 1;
state->count--;
}
restore_flags(flags);
info->blocked_open++;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
if (tty_hung_up_p(filp) ||
!(info->flags & ASYNC_INITIALIZED)) {
#ifdef SERIAL_DO_RESTART
if (info->flags & ASYNC_HUP_NOTIFY)
retval = -EAGAIN;
else
retval = -ERESTARTSYS;
#else
retval = -EAGAIN;
#endif
break;
}
if (!(info->flags & ASYNC_CALLOUT_ACTIVE) &&
!(info->flags & ASYNC_CLOSING))
break;
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
#ifdef SERIAL_DEBUG_OPEN
baget_printk("block_til_ready blocking: ttys%d, count = %d\n",
info->line, state->count);
#endif
schedule();
}
current->state = TASK_RUNNING;
remove_wait_queue(&info->open_wait, &wait);
if (extra_count)
state->count++;
info->blocked_open--;
#ifdef SERIAL_DEBUG_OPEN
baget_printk("block_til_ready after blocking: ttys%d, count = %d\n",
info->line, state->count);
#endif
if (retval)
return retval;
info->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
static int get_async_struct(int line, struct async_struct **ret_info)
{
struct async_struct *info;
struct serial_state *sstate;
sstate = rs_table + line;
sstate->count++;
if (sstate->info) {
*ret_info = sstate->info;
return 0;
}
info = kmalloc(sizeof(struct async_struct), GFP_KERNEL);
if (!info) {
sstate->count--;
return -ENOMEM;
}
memset(info, 0, sizeof(struct async_struct));
init_waitqueue_head(&info->open_wait);
init_waitqueue_head(&info->close_wait);
init_waitqueue_head(&info->delta_msr_wait);
info->magic = SERIAL_MAGIC;
info->port = sstate->port;
info->flags = sstate->flags;
info->xmit_fifo_size = sstate->xmit_fifo_size;
info->line = line;
info->tqueue.routine = do_softint;
info->tqueue.data = info;
info->state = sstate;
if (sstate->info) {
kfree(info);
*ret_info = sstate->info;
return 0;
}
*ret_info = sstate->info = info;
return 0;
}
/*
* This routine is called whenever a serial port is opened. It
* enables interrupts for a serial port, linking in its async structure into
* the IRQ chain. It also performs the serial-specific
* initialization for the tty structure.
*/
static int rs_open(struct tty_struct *tty, struct file * filp)
{
struct async_struct *info;
int retval, line;
unsigned long page;
MOD_INC_USE_COUNT;
line = MINOR(tty->device) - tty->driver.minor_start;
if ((line < 0) || (line >= NR_PORTS)) {
MOD_DEC_USE_COUNT;
return -ENODEV;
}
retval = get_async_struct(line, &info);
if (retval) {
MOD_DEC_USE_COUNT;
return retval;
}
tty->driver_data = info;
info->tty = tty;
if (serial_paranoia_check(info, tty->device, "rs_open")) {
/* MOD_DEC_USE_COUNT; "info->tty" will cause this */
return -ENODEV;
}
#ifdef SERIAL_DEBUG_OPEN
baget_printk("rs_open %s%d, count = %d\n",
tty->driver.name, info->line,
info->state->count);
#endif
info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0;
if (!tmp_buf) {
page = get_free_page(GFP_KERNEL);
if (!page) {
/* MOD_DEC_USE_COUNT; "info->tty" will cause this */
return -ENOMEM;
}
if (tmp_buf)
free_page(page);
else
tmp_buf = (unsigned char *) page;
}
/*
* If the port is the middle of closing, bail out now
*/
if (tty_hung_up_p(filp) ||
(info->flags & ASYNC_CLOSING)) {
if (info->flags & ASYNC_CLOSING)
interruptible_sleep_on(&info->close_wait);
/* MOD_DEC_USE_COUNT; "info->tty" will cause this */
#ifdef SERIAL_DO_RESTART
return ((info->flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS);
#else
return -EAGAIN;
#endif
}
/*
* Start up serial port
*/
retval = startup(info);
if (retval) {
/* MOD_DEC_USE_COUNT; "info->tty" will cause this */
return retval;
}
retval = block_til_ready(tty, filp, info);
if (retval) {
/* MOD_DEC_USE_COUNT; "info->tty" will cause this */
#ifdef SERIAL_DEBUG_OPEN
baget_printk("rs_open returning after block_til_ready "
"with %d\n",
retval);
#endif
return retval;
}
if ((info->state->count == 1) &&
(info->flags & ASYNC_SPLIT_TERMIOS)) {
if (tty->driver.subtype == SERIAL_TYPE_NORMAL)
*tty->termios = info->state->normal_termios;
else
*tty->termios = info->state->callout_termios;
change_speed(info);
}
#ifdef CONFIG_SERIAL_CONSOLE
if (sercons.cflag && sercons.index == line) {
tty->termios->c_cflag = sercons.cflag;
sercons.cflag = 0;
change_speed(info);
}
#endif
info->session = current->session;
info->pgrp = current->pgrp;
#ifdef SERIAL_DEBUG_OPEN
baget_printk("rs_open ttys%d successful...", info->line);
#endif
return 0;
}
/*
* /proc fs routines....
*/
static inline int line_info(char *buf, struct serial_state *state)
{
struct async_struct *info = state->info, scr_info;
int ret;
ret = sprintf(buf, "%d: uart:%s port:%X irq:%d",
state->line, uart_config[state->type].name,
state->port, state->irq);
if (!state->port || (state->type == PORT_UNKNOWN)) {
ret += sprintf(buf+ret, "\n");
return ret;
}
/*
* Figure out the current RS-232 lines
*/
if (!info) {
info = &scr_info; /* This is just for serial_{in,out} */
info->magic = SERIAL_MAGIC;
info->port = state->port;
info->flags = state->flags;
info->quot = 0;
info->tty = 0;
}
if (info->quot) {
ret += sprintf(buf+ret, " baud:%d",
state->baud_base / info->quot);
}
ret += sprintf(buf+ret, " tx:%d rx:%d",
state->icount.tx, state->icount.rx);
if (state->icount.frame)
ret += sprintf(buf+ret, " fe:%d", state->icount.frame);
if (state->icount.parity)
ret += sprintf(buf+ret, " pe:%d", state->icount.parity);
if (state->icount.brk)
ret += sprintf(buf+ret, " brk:%d", state->icount.brk);
if (state->icount.overrun)
ret += sprintf(buf+ret, " oe:%d", state->icount.overrun);
return ret;
}
int rs_read_proc(char *page, char **start, off_t off, int count,
int *eof, void *data)
{
int i, len = 0, l;
off_t begin = 0;
len += sprintf(page, "serinfo:1.0 driver:%s\n", serial_version);
for (i = 0; i < NR_PORTS && len < 4000; i++) {
l = line_info(page + len, &rs_table[i]);
len += l;
if (len+begin > off+count)
goto done;
if (len+begin < off) {
begin += len;
len = 0;
}
}
*eof = 1;
done:
if (off >= len+begin)
return 0;
*start = page + (off-begin);
return ((count < begin+len-off) ? count : begin+len-off);
}
/*
* ---------------------------------------------------------------------
* rs_init() and friends
*
* rs_init() is called at boot-time to initialize the serial driver.
* ---------------------------------------------------------------------
*/
/*
* This routine prints out the appropriate serial driver version
* number, and identifies which options were configured into this
* driver.
*/
static _INLINE_ void show_serial_version(void)
{
printk(KERN_INFO "%s version %s with", serial_name, serial_version);
#ifdef CONFIG_SERIAL_SHARE_IRQ
printk(" SHARE_IRQ");
#endif
#define SERIAL_OPT
#ifdef CONFIG_SERIAL_DETECT_IRQ
printk(" DETECT_IRQ");
#endif
#ifdef SERIAL_OPT
printk(" enabled\n");
#else
printk(" no serial options enabled\n");
#endif
#undef SERIAL_OPT
}
/*
* This routine is called by rs_init() to initialize a specific serial
* port. It determines what type of UART chip this serial port is
* using: 8250, 16450, 16550, 16550A. The important question is
* whether or not this UART is a 16550A or not, since this will
* determine whether or not we can use its FIFO features or not.
*/
/*
* Functionality of this function is reduced: we already know we have a VAC,
* but still need to perform some important actions (see code :-).
*/
static void autoconfig(struct serial_state * state)
{
struct async_struct *info, scr_info;
unsigned long flags;
/* Setting up important parameters */
state->type = VAC_UART_TYPE;
state->xmit_fifo_size = uart_config[state->type].dfl_xmit_fifo_size;
info = &scr_info; /* This is just for serial_{in,out} */
info->magic = SERIAL_MAGIC;
info->port = state->port;
info->flags = state->flags;
save_flags(flags); cli();
/* + Flush VAC input fifo */
(void)serial_in(info, VAC_UART_RX);
(void)serial_in(info, VAC_UART_RX);
(void)serial_in(info, VAC_UART_RX);
(void)serial_in(info, VAC_UART_RX);
/* Disable interrupts */
serial_outp(info, VAC_UART_INT_MASK, 0);
restore_flags(flags);
}
int register_serial(struct serial_struct *req);
void unregister_serial(int line);
EXPORT_SYMBOL(register_serial);
EXPORT_SYMBOL(unregister_serial);
/*
* Important function for VAC UART check and reanimation.
*/
static void rs_timer(unsigned long dummy)
{
static unsigned long last_strobe = 0;
struct async_struct *info;
unsigned int i;
unsigned long flags;
if ((jiffies - last_strobe) >= RS_STROBE_TIME) {
for (i=1; i < NR_IRQS; i++) {
info = IRQ_ports[i];
if (!info)
continue;
save_flags(flags); cli();
#ifdef CONFIG_SERIAL_SHARE_IRQ
if (info->next_port) {
do {
serial_out(info, VAC_UART_INT_MASK, 0);
info->IER |= VAC_UART_INT_TX_EMPTY;
serial_out(info, VAC_UART_INT_MASK,
info->IER);
info = info->next_port;
} while (info);
rs_interrupt(i, NULL, NULL);
} else
#endif /* CONFIG_SERIAL_SHARE_IRQ */
rs_interrupt_single(i, NULL, NULL);
restore_flags(flags);
}
}
last_strobe = jiffies;
mod_timer(&vacs_timer, jiffies + RS_STROBE_TIME);
/*
* It looks this code for case we share IRQ with console...
*/
if (IRQ_ports[0]) {
save_flags(flags); cli();
#ifdef CONFIG_SERIAL_SHARE_IRQ
rs_interrupt(0, NULL, NULL);
#else
rs_interrupt_single(0, NULL, NULL);
#endif
restore_flags(flags);
mod_timer(&vacs_timer, jiffies + IRQ_timeout[0] - 2);
}
}
/*
* The serial driver boot-time initialization code!
*/
int __init rs_init(void)
{
int i;
struct serial_state * state;
extern void atomwide_serial_init (void);
extern void dualsp_serial_init (void);
#ifdef CONFIG_ATOMWIDE_SERIAL
atomwide_serial_init ();
#endif
#ifdef CONFIG_DUALSP_SERIAL
dualsp_serial_init ();
#endif
init_bh(SERIAL_BH, do_serial_bh);
init_timer(&vacs_timer);
vacs_timer.function = rs_timer;
vacs_timer.expires = 0;
for (i = 0; i < NR_IRQS; i++) {
IRQ_ports[i] = 0;
IRQ_timeout[i] = 0;
}
/*
* It is not a good idea to share interrupts with console,
* but it looks we cannot avoid it.
*/
#if 0
#ifdef CONFIG_SERIAL_CONSOLE
/*
* The interrupt of the serial console port
* can't be shared.
*/
if (sercons.flags & CON_CONSDEV) {
for(i = 0; i < NR_PORTS; i++)
if (i != sercons.index &&
rs_table[i].irq == rs_table[sercons.index].irq)
rs_table[i].irq = 0;
}
#endif
#endif
show_serial_version();
/* Initialize the tty_driver structure */
memset(&serial_driver, 0, sizeof(struct tty_driver));
serial_driver.magic = TTY_DRIVER_MAGIC;
serial_driver.driver_name = "serial";
serial_driver.name = "ttyS";
serial_driver.major = TTY_MAJOR;
serial_driver.minor_start = 64;
serial_driver.num = NR_PORTS;
serial_driver.type = TTY_DRIVER_TYPE_SERIAL;
serial_driver.subtype = SERIAL_TYPE_NORMAL;
serial_driver.init_termios = tty_std_termios;
serial_driver.init_termios.c_cflag =
B9600 | CS8 | CREAD | HUPCL | CLOCAL;
serial_driver.flags = TTY_DRIVER_REAL_RAW;
serial_driver.refcount = &serial_refcount;
serial_driver.table = serial_table;
serial_driver.termios = serial_termios;
serial_driver.termios_locked = serial_termios_locked;
serial_driver.open = rs_open;
serial_driver.close = rs_close;
serial_driver.write = rs_write;
serial_driver.put_char = rs_put_char;
serial_driver.flush_chars = rs_flush_chars;
serial_driver.write_room = rs_write_room;
serial_driver.chars_in_buffer = rs_chars_in_buffer;
serial_driver.flush_buffer = rs_flush_buffer;
serial_driver.ioctl = rs_ioctl;
serial_driver.throttle = rs_throttle;
serial_driver.unthrottle = rs_unthrottle;
serial_driver.send_xchar = rs_send_xchar;
serial_driver.set_termios = rs_set_termios;
serial_driver.stop = rs_stop;
serial_driver.start = rs_start;
serial_driver.hangup = rs_hangup;
serial_driver.break_ctl = rs_break;
serial_driver.wait_until_sent = rs_wait_until_sent;
serial_driver.read_proc = rs_read_proc;
/*
* The callout device is just like normal device except for
* major number and the subtype code.
*/
callout_driver = serial_driver;
callout_driver.name = "cua";
callout_driver.major = TTYAUX_MAJOR;
callout_driver.subtype = SERIAL_TYPE_CALLOUT;
callout_driver.read_proc = 0;
callout_driver.proc_entry = 0;
if (tty_register_driver(&serial_driver))
panic("Couldn't register serial driver");
if (tty_register_driver(&callout_driver))
panic("Couldn't register callout driver");
for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) {
state->magic = SSTATE_MAGIC;
state->line = i;
state->type = PORT_UNKNOWN;
state->custom_divisor = 0;
state->close_delay = 5*HZ/10;
state->closing_wait = 30*HZ;
state->callout_termios = callout_driver.init_termios;
state->normal_termios = serial_driver.init_termios;
state->icount.cts = state->icount.dsr =
state->icount.rng = state->icount.dcd = 0;
state->icount.rx = state->icount.tx = 0;
state->icount.frame = state->icount.parity = 0;
state->icount.overrun = state->icount.brk = 0;
state->irq = state->irq;
if (check_region(state->port,8))
continue;
if (state->flags & ASYNC_BOOT_AUTOCONF)
autoconfig(state);
}
/*
* Detect the IRQ only once every port is initialised,
* because some 16450 do not reset to 0 the MCR register.
*/
for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) {
if (state->type == PORT_UNKNOWN)
continue;
printk(KERN_INFO "ttyS%02d%s at 0x%04x (irq = %d) is a %s\n",
state->line,
(state->flags & ASYNC_FOURPORT) ? " FourPort" : "",
state->port, state->irq,
uart_config[state->type].name);
}
return 0;
}
/*
* register_serial and unregister_serial allows for serial ports to be
* configured at run-time, to support PCMCIA modems.
*/
int register_serial(struct serial_struct *req)
{
int i;
unsigned long flags;
struct serial_state *state;
save_flags(flags);
cli();
for (i = 0; i < NR_PORTS; i++) {
if (rs_table[i].port == req->port)
break;
}
if (i == NR_PORTS) {
for (i = 0; i < NR_PORTS; i++)
if ((rs_table[i].type == PORT_UNKNOWN) &&
(rs_table[i].count == 0))
break;
}
if (i == NR_PORTS) {
restore_flags(flags);
return -1;
}
state = &rs_table[i];
if (rs_table[i].count) {
restore_flags(flags);
printk("Couldn't configure serial #%d (port=%d,irq=%d): "
"device already open\n", i, req->port, req->irq);
return -1;
}
state->irq = req->irq;
state->port = req->port;
state->flags = req->flags;
autoconfig(state);
if (state->type == PORT_UNKNOWN) {
restore_flags(flags);
printk("register_serial(): autoconfig failed\n");
return -1;
}
restore_flags(flags);
printk(KERN_INFO "tty%02d at 0x%04x (irq = %d) is a %s\n",
state->line, state->port, state->irq,
uart_config[state->type].name);
return state->line;
}
void unregister_serial(int line)
{
unsigned long flags;
struct serial_state *state = &rs_table[line];
save_flags(flags);
cli();
if (state->info && state->info->tty)
tty_hangup(state->info->tty);
state->type = PORT_UNKNOWN;
printk(KERN_INFO "tty%02d unloaded\n", state->line);
restore_flags(flags);
}
#ifdef MODULE
int init_module(void)
{
return rs_init();
}
void cleanup_module(void)
{
unsigned long flags;
int e1, e2;
int i;
printk("Unloading %s: version %s\n", serial_name, serial_version);
save_flags(flags);
cli();
del_timer_sync(&vacs_timer);
remove_bh(SERIAL_BH);
if ((e1 = tty_unregister_driver(&serial_driver)))
printk("SERIAL: failed to unregister serial driver (%d)\n",
e1);
if ((e2 = tty_unregister_driver(&callout_driver)))
printk("SERIAL: failed to unregister callout driver (%d)\n",
e2);
restore_flags(flags);
for (i = 0; i < NR_PORTS; i++) {
if (rs_table[i].type != PORT_UNKNOWN)
release_region(rs_table[i].port, 8);
}
if (tmp_buf) {
free_page((unsigned long) tmp_buf);
tmp_buf = NULL;
}
}
#endif /* MODULE */
/*
* ------------------------------------------------------------
* Serial console driver
* ------------------------------------------------------------
*/
#ifdef CONFIG_SERIAL_CONSOLE
#define BOTH_EMPTY (VAC_UART_STATUS_TX_EMPTY | VAC_UART_STATUS_TX_EMPTY)
/*
* Wait for transmitter & holding register to empty
*/
static inline void wait_for_xmitr(struct async_struct *info)
{
int lsr;
unsigned int tmout = 1000000;
do {
lsr = serial_inp(info, VAC_UART_INT_STATUS);
if (--tmout == 0) break;
} while ((lsr & BOTH_EMPTY) != BOTH_EMPTY);
}
/*
* Print a string to the serial port trying not to disturb
* any possible real use of the port...
*/
static void serial_console_write(struct console *co, const char *s,
unsigned count)
{
struct serial_state *ser;
int ier;
unsigned i;
struct async_struct scr_info; /* serial_{in,out} because HUB6 */
ser = rs_table + co->index;
scr_info.magic = SERIAL_MAGIC;
scr_info.port = ser->port;
scr_info.flags = ser->flags;
/*
* First save the IER then disable the interrupts
*/
ier = serial_inp(&scr_info, VAC_UART_INT_MASK);
serial_outw(&scr_info, VAC_UART_INT_MASK, 0x00);
/*
* Now, do each character
*/
for (i = 0; i < count; i++, s++) {
wait_for_xmitr(&scr_info);
/*
* Send the character out.
* If a LF, also do CR...
*/
serial_outp(&scr_info, VAC_UART_TX, (unsigned short)*s << 8);
if (*s == 10) {
wait_for_xmitr(&scr_info);
serial_outp(&scr_info, VAC_UART_TX, 13 << 8);
}
}
/*
* Finally, Wait for transmitter & holding register to empty
* and restore the IER
*/
wait_for_xmitr(&scr_info);
serial_outp(&scr_info, VAC_UART_INT_MASK, ier);
}
static kdev_t serial_console_device(struct console *c)
{
return MKDEV(TTY_MAJOR, 64 + c->index);
}
/*
* Setup initial baud/bits/parity. We do two things here:
* - construct a cflag setting for the first rs_open()
* - initialize the serial port
* Return non-zero if we didn't find a serial port.
*/
static int __init serial_console_setup(struct console *co, char *options)
{
struct serial_state *ser;
unsigned cval;
int baud = 9600;
int bits = 8;
int parity = 'n';
int cflag = CREAD | HUPCL | CLOCAL;
int quot = 0;
char *s;
struct async_struct scr_info; /* serial_{in,out} because HUB6 */
if (options) {
baud = simple_strtoul(options, NULL, 10);
s = options;
while(*s >= '0' && *s <= '9')
s++;
if (*s) parity = *s++;
if (*s) bits = *s - '0';
}
/*
* Now construct a cflag setting.
*/
switch(baud) {
case 1200:
cflag |= B1200;
break;
case 2400:
cflag |= B2400;
break;
case 4800:
cflag |= B4800;
break;
case 19200:
cflag |= B19200;
break;
case 38400:
cflag |= B38400;
break;
case 57600:
cflag |= B57600;
break;
case 115200:
cflag |= B115200;
break;
case 9600:
default:
cflag |= B9600;
break;
}
switch(bits) {
case 7:
cflag |= CS7;
break;
default:
case 8:
cflag |= CS8;
break;
}
switch(parity) {
case 'o': case 'O':
cflag |= PARODD;
break;
case 'e': case 'E':
cflag |= PARENB;
break;
}
co->cflag = cflag;
/*
* Divisor, bytesize and parity
*/
ser = rs_table + co->index;
scr_info.magic = SERIAL_MAGIC;
scr_info.port = ser->port;
scr_info.flags = ser->flags;
quot = ser->baud_base / baud;
cval = cflag & (CSIZE | CSTOPB);
cval >>= 4;
cval &= ~VAC_UART_MODE_PARITY_ENABLE;
if (cflag & PARENB)
cval |= VAC_UART_MODE_PARITY_ENABLE;
if (cflag & PARODD)
cval |= VAC_UART_MODE_PARITY_ODD;
/*
* Disable UART interrupts, set DTR and RTS high
* and set speed.
*/
switch (baud) {
default:
case 9600:
cval |= VAC_UART_MODE_BAUD(7);
break;
case 4800:
cval |= VAC_UART_MODE_BAUD(6);
break;
case 2400:
cval |= VAC_UART_MODE_BAUD(5);
break;
case 1200:
cval |= VAC_UART_MODE_BAUD(4);
break;
case 600:
cval |= VAC_UART_MODE_BAUD(3);
break;
case 300:
cval |= VAC_UART_MODE_BAUD(2);
break;
#ifndef QUAD_UART_SPEED
case 150:
#else
case 38400:
#endif
cval |= VAC_UART_MODE_BAUD(1);
break;
#ifndef QUAD_UART_SPEED
case 75:
#else
case 19200:
#endif
cval |= VAC_UART_MODE_BAUD(0);
break;
}
/* Baget VAC need some adjustments for computed value */
cval = vac_uart_mode_fixup(cval);
serial_outp(&scr_info, VAC_UART_MODE, cval);
serial_outp(&scr_info, VAC_UART_INT_MASK, 0);
return 0;
}
static struct console sercons = {
.name = "ttyS",
.write = serial_console_write,
.device = serial_console_device,
.setup = serial_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
};
/*
* Register console.
*/
long __init serial_console_init(long kmem_start, long kmem_end)
{
register_console(&sercons);
return kmem_start;
}
#endif
#ifdef CONFIG_KGDB
#undef PRINT_DEBUG_PORT_INFO
/*
* This is the interface to the remote debugger stub.
* I've put that here to be able to control the serial
* device more directly.
*/
static int initialized;
static int rs_debug_init(struct async_struct *info)
{
int quot;
autoconfig(info); /* autoconfigure ttyS0, whatever that is */
#ifdef PRINT_DEBUG_PORT_INFO
baget_printk("kgdb debug interface:: tty%02d at 0x%04x",
info->line, info->port);
switch (info->type) {
case PORT_8250:
baget_printk(" is a 8250\n");
break;
case PORT_16450:
baget_printk(" is a 16450\n");
break;
case PORT_16550:
baget_printk(" is a 16550\n");
break;
case PORT_16550A:
baget_printk(" is a 16550A\n");
break;
case PORT_16650:
baget_printk(" is a 16650\n");
break;
default:
baget_printk(" is of unknown type -- unusable\n");
break;
}
#endif
if (info->port == PORT_UNKNOWN)
return -1;
/*
* Clear all interrupts
*/
(void)serial_inp(info, VAC_UART_INT_STATUS);
(void)serial_inp(info, VAC_UART_RX);
/*
* Now, initialize the UART
*/
serial_outp(info,VAC_UART_MODE,VAC_UART_MODE_INITIAL); /* reset DLAB */
if (info->flags & ASYNC_FOURPORT) {
info->MCR = UART_MCR_DTR | UART_MCR_RTS;
info->MCR_noint = UART_MCR_DTR | UART_MCR_OUT1;
} else {
info->MCR = UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2;
info->MCR_noint = UART_MCR_DTR | UART_MCR_RTS;
}
info->MCR = info->MCR_noint; /* no interrupts, please */
/*
* and set the speed of the serial port
* (currently hardwired to 9600 8N1
*/
quot = info->baud_base / 9600; /* baud rate is fixed to 9600 */
/* FIXME: if rs_debug interface is needed, we need to set speed here */
return 0;
}
int putDebugChar(char c)
{
struct async_struct *info = rs_table;
if (!initialized) { /* need to init device first */
if (rs_debug_init(info) == 0)
initialized = 1;
else
return 0;
}
while ((serial_inw(info, VAC_UART_INT_STATUS) & \
VAC_UART_STATUS_TX_EMPTY) == 0)
;
serial_out(info, VAC_UART_TX, (unsigned short)c << 8);
return 1;
}
char getDebugChar(void)
{
struct async_struct *info = rs_table;
if (!initialized) { /* need to init device first */
if (rs_debug_init(info) == 0)
initialized = 1;
else
return 0;
}
while (!(serial_inw(info, VAC_UART_INT_STATUS) & \
VAC_UART_STATUS_RX_READY))
;
return(serial_inp(info, VAC_UART_RX));
}
#endif /* CONFIG_KGDB */