blob: abe41bdae5edbd7882532eeafa8ff73db94ce6f8 [file] [log] [blame]
/*
* Initialize MMU support.
*
* Copyright (C) 1998-2002 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <linux/personality.h>
#include <linux/reboot.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/efi.h>
#include <linux/mmzone.h>
#include <asm/bitops.h>
#include <asm/dma.h>
#include <asm/ia32.h>
#include <asm/io.h>
#include <asm/machvec.h>
#include <asm/numa.h>
#include <asm/pgalloc.h>
#include <asm/sal.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/mca.h>
/* References to section boundaries: */
extern char _stext, _etext, _edata, __init_begin, __init_end;
extern void ia64_tlb_init (void);
extern int filter_rsvd_memory (unsigned long, unsigned long, void *);
/* Note - may be changed by platform_setup */
unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
#define LARGE_GAP 0x40000000 /* Use virtual mem map if a hole is > than this */
static unsigned long totalram_pages, reserved_pages;
struct page *zero_page_memmap_ptr; /* map entry for zero page */
unsigned long vmalloc_end = VMALLOC_END_INIT;
static struct page *vmem_map;
static unsigned long num_dma_physpages;
int
do_check_pgt_cache (int low, int high)
{
int freed = 0;
if (pgtable_cache_size > high) {
do {
if (pgd_quicklist)
free_page((unsigned long)pgd_alloc_one_fast(0)), ++freed;
if (pmd_quicklist)
free_page((unsigned long)pmd_alloc_one_fast(0, 0)), ++freed;
if (pte_quicklist)
free_page((unsigned long)pte_alloc_one_fast(0, 0)), ++freed;
} while (pgtable_cache_size > low);
}
return freed;
}
inline void
ia64_set_rbs_bot (void)
{
unsigned long stack_size = current->rlim[RLIMIT_STACK].rlim_max & -16;
if (stack_size > MAX_USER_STACK_SIZE)
stack_size = MAX_USER_STACK_SIZE;
current->thread.rbs_bot = STACK_TOP - stack_size;
}
/*
* This performs some platform-dependent address space initialization.
* On IA-64, we want to setup the VM area for the register backing
* store (which grows upwards) and install the gateway page which is
* used for signal trampolines, etc.
*/
void
ia64_init_addr_space (void)
{
struct vm_area_struct *vma;
ia64_set_rbs_bot();
/*
* If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
* the problem. When the process attempts to write to the register backing store
* for the first time, it will get a SEGFAULT in this case.
*/
vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (vma) {
vma->vm_mm = current->mm;
vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
vma->vm_end = vma->vm_start + PAGE_SIZE;
vma->vm_page_prot = PAGE_COPY;
vma->vm_flags = VM_READ|VM_WRITE|VM_MAYREAD|VM_MAYWRITE|VM_GROWSUP;
vma->vm_ops = NULL;
vma->vm_pgoff = 0;
vma->vm_file = NULL;
vma->vm_private_data = NULL;
down_write(&current->mm->mmap_sem);
if (insert_vm_struct(current->mm, vma)) {
up_write(&current->mm->mmap_sem);
kmem_cache_free(vm_area_cachep, vma);
return;
}
up_write(&current->mm->mmap_sem);
}
/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
if (!(current->personality & MMAP_PAGE_ZERO)) {
vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (vma) {
memset(vma, 0, sizeof(*vma));
vma->vm_mm = current->mm;
vma->vm_end = PAGE_SIZE;
vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
down_write(&current->mm->mmap_sem);
if (insert_vm_struct(current->mm, vma)) {
up_write(&current->mm->mmap_sem);
kmem_cache_free(vm_area_cachep, vma);
return;
}
up_write(&current->mm->mmap_sem);
}
}
}
void
free_initmem (void)
{
unsigned long addr, eaddr;
addr = (unsigned long) ia64_imva(&__init_begin);
eaddr = (unsigned long) ia64_imva(&__init_end);
for (; addr < eaddr; addr += PAGE_SIZE) {
clear_bit(PG_reserved, &virt_to_page((void *)addr)->flags);
set_page_count(virt_to_page((void *)addr), 1);
free_page(addr);
++totalram_pages;
}
printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
(&__init_end - &__init_begin) >> 10);
}
void
free_initrd_mem(unsigned long start, unsigned long end)
{
/*
* EFI uses 4KB pages while the kernel can use 4KB or bigger.
* Thus EFI and the kernel may have different page sizes. It is
* therefore possible to have the initrd share the same page as
* the end of the kernel (given current setup).
*
* To avoid freeing/using the wrong page (kernel sized) we:
* - align up the beginning of initrd
* - align down the end of initrd
*
* | |
* |=============| a000
* | |
* | |
* | | 9000
* |/////////////|
* |/////////////|
* |=============| 8000
* |///INITRD////|
* |/////////////|
* |/////////////| 7000
* | |
* |KKKKKKKKKKKKK|
* |=============| 6000
* |KKKKKKKKKKKKK|
* |KKKKKKKKKKKKK|
* K=kernel using 8KB pages
*
* In this example, we must free page 8000 ONLY. So we must align up
* initrd_start and keep initrd_end as is.
*/
start = PAGE_ALIGN(start);
end = end & PAGE_MASK;
if (start < end)
printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
if (!VALID_PAGE(virt_to_page((void *)start)))
continue;
clear_bit(PG_reserved, &virt_to_page((void *)start)->flags);
set_page_count(virt_to_page((void *)start), 1);
free_page(start);
++totalram_pages;
}
}
void
si_meminfo (struct sysinfo *val)
{
val->totalram = totalram_pages;
val->sharedram = 0;
val->freeram = nr_free_pages();
val->bufferram = atomic_read(&buffermem_pages);
val->totalhigh = 0;
val->freehigh = 0;
val->mem_unit = PAGE_SIZE;
return;
}
void
show_mem(void)
{
int i, reserved;
int shared, cached;
pg_data_t *pgdat;
char *tchar = (numnodes > 1) ? "\t" : "";
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6dkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
for_each_pgdat(pgdat) {
reserved=0;
cached=0;
shared=0;
if (numnodes > 1)
printk("Node ID: %d\n", pgdat->node_id);
for(i = 0; i < pgdat->node_size; i++) {
if (!VALID_PAGE(pgdat->node_mem_map+i))
continue;
if (PageReserved(pgdat->node_mem_map+i))
reserved++;
else if (PageSwapCache(pgdat->node_mem_map+i))
cached++;
else if (page_count(pgdat->node_mem_map + i))
shared += page_count(pgdat->node_mem_map + i) - 1;
}
printk("%s%ld pages of RAM\n", tchar, pgdat->node_size);
printk("%s%d reserved pages\n", tchar, reserved);
printk("%s%d pages shared\n", tchar, shared);
printk("%s%d pages swap cached\n", tchar, cached);
}
printk("Total of %ld pages in page table cache\n", pgtable_cache_size);
show_buffers();
printk("%d free buffer pages\n", nr_free_buffer_pages());
}
/*
* This is like put_dirty_page() but installs a clean page with PAGE_GATE protection
* (execute-only, typically).
*/
struct page *
put_gate_page (struct page *page, unsigned long address)
{
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
if (!PageReserved(page))
printk(KERN_ERR "put_gate_page: gate page at 0x%p not in reserved memory\n",
page_address(page));
pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
spin_lock(&init_mm.page_table_lock);
{
pmd = pmd_alloc(&init_mm, pgd, address);
if (!pmd)
goto out;
pte = pte_alloc(&init_mm, pmd, address);
if (!pte)
goto out;
if (!pte_none(*pte)) {
pte_ERROR(*pte);
goto out;
}
flush_page_to_ram(page);
set_pte(pte, mk_pte(page, PAGE_GATE));
}
out: spin_unlock(&init_mm.page_table_lock);
/* no need for flush_tlb */
return page;
}
void __init
ia64_mmu_init (void *my_cpu_data)
{
unsigned long psr, rid, pta, impl_va_bits;
extern void __init tlb_init (void);
#ifdef CONFIG_IA64_MCA
int cpu;
#endif
#ifdef CONFIG_DISABLE_VHPT
# define VHPT_ENABLE_BIT 0
#else
# define VHPT_ENABLE_BIT 1
#endif
/*
* Set up the kernel identity mapping for regions 6 and 5. The mapping for region
* 7 is setup up in _start().
*/
psr = ia64_clear_ic();
rid = ia64_rid(IA64_REGION_ID_KERNEL, __IA64_UNCACHED_OFFSET);
ia64_set_rr(__IA64_UNCACHED_OFFSET, (rid << 8) | (IA64_GRANULE_SHIFT << 2));
rid = ia64_rid(IA64_REGION_ID_KERNEL, VMALLOC_START);
ia64_set_rr(VMALLOC_START, (rid << 8) | (PAGE_SHIFT << 2) | 1);
/* ensure rr6 is up-to-date before inserting the PERCPU_ADDR translation: */
ia64_srlz_d();
ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL)), PAGE_SHIFT);
ia64_set_psr(psr);
ia64_srlz_i();
/*
* Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
* address space. The IA-64 architecture guarantees that at least 50 bits of
* virtual address space are implemented but if we pick a large enough page size
* (e.g., 64KB), the mapped address space is big enough that it will overlap with
* VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
* IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
* problem in practice. Alternatively, we could truncate the top of the mapped
* address space to not permit mappings that would overlap with the VMLPT.
* --davidm 00/12/06
*/
# define pte_bits 3
# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
/*
* The virtual page table has to cover the entire implemented address space within
* a region even though not all of this space may be mappable. The reason for
* this is that the Access bit and Dirty bit fault handlers perform
* non-speculative accesses to the virtual page table, so the address range of the
* virtual page table itself needs to be covered by virtual page table.
*/
# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
# define POW2(n) (1ULL << (n))
impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
if (impl_va_bits < 51 || impl_va_bits > 61)
panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
/* place the VMLPT at the end of each page-table mapped region: */
pta = POW2(61) - POW2(vmlpt_bits);
if (POW2(mapped_space_bits) >= pta)
panic("mm/init: overlap between virtually mapped linear page table and "
"mapped kernel space!");
/*
* Set the (virtually mapped linear) page table address. Bit
* 8 selects between the short and long format, bits 2-7 the
* size of the table, and bit 0 whether the VHPT walker is
* enabled.
*/
ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
ia64_tlb_init();
#ifdef CONFIG_IA64_MCA
cpu = smp_processor_id();
/* mca handler uses cr.lid as key to pick the right entry */
ia64_mca_tlb_list[cpu].cr_lid = ia64_get_lid();
/* insert this percpu data information into our list for MCA recovery purposes */
ia64_mca_tlb_list[cpu].percpu_paddr = pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL));
/* Also save per-cpu tlb flush recipe for use in physical mode mca handler */
ia64_mca_tlb_list[cpu].ptce_base = local_cpu_data->ptce_base;
ia64_mca_tlb_list[cpu].ptce_count[0] = local_cpu_data->ptce_count[0];
ia64_mca_tlb_list[cpu].ptce_count[1] = local_cpu_data->ptce_count[1];
ia64_mca_tlb_list[cpu].ptce_stride[0] = local_cpu_data->ptce_stride[0];
ia64_mca_tlb_list[cpu].ptce_stride[1] = local_cpu_data->ptce_stride[1];
#endif
}
static int
create_mem_map_page_table (u64 start, u64 end, void *arg)
{
unsigned long address, start_page, end_page, next_blk_page;
unsigned long blk_start;
struct page *map_start, *map_end;
int node=0;
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
/* should we use platform_map_nr here? */
map_start = vmem_map + MAP_NR_DENSE(start);
map_end = vmem_map + MAP_NR_DENSE(end);
start_page = (unsigned long) map_start & PAGE_MASK;
end_page = PAGE_ALIGN((unsigned long) map_end);
/* force the first iteration to get node id */
blk_start = start;
next_blk_page = 0;
for (address = start_page; address < end_page; address += PAGE_SIZE) {
/* if we went across a node boundary, get new nid */
if (address >= next_blk_page) {
struct page *map_next_blk;
node = paddr_to_nid(__pa(blk_start));
/* get end addr of this memblk as next blk_start */
blk_start = (unsigned long) __va(min(end, memblk_endpaddr(__pa(blk_start))));
map_next_blk = vmem_map + MAP_NR_DENSE(blk_start);
next_blk_page = PAGE_ALIGN((unsigned long) map_next_blk);
}
pgd = pgd_offset_k(address);
if (pgd_none(*pgd))
pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
pmd = pmd_offset(pgd, address);
if (pmd_none(*pmd))
pmd_populate(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
pte = pte_offset(pmd, address);
if (pte_none(*pte))
set_pte(pte, mk_pte_phys(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)),
PAGE_KERNEL));
}
return 0;
}
struct memmap_init_callback_data {
memmap_init_callback_t *memmap_init;
struct page *start;
struct page *end;
int zone;
int highmem;
};
struct memmap_count_callback_data {
int node;
unsigned long num_physpages;
unsigned long num_dma_physpages;
unsigned long min_pfn;
unsigned long max_pfn;
} cdata;
static int
virtual_memmap_init (u64 start, u64 end, void *arg)
{
struct memmap_init_callback_data *args;
struct page *map_start, *map_end;
args = (struct memmap_init_callback_data *) arg;
/* Should we use platform_map_nr here? */
map_start = mem_map + MAP_NR_DENSE(start);
map_end = mem_map + MAP_NR_DENSE(end);
if (map_start < args->start)
map_start = args->start;
if (map_end > args->end)
map_end = args->end;
/*
* We have to initialize "out of bounds" struct page elements
* that fit completely on the same pages that were allocated
* for the "in bounds" elements because they may be referenced
* later (and found to be "reserved").
*/
map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
/ sizeof(struct page);
map_end += ((PAGE_ALIGN((unsigned long) map_end) -
(unsigned long) map_end)
/ sizeof(struct page));
if (map_start < map_end)
(*args->memmap_init)(map_start, map_end, args->zone,
page_to_phys(map_start), args->highmem);
return 0;
}
unsigned long
arch_memmap_init (memmap_init_callback_t *memmap_init, struct page *start,
struct page *end, int zone, unsigned long start_paddr, int highmem)
{
if (!vmem_map)
memmap_init(start,end,zone,page_to_phys(start),highmem);
else {
struct memmap_init_callback_data args;
args.memmap_init = memmap_init;
args.start = start;
args.end = end;
args.zone = zone;
args.highmem = highmem;
efi_memmap_walk(virtual_memmap_init, &args);
}
return page_to_phys(end-1) + PAGE_SIZE;;
}
int
ia64_page_valid (struct page *page)
{
char byte;
return (__get_user(byte, (char *) page) == 0)
&& (__get_user(byte, (char *) (page + 1) - 1) == 0);
}
#define GRANULEROUNDDOWN(n) ((n) & ~(IA64_GRANULE_SIZE-1))
#define GRANULEROUNDUP(n) (((n)+IA64_GRANULE_SIZE-1) & ~(IA64_GRANULE_SIZE-1))
#define ORDERROUNDDOWN(n) ((n) & ~((PAGE_SIZE<<MAX_ORDER)-1))
static int
count_pages (u64 start, u64 end, int node)
{
start = __pa(start);
end = __pa(end);
if (node == cdata.node) {
cdata.num_physpages += (end - start) >> PAGE_SHIFT;
if (start <= __pa(MAX_DMA_ADDRESS))
cdata.num_dma_physpages += (min(end, __pa(MAX_DMA_ADDRESS)) - start) >> PAGE_SHIFT;
start = GRANULEROUNDDOWN(__pa(start));
start = ORDERROUNDDOWN(start);
end = GRANULEROUNDUP(__pa(end));
cdata.max_pfn = max(cdata.max_pfn, end >> PAGE_SHIFT);
cdata.min_pfn = min(cdata.min_pfn, start >> PAGE_SHIFT);
}
return 0;
}
static int
find_largest_hole(u64 start, u64 end, void *arg)
{
u64 *max_gap = arg;
static u64 last_end = PAGE_OFFSET;
/* NOTE: this algorithm assumes efi memmap table is ordered */
if (*max_gap < (start - last_end))
*max_gap = start - last_end;
last_end = end;
return 0;
}
/*
* Set up the page tables.
*/
void
paging_init (void)
{
unsigned long max_dma;
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long max_gap;
int node;
/* initialize mem_map[] */
max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
max_gap = 0;
efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
for (node=0; node < numnodes; node++) {
memset(zones_size, 0, sizeof(zones_size));
memset(zholes_size, 0, sizeof(zholes_size));
memset(&cdata, 0, sizeof(cdata));
cdata.node = node;
cdata.min_pfn = ~0;
efi_memmap_walk(filter_rsvd_memory, count_pages);
num_dma_physpages += cdata.num_dma_physpages;
num_physpages += cdata.num_physpages;
if (cdata.min_pfn >= max_dma) {
zones_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn;
zholes_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn - cdata.num_physpages;
} else if (cdata.max_pfn < max_dma) {
zones_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn;
zholes_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn - cdata.num_dma_physpages;
} else {
zones_size[ZONE_DMA] = max_dma - cdata.min_pfn;
zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - cdata.num_dma_physpages;
zones_size[ZONE_NORMAL] = cdata.max_pfn - max_dma;
zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - (cdata.num_physpages - cdata.num_dma_physpages);
}
if (numnodes == 1 && max_gap < LARGE_GAP) {
vmem_map = (struct page *)0;
zones_size[ZONE_DMA] += cdata.min_pfn;
zholes_size[ZONE_DMA] += cdata.min_pfn;
free_area_init_core(0, NODE_DATA(node), &mem_map, zones_size, 0, zholes_size, NULL);
} else {
/* allocate virtual mem_map */
if (node == 0) {
unsigned long map_size;
map_size = PAGE_ALIGN(max_low_pfn*sizeof(struct page));
vmalloc_end -= map_size;
mem_map = vmem_map = (struct page *) vmalloc_end;
efi_memmap_walk(create_mem_map_page_table, 0);
printk(KERN_INFO "Virtual mem_map starts at 0x%p\n", mem_map);
}
free_area_init_node(node, NODE_DATA(node), vmem_map+cdata.min_pfn, zones_size,
cdata.min_pfn<<PAGE_SHIFT, zholes_size);
}
}
zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
}
static int
count_reserved_pages (u64 start, u64 end, void *arg)
{
unsigned long num_reserved = 0;
struct page *pg;
for (pg = virt_to_page((void *)start); pg < virt_to_page((void *)end); ++pg)
if (PageReserved(pg))
++num_reserved;
reserved_pages += num_reserved;
return 0;
}
void
mem_init (void)
{
extern char __start_gate_section[];
long codesize, datasize, initsize;
unsigned long num_pgt_pages;
pg_data_t *pgdat;
#ifdef CONFIG_PCI
/*
* This needs to be called _after_ the command line has been parsed but _before_
* any drivers that may need the PCI DMA interface are initialized or bootmem has
* been freed.
*/
platform_pci_dma_init();
#endif
if (!mem_map)
BUG();
max_mapnr = max_low_pfn;
high_memory = __va(max_low_pfn * PAGE_SIZE);
for_each_pgdat(pgdat)
totalram_pages += free_all_bootmem_node(pgdat);
reserved_pages = 0;
efi_memmap_walk(filter_rsvd_memory, count_reserved_pages);
codesize = (unsigned long) &_etext - (unsigned long) &_stext;
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, %luk data, %luk init)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
/*
* Allow for enough (cached) page table pages so that we can map the entire memory
* at least once. Each task also needs a couple of page tables pages, so add in a
* fudge factor for that (don't use "threads-max" here; that would be wrong!).
* Don't allow the cache to be more than 10% of total memory, though.
*/
# define NUM_TASKS 500 /* typical number of tasks */
num_pgt_pages = nr_free_pages() / PTRS_PER_PGD + NUM_TASKS;
if (num_pgt_pages > nr_free_pages() / 10)
num_pgt_pages = nr_free_pages() / 10;
if (num_pgt_pages > pgt_cache_water[1])
pgt_cache_water[1] = num_pgt_pages;
/* install the gate page in the global page table: */
put_gate_page(virt_to_page(ia64_imva(__start_gate_section)), GATE_ADDR);
#ifdef CONFIG_IA32_SUPPORT
ia32_gdt_init();
#endif
}