blob: 85a851c646e577a686da5e99be4160b5fec98b17 [file] [log] [blame]
/*
* UART driver for MPC8260 CPM SCC or SMC
* Copyright (c) 1999 Dan Malek (dmalek@jlc.net)
* Copyright (c) 2000 MontaVista Software, Inc. (source@mvista.com)
* 2.3.99 updates
*
* I used the 8xx uart.c driver as the framework for this driver.
* The original code was written for the EST8260 board. I tried to make
* it generic, but there may be some assumptions in the structures that
* have to be fixed later.
*
* The 8xx and 8260 are similar, but not identical. Over time we
* could probably merge these two drivers.
* To save porting time, I did not bother to change any object names
* that are not accessed outside of this file.
* It still needs lots of work........When it was easy, I included code
* to support the SCCs.
* Only the SCCs support modem control, so that is not complete either.
*
* This module exports the following rs232 io functions:
*
* int rs_8xx_init(void);
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/serialP.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <asm/uaccess.h>
#include <asm/immap_cpm2.h>
#include <asm/mpc8260.h>
#include <asm/cpm2.h>
#include <asm/irq.h>
#ifdef CONFIG_MAGIC_SYSRQ
#include <linux/sysrq.h>
#endif
#ifdef CONFIG_SERIAL_CONSOLE
#include <linux/console.h>
/* SCC Console configuration. Not quite finished. The SCC_CONSOLE
* should be the number of the SCC to use, but only SCC1 will
* work at this time.
*/
#ifdef CONFIG_SCC_CONSOLE
#define SCC_CONSOLE 1
#endif
/* this defines the index into rs_table for the port to use
*/
#ifndef CONFIG_SERIAL_CONSOLE_PORT
#define CONFIG_SERIAL_CONSOLE_PORT 0
#endif
#endif
#define CONFIG_SERIAL_CONSOLE_PORT 0
#define TX_WAKEUP ASYNC_SHARE_IRQ
static char *serial_name = "CPM UART driver";
static char *serial_version = "0.01";
static DECLARE_TASK_QUEUE(tq_serial);
static struct tty_driver serial_driver, callout_driver;
static int serial_refcount;
static int serial_console_setup(struct console *co, char *options);
static void serial_console_write(struct console *c, const char *s,
unsigned count);
static kdev_t serial_console_device(struct console *c);
#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
static unsigned long break_pressed; /* break, really ... */
#endif
/*
* Serial driver configuration section. Here are the various options:
*/
#define SERIAL_PARANOIA_CHECK
#define CONFIG_SERIAL_NOPAUSE_IO
#define SERIAL_DO_RESTART
/* Set of debugging defines */
#undef SERIAL_DEBUG_INTR
#undef SERIAL_DEBUG_OPEN
#undef SERIAL_DEBUG_FLOW
#undef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
#define _INLINE_ inline
#define DBG_CNT(s)
/* We overload some of the items in the data structure to meet our
* needs. For example, the port address is the CPM parameter ram
* offset for the SCC or SMC. The maximum number of ports is 4 SCCs and
* 2 SMCs. The "hub6" field is used to indicate the channel number, with
* 0 and 1 indicating the SMCs and 2, 3, 4, and 5 are the SCCs.
* Since these ports are so versatile, I don't yet have a strategy for
* their management. For example, SCC1 is used for Ethernet. Right
* now, just don't put them in the table. Of course, right now I just
* want the SMC to work as a uart :-)..
* The "type" field is currently set to 0, for PORT_UNKNOWN. It is
* not currently used. I should probably use it to indicate the port
* type of CMS or SCC.
* The SMCs do not support any modem control signals.
*/
#define smc_scc_num hub6
/* The choice of serial port to use for KGDB. If the system has
* two ports, you can use one for console and one for KGDB (which
* doesn't make sense to me, but people asked for it).
*/
#ifdef CONFIG_KGDB_TTYS1
#define KGDB_SER_IDX 1 /* SCC2/SMC2 */
#else
#define KGDB_SER_IDX 0 /* SCC1/SMC1 */
#endif
#ifndef SCC_CONSOLE
/* SMC2 is sometimes used for low performance TDM interfaces. Define
* this as 1 if you want SMC2 as a serial port UART managed by this driver.
* Define this as 0 if you wish to use SMC2 for something else.
*/
#define USE_SMC2 1
/* Define SCC to ttySx mapping.
*/
#define SCC_NUM_BASE (USE_SMC2 + 1) /* SCC base tty "number" */
/* Define which SCC is the first one to use for a serial port. These
* are 0-based numbers, i.e. this assumes the first SCC (SCC1) is used
* for Ethernet, and the first available SCC for serial UART is SCC2.
* NOTE: IF YOU CHANGE THIS, you have to change the PROFF_xxx and
* interrupt vectors in the table below to match.
*/
#define SCC_IDX_BASE 1 /* table index */
static struct serial_state rs_table[] = {
/* UART CLK PORT IRQ FLAGS NUM */
{ 0, 0, PROFF_SMC1, SIU_INT_SMC1, 0, 0 }, /* SMC1 ttyS0 */
#if USE_SMC2
{ 0, 0, PROFF_SMC2, SIU_INT_SMC2, 0, 1 }, /* SMC2 ttyS1 */
#endif
#ifndef CONFIG_SCC1_ENET
{ 0, 0, PROFF_SCC1, SIU_INT_SCC1, 0, SCC_NUM_BASE}, /* SCC1 ttyS2 */
#endif
#ifndef CONFIG_SCC2_ENET
{ 0, 0, PROFF_SCC2, SIU_INT_SCC2, 0, SCC_NUM_BASE + 1}, /* SCC2 ttyS3 */
#endif
};
#else /* SCC_CONSOLE */
#define SCC_NUM_BASE 0 /* SCC base tty "number" */
#define SCC_IDX_BASE 0 /* table index */
static struct serial_state rs_table[] = {
/* UART CLK PORT IRQ FLAGS NUM */
{ 0, 0, PROFF_SCC1, SIU_INT_SCC1, 0, SCC_NUM_BASE}, /* SCC1 ttyS2 */
{ 0, 0, PROFF_SCC2, SIU_INT_SCC2, 0, SCC_NUM_BASE + 1}, /* SCC2 ttyS3 */
};
#endif /* SCC_CONSOLE */
#define PORT_NUM(P) (((P) < (SCC_NUM_BASE)) ? (P) : (P)-(SCC_NUM_BASE))
#define NR_PORTS (sizeof(rs_table)/sizeof(struct serial_state))
static struct tty_struct *serial_table[NR_PORTS];
static struct termios *serial_termios[NR_PORTS];
static struct termios *serial_termios_locked[NR_PORTS];
/* The number of buffer descriptors and their sizes.
*/
#define RX_NUM_FIFO 4
#define RX_BUF_SIZE 32
#define TX_NUM_FIFO 4
#define TX_BUF_SIZE 32
#ifndef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif
/* The async_struct in serial.h does not really give us what we
* need, so define our own here.
*/
typedef struct serial_info {
int magic;
int flags;
struct serial_state *state;
struct tty_struct *tty;
int read_status_mask;
int ignore_status_mask;
int timeout;
int line;
int x_char; /* xon/xoff character */
int close_delay;
unsigned short closing_wait;
unsigned short closing_wait2;
unsigned long event;
unsigned long last_active;
int blocked_open; /* # of blocked opens */
long session; /* Session of opening process */
long pgrp; /* pgrp of opening process */
struct tq_struct tqueue;
struct tq_struct tqueue_hangup;
wait_queue_head_t open_wait;
wait_queue_head_t close_wait;
/* CPM Buffer Descriptor pointers.
*/
cbd_t *rx_bd_base;
cbd_t *rx_cur;
cbd_t *tx_bd_base;
cbd_t *tx_cur;
} ser_info_t;
static struct console sercons = {
name: "ttyS",
write: serial_console_write,
device: serial_console_device,
setup: serial_console_setup,
flags: CON_PRINTBUFFER,
index: CONFIG_SERIAL_CONSOLE_PORT,
};
static void change_speed(ser_info_t *info);
static void rs_8xx_wait_until_sent(struct tty_struct *tty, int timeout);
static inline int serial_paranoia_check(ser_info_t *info,
kdev_t device, const char *routine)
{
#ifdef SERIAL_PARANOIA_CHECK
static const char *badmagic =
"Warning: bad magic number for serial struct (%s) in %s\n";
static const char *badinfo =
"Warning: null async_struct for (%s) in %s\n";
if (!info) {
printk(badinfo, kdevname(device), routine);
return 1;
}
if (info->magic != SERIAL_MAGIC) {
printk(badmagic, kdevname(device), routine);
return 1;
}
#endif
return 0;
}
/*
* This is used to figure out the divisor speeds and the timeouts,
* indexed by the termio value. The generic CPM functions are responsible
* for setting and assigning baud rate generators for us.
*/
static int baud_table[] = {
0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
9600, 19200, 38400, 57600, 115200, 230400, 460800, 0 };
/*
* ------------------------------------------------------------
* rs_stop() and rs_start()
*
* This routines are called before setting or resetting tty->stopped.
* They enable or disable transmitter interrupts, as necessary.
* ------------------------------------------------------------
*/
static void rs_8xx_stop(struct tty_struct *tty)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
int idx;
unsigned long flags;
volatile scc_t *sccp;
volatile smc_t *smcp;
if (serial_paranoia_check(info, tty->device, "rs_stop"))
return;
save_flags(flags); cli();
if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) {
smcp = &cpm2_immr->im_smc[idx];
smcp->smc_smcm &= ~SMCM_TX;
}
else {
sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE];
sccp->scc_sccm &= ~UART_SCCM_TX;
}
restore_flags(flags);
}
static void rs_8xx_start(struct tty_struct *tty)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
int idx;
unsigned long flags;
volatile scc_t *sccp;
volatile smc_t *smcp;
if (serial_paranoia_check(info, tty->device, "rs_stop"))
return;
save_flags(flags); cli();
if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) {
smcp = &cpm2_immr->im_smc[idx];
smcp->smc_smcm |= SMCM_TX;
}
else {
sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE];
sccp->scc_sccm |= UART_SCCM_TX;
}
restore_flags(flags);
}
/*
* ----------------------------------------------------------------------
*
* Here starts the interrupt handling routines. All of the following
* subroutines are declared as inline and are folded into
* rs_interrupt(). They were separated out for readability's sake.
*
* Note: rs_interrupt() is a "fast" interrupt, which means that it
* runs with interrupts turned off. People who may want to modify
* rs_interrupt() should try to keep the interrupt handler as fast as
* possible. After you are done making modifications, it is not a bad
* idea to do:
*
* gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c
*
* and look at the resulting assemble code in serial.s.
*
* - Ted Ts'o (tytso@mit.edu), 7-Mar-93
* -----------------------------------------------------------------------
*/
/*
* This routine is used by the interrupt handler to schedule
* processing in the software interrupt portion of the driver.
*/
static _INLINE_ void rs_sched_event(ser_info_t *info,
int event)
{
info->event |= 1 << event;
queue_task(&info->tqueue, &tq_serial);
mark_bh(SERIAL_BH);
}
static _INLINE_ void receive_chars(ser_info_t *info, struct pt_regs *regs)
{
struct tty_struct *tty = info->tty;
unsigned char ch, *cp;
/*int ignored = 0;*/
int i;
ushort status;
struct async_icount *icount;
volatile cbd_t *bdp;
icount = &info->state->icount;
/* Just loop through the closed BDs and copy the characters into
* the buffer.
*/
bdp = info->rx_cur;
for (;;) {
if (bdp->cbd_sc & BD_SC_EMPTY) /* If this one is empty */
break; /* we are all done */
/* The read status mask tell us what we should do with
* incoming characters, especially if errors occur.
* One special case is the use of BD_SC_EMPTY. If
* this is not set, we are supposed to be ignoring
* inputs. In this case, just mark the buffer empty and
* continue.
if (!(info->read_status_mask & BD_SC_EMPTY)) {
bdp->cbd_sc |= BD_SC_EMPTY;
bdp->cbd_sc &=
~(BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV);
if (bdp->cbd_sc & BD_SC_WRAP)
bdp = info->rx_bd_base;
else
bdp++;
continue;
}
*/
/* Get the number of characters and the buffer pointer.
*/
i = bdp->cbd_datlen;
cp = (unsigned char *)__va(bdp->cbd_bufaddr);
status = bdp->cbd_sc;
#ifdef CONFIG_KGDB
if (info->state->smc_scc_num == KGDB_SER_IDX &&
(*cp == 0x03 || *cp == '$')) {
breakpoint();
return;
}
#endif
/* Check to see if there is room in the tty buffer for
* the characters in our BD buffer. If not, we exit
* now, leaving the BD with the characters. We'll pick
* them up again on the next receive interrupt (which could
* be a timeout).
*/
if ((tty->flip.count + i) >= TTY_FLIPBUF_SIZE)
break;
while (i-- > 0) {
ch = *cp++;
*tty->flip.char_buf_ptr = ch;
icount->rx++;
#ifdef SERIAL_DEBUG_INTR
printk("DR%02x:%02x...", ch, *status);
#endif
*tty->flip.flag_buf_ptr = 0;
if (status & (BD_SC_BR | BD_SC_FR |
BD_SC_PR | BD_SC_OV)) {
/*
* For statistics only
*/
if (status & BD_SC_BR)
icount->brk++;
else if (status & BD_SC_PR)
icount->parity++;
else if (status & BD_SC_FR)
icount->frame++;
if (status & BD_SC_OV)
icount->overrun++;
/*
* Now check to see if character should be
* ignored, and mask off conditions which
* should be ignored.
if (status & info->ignore_status_mask) {
if (++ignored > 100)
break;
continue;
}
*/
status &= info->read_status_mask;
if (status & (BD_SC_BR)) {
#ifdef SERIAL_DEBUG_INTR
printk("handling break....");
#endif
*tty->flip.flag_buf_ptr = TTY_BREAK;
if (info->flags & ASYNC_SAK)
do_SAK(tty);
} else if (status & BD_SC_PR)
*tty->flip.flag_buf_ptr = TTY_PARITY;
else if (status & BD_SC_FR)
*tty->flip.flag_buf_ptr = TTY_FRAME;
if (status & BD_SC_OV) {
/*
* Overrun is special, since it's
* reported immediately, and doesn't
* affect the current character
*/
if (tty->flip.count < TTY_FLIPBUF_SIZE) {
tty->flip.count++;
tty->flip.flag_buf_ptr++;
tty->flip.char_buf_ptr++;
*tty->flip.flag_buf_ptr =
TTY_OVERRUN;
}
}
}
#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
if (break_pressed && info->line == sercons.index) {
if (ch != 0 && time_before(jiffies,
break_pressed + HZ*5)) {
handle_sysrq(ch, regs, NULL, NULL);
break_pressed = 0;
goto ignore_char;
} else
break_pressed = 0;
}
#endif
if (tty->flip.count >= TTY_FLIPBUF_SIZE)
break;
tty->flip.flag_buf_ptr++;
tty->flip.char_buf_ptr++;
tty->flip.count++;
}
#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
ignore_char:
#endif
/* This BD is ready to be used again. Clear status.
* Get next BD.
*/
bdp->cbd_sc |= BD_SC_EMPTY;
bdp->cbd_sc &= ~(BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV);
if (bdp->cbd_sc & BD_SC_WRAP)
bdp = info->rx_bd_base;
else
bdp++;
}
info->rx_cur = (cbd_t *)bdp;
queue_task(&tty->flip.tqueue, &tq_timer);
}
static _INLINE_ void receive_break(ser_info_t *info, struct pt_regs *regs)
{
struct tty_struct *tty = info->tty;
info->state->icount.brk++;
#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
if (info->line == sercons.index) {
if (!break_pressed) {
break_pressed = jiffies;
return;
} else
break_pressed = 0;
}
#endif
/* Check to see if there is room in the tty buffer for
* the break. If not, we exit now, losing the break. FIXME
*/
if ((tty->flip.count + 1) >= TTY_FLIPBUF_SIZE)
return;
*(tty->flip.flag_buf_ptr++) = TTY_BREAK;
*(tty->flip.char_buf_ptr++) = 0;
tty->flip.count++;
queue_task(&tty->flip.tqueue, &tq_timer);
}
static _INLINE_ void transmit_chars(ser_info_t *info, struct pt_regs *regs)
{
if (info->flags & TX_WAKEUP) {
rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);
}
#ifdef SERIAL_DEBUG_INTR
printk("THRE...");
#endif
}
#ifdef notdef
/* I need to do this for the SCCs, so it is left as a reminder.
*/
static _INLINE_ void check_modem_status(struct async_struct *info)
{
int status;
struct async_icount *icount;
status = serial_in(info, UART_MSR);
if (status & UART_MSR_ANY_DELTA) {
icount = &info->state->icount;
/* update input line counters */
if (status & UART_MSR_TERI)
icount->rng++;
if (status & UART_MSR_DDSR)
icount->dsr++;
if (status & UART_MSR_DDCD) {
icount->dcd++;
#ifdef CONFIG_HARD_PPS
if ((info->flags & ASYNC_HARDPPS_CD) &&
(status & UART_MSR_DCD))
hardpps();
#endif
}
if (status & UART_MSR_DCTS)
icount->cts++;
wake_up_interruptible(&info->delta_msr_wait);
}
if ((info->flags & ASYNC_CHECK_CD) && (status & UART_MSR_DDCD)) {
#if (defined(SERIAL_DEBUG_OPEN) || defined(SERIAL_DEBUG_INTR))
printk("ttys%d CD now %s...", info->line,
(status & UART_MSR_DCD) ? "on" : "off");
#endif
if (status & UART_MSR_DCD)
wake_up_interruptible(&info->open_wait);
else if (!((info->flags & ASYNC_CALLOUT_ACTIVE) &&
(info->flags & ASYNC_CALLOUT_NOHUP))) {
#ifdef SERIAL_DEBUG_OPEN
printk("scheduling hangup...");
#endif
MOD_INC_USE_COUNT;
if (schedule_task(&info->tqueue_hangup) == 0)
MOD_DEC_USE_COUNT;
}
}
if (info->flags & ASYNC_CTS_FLOW) {
if (info->tty->hw_stopped) {
if (status & UART_MSR_CTS) {
#if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW))
printk("CTS tx start...");
#endif
info->tty->hw_stopped = 0;
info->IER |= UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);
return;
}
} else {
if (!(status & UART_MSR_CTS)) {
#if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW))
printk("CTS tx stop...");
#endif
info->tty->hw_stopped = 1;
info->IER &= ~UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
}
}
}
}
#endif
/*
* This is the serial driver's interrupt routine for a single port
*/
static void rs_8xx_interrupt(int irq, void * dev_id, struct pt_regs * regs)
{
u_char events;
int idx;
ser_info_t *info;
volatile smc_t *smcp;
volatile scc_t *sccp;
info = (ser_info_t *)dev_id;
if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) {
smcp = &cpm2_immr->im_smc[idx];
events = smcp->smc_smce;
if (events & SMCM_BRKE)
receive_break(info, regs);
if (events & SMCM_RX)
receive_chars(info, regs);
if (events & SMCM_TX)
transmit_chars(info, regs);
smcp->smc_smce = events;
}
else {
sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE];
events = sccp->scc_scce;
if (events & SMCM_BRKE)
receive_break(info, regs);
if (events & SCCM_RX)
receive_chars(info, regs);
if (events & SCCM_TX)
transmit_chars(info, regs);
sccp->scc_scce = events;
}
#ifdef SERIAL_DEBUG_INTR
printk("rs_interrupt_single(%d, %x)...",
info->state->smc_scc_num, events);
#endif
#ifdef modem_control
check_modem_status(info);
#endif
info->last_active = jiffies;
#ifdef SERIAL_DEBUG_INTR
printk("end.\n");
#endif
}
/*
* -------------------------------------------------------------------
* Here ends the serial interrupt routines.
* -------------------------------------------------------------------
*/
/*
* This routine is used to handle the "bottom half" processing for the
* serial driver, known also the "software interrupt" processing.
* This processing is done at the kernel interrupt level, after the
* rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This
* is where time-consuming activities which can not be done in the
* interrupt driver proper are done; the interrupt driver schedules
* them using rs_sched_event(), and they get done here.
*/
static void do_serial_bh(void)
{
run_task_queue(&tq_serial);
}
static void do_softint(void *private_)
{
ser_info_t *info = (ser_info_t *) private_;
struct tty_struct *tty;
tty = info->tty;
if (!tty)
return;
if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) {
if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
tty->ldisc.write_wakeup)
(tty->ldisc.write_wakeup)(tty);
wake_up_interruptible(&tty->write_wait);
}
}
/*
* This routine is called from the scheduler tqueue when the interrupt
* routine has signalled that a hangup has occurred. The path of
* hangup processing is:
*
* serial interrupt routine -> (scheduler tqueue) ->
* do_serial_hangup() -> tty->hangup() -> rs_hangup()
*
*/
static void do_serial_hangup(void *private_)
{
struct async_struct *info = (struct async_struct *) private_;
struct tty_struct *tty;
tty = info->tty;
if (tty)
tty_hangup(tty);
MOD_DEC_USE_COUNT;
}
/*static void rs_8xx_timer(void)
{
printk("rs_8xx_timer\n");
}*/
static int startup(ser_info_t *info)
{
unsigned long flags;
int retval=0;
int idx;
struct serial_state *state= info->state;
volatile smc_t *smcp;
volatile scc_t *sccp;
volatile smc_uart_t *up;
volatile scc_uart_t *scup;
save_flags(flags); cli();
if (info->flags & ASYNC_INITIALIZED) {
goto errout;
}
#ifdef maybe
if (!state->port || !state->type) {
if (info->tty)
set_bit(TTY_IO_ERROR, &info->tty->flags);
goto errout;
}
#endif
#ifdef SERIAL_DEBUG_OPEN
printk("starting up ttys%d (irq %d)...", info->line, state->irq);
#endif
#ifdef modem_control
info->MCR = 0;
if (info->tty->termios->c_cflag & CBAUD)
info->MCR = UART_MCR_DTR | UART_MCR_RTS;
#endif
if (info->tty)
clear_bit(TTY_IO_ERROR, &info->tty->flags);
/*
* and set the speed of the serial port
*/
change_speed(info);
if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) {
smcp = &cpm2_immr->im_smc[idx];
/* Enable interrupts and I/O.
*/
smcp->smc_smcm |= (SMCM_RX | SMCM_TX);
smcp->smc_smcmr |= (SMCMR_REN | SMCMR_TEN);
/* We can tune the buffer length and idle characters
* to take advantage of the entire incoming buffer size.
* If mrblr is something other than 1, maxidl has to be
* non-zero or we never get an interrupt. The maxidl
* is the number of character times we wait after reception
* of the last character before we decide no more characters
* are coming.
*/
up = (smc_uart_t *)&cpm2_immr->im_dprambase[state->port];
#if 0
up->smc_mrblr = 1; /* receive buffer length */
up->smc_maxidl = 0; /* wait forever for next char */
#else
up->smc_mrblr = RX_BUF_SIZE;
up->smc_maxidl = RX_BUF_SIZE;
#endif
up->smc_brkcr = 1; /* number of break chars */
}
else {
sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE];
scup = (scc_uart_t *)&cpm2_immr->im_dprambase[state->port];
#if 0
scup->scc_genscc.scc_mrblr = 1; /* receive buffer length */
scup->scc_maxidl = 0; /* wait forever for next char */
#else
scup->scc_genscc.scc_mrblr = RX_BUF_SIZE;
scup->scc_maxidl = RX_BUF_SIZE;
#endif
sccp->scc_sccm |= (UART_SCCM_TX | UART_SCCM_RX);
sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
}
info->flags |= ASYNC_INITIALIZED;
restore_flags(flags);
return 0;
errout:
restore_flags(flags);
return retval;
}
/*
* This routine will shutdown a serial port; interrupts are disabled, and
* DTR is dropped if the hangup on close termio flag is on.
*/
static void shutdown(ser_info_t * info)
{
unsigned long flags;
struct serial_state *state;
int idx;
volatile smc_t *smcp;
volatile scc_t *sccp;
if (!(info->flags & ASYNC_INITIALIZED))
return;
state = info->state;
#ifdef SERIAL_DEBUG_OPEN
printk("Shutting down serial port %d (irq %d)....", info->line,
state->irq);
#endif
save_flags(flags); cli(); /* Disable interrupts */
if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) {
smcp = &cpm2_immr->im_smc[idx];
/* Disable interrupts and I/O.
*/
smcp->smc_smcm &= ~(SMCM_RX | SMCM_TX);
#ifdef CONFIG_SERIAL_CONSOLE
/* We can't disable the transmitter if this is the
* system console.
*/
if (idx != CONFIG_SERIAL_CONSOLE_PORT)
#endif
smcp->smc_smcmr &= ~(SMCMR_REN | SMCMR_TEN);
}
else {
sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE];
sccp->scc_sccm &= ~(UART_SCCM_TX | UART_SCCM_RX);
#ifdef CONFIG_SERIAL_CONSOLE
if (idx != CONFIG_SERIAL_CONSOLE_PORT)
sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
#endif
}
if (info->tty)
set_bit(TTY_IO_ERROR, &info->tty->flags);
info->flags &= ~ASYNC_INITIALIZED;
restore_flags(flags);
}
/*
* This routine is called to set the UART divisor registers to match
* the specified baud rate for a serial port.
*/
static void change_speed(ser_info_t *info)
{
int baud_rate;
unsigned cflag, cval, scval, prev_mode;
int i, bits, sbits, idx;
unsigned long flags;
volatile smc_t *smcp;
volatile scc_t *sccp;
if (!info->tty || !info->tty->termios)
return;
cflag = info->tty->termios->c_cflag;
/* Character length programmed into the mode register is the
* sum of: 1 start bit, number of data bits, 0 or 1 parity bit,
* 1 or 2 stop bits, minus 1.
* The value 'bits' counts this for us.
*/
cval = 0;
scval = 0;
/* byte size and parity */
switch (cflag & CSIZE) {
case CS5: bits = 5; break;
case CS6: bits = 6; break;
case CS7: bits = 7; break;
case CS8: bits = 8; break;
/* Never happens, but GCC is too dumb to figure it out */
default: bits = 8; break;
}
sbits = bits - 5;
if (cflag & CSTOPB) {
cval |= SMCMR_SL; /* Two stops */
scval |= SCU_PSMR_SL;
bits++;
}
if (cflag & PARENB) {
cval |= SMCMR_PEN;
scval |= SCU_PSMR_PEN;
bits++;
}
if (!(cflag & PARODD)) {
cval |= SMCMR_PM_EVEN;
scval |= (SCU_PSMR_REVP | SCU_PSMR_TEVP);
}
/* Determine divisor based on baud rate */
i = cflag & CBAUD;
if (i >= (sizeof(baud_table)/sizeof(int)))
baud_rate = 9600;
else
baud_rate = baud_table[i];
info->timeout = (TX_BUF_SIZE*HZ*bits);
info->timeout += HZ/50; /* Add .02 seconds of slop */
#ifdef modem_control
/* CTS flow control flag and modem status interrupts */
info->IER &= ~UART_IER_MSI;
if (info->flags & ASYNC_HARDPPS_CD)
info->IER |= UART_IER_MSI;
if (cflag & CRTSCTS) {
info->flags |= ASYNC_CTS_FLOW;
info->IER |= UART_IER_MSI;
} else
info->flags &= ~ASYNC_CTS_FLOW;
if (cflag & CLOCAL)
info->flags &= ~ASYNC_CHECK_CD;
else {
info->flags |= ASYNC_CHECK_CD;
info->IER |= UART_IER_MSI;
}
serial_out(info, UART_IER, info->IER);
#endif
/*
* Set up parity check flag
*/
#define RELEVANT_IFLAG(iflag) (iflag & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK))
info->read_status_mask = (BD_SC_EMPTY | BD_SC_OV);
if (I_INPCK(info->tty))
info->read_status_mask |= BD_SC_FR | BD_SC_PR;
if (I_BRKINT(info->tty) || I_PARMRK(info->tty))
info->read_status_mask |= BD_SC_BR;
/*
* Characters to ignore
*/
info->ignore_status_mask = 0;
if (I_IGNPAR(info->tty))
info->ignore_status_mask |= BD_SC_PR | BD_SC_FR;
if (I_IGNBRK(info->tty)) {
info->ignore_status_mask |= BD_SC_BR;
/*
* If we're ignore parity and break indicators, ignore
* overruns too. (For real raw support).
*/
if (I_IGNPAR(info->tty))
info->ignore_status_mask |= BD_SC_OV;
}
/*
* !!! ignore all characters if CREAD is not set
*/
if ((cflag & CREAD) == 0)
info->read_status_mask &= ~BD_SC_EMPTY;
save_flags(flags); cli();
/* Start bit has not been added (so don't, because we would just
* subtract it later), and we need to add one for the number of
* stops bits (there is always at least one).
*/
bits++;
if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) {
smcp = &cpm2_immr->im_smc[idx];
/* Set the mode register. We want to keep a copy of the
* enables, because we want to put them back if they were
* present.
*/
prev_mode = smcp->smc_smcmr & (SMCMR_REN | SMCMR_TEN);
smcp->smc_smcmr = smcr_mk_clen(bits) | cval | SMCMR_SM_UART
| prev_mode;
}
else {
sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE];
sccp->scc_psmr = (sbits << 12) | scval;
}
cpm2_setbrg(info->state->smc_scc_num, baud_rate);
restore_flags(flags);
}
static void rs_8xx_put_char(struct tty_struct *tty, unsigned char ch)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
volatile cbd_t *bdp;
if (serial_paranoia_check(info, tty->device, "rs_put_char"))
return;
if (!tty)
return;
bdp = info->tx_cur;
while (bdp->cbd_sc & BD_SC_READY);
*((char *)__va(bdp->cbd_bufaddr)) = ch;
bdp->cbd_datlen = 1;
bdp->cbd_sc |= BD_SC_READY;
/* Get next BD.
*/
if (bdp->cbd_sc & BD_SC_WRAP)
bdp = info->tx_bd_base;
else
bdp++;
info->tx_cur = (cbd_t *)bdp;
}
static int rs_8xx_write(struct tty_struct * tty, int from_user,
const unsigned char *buf, int count)
{
int c, ret = 0;
ser_info_t *info = (ser_info_t *)tty->driver_data;
volatile cbd_t *bdp;
if (serial_paranoia_check(info, tty->device, "rs_write"))
return 0;
if (!tty)
return 0;
bdp = info->tx_cur;
while (1) {
c = MIN(count, TX_BUF_SIZE);
if (c <= 0)
break;
if (bdp->cbd_sc & BD_SC_READY) {
info->flags |= TX_WAKEUP;
break;
}
if (from_user) {
if (copy_from_user(__va(bdp->cbd_bufaddr), buf, c)) {
if (!ret)
ret = -EFAULT;
break;
}
} else {
memcpy(__va(bdp->cbd_bufaddr), buf, c);
}
bdp->cbd_datlen = c;
bdp->cbd_sc |= BD_SC_READY;
buf += c;
count -= c;
ret += c;
/* Get next BD.
*/
if (bdp->cbd_sc & BD_SC_WRAP)
bdp = info->tx_bd_base;
else
bdp++;
info->tx_cur = (cbd_t *)bdp;
}
return ret;
}
static int rs_8xx_write_room(struct tty_struct *tty)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
int ret;
if (serial_paranoia_check(info, tty->device, "rs_write_room"))
return 0;
if ((info->tx_cur->cbd_sc & BD_SC_READY) == 0) {
info->flags &= ~TX_WAKEUP;
ret = TX_BUF_SIZE;
}
else {
info->flags |= TX_WAKEUP;
ret = 0;
}
return ret;
}
/* I could track this with transmit counters....maybe later.
*/
static int rs_8xx_chars_in_buffer(struct tty_struct *tty)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "rs_chars_in_buffer"))
return 0;
return 0;
}
static void rs_8xx_flush_buffer(struct tty_struct *tty)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "rs_flush_buffer"))
return;
/* There is nothing to "flush", whatever we gave the CPM
* is on its way out.
*/
wake_up_interruptible(&tty->write_wait);
if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
tty->ldisc.write_wakeup)
(tty->ldisc.write_wakeup)(tty);
info->flags &= ~TX_WAKEUP;
}
/*
* This function is used to send a high-priority XON/XOFF character to
* the device
*/
static void rs_8xx_send_xchar(struct tty_struct *tty, char ch)
{
volatile cbd_t *bdp;
ser_info_t *info = (ser_info_t *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "rs_send_char"))
return;
bdp = info->tx_cur;
while (bdp->cbd_sc & BD_SC_READY);
*((char *)__va(bdp->cbd_bufaddr)) = ch;
bdp->cbd_datlen = 1;
bdp->cbd_sc |= BD_SC_READY;
/* Get next BD.
*/
if (bdp->cbd_sc & BD_SC_WRAP)
bdp = info->tx_bd_base;
else
bdp++;
info->tx_cur = (cbd_t *)bdp;
}
/*
* ------------------------------------------------------------
* rs_throttle()
*
* This routine is called by the upper-layer tty layer to signal that
* incoming characters should be throttled.
* ------------------------------------------------------------
*/
static void rs_8xx_throttle(struct tty_struct * tty)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
#ifdef SERIAL_DEBUG_THROTTLE
char buf[64];
printk("throttle %s: %d....\n", _tty_name(tty, buf),
tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->device, "rs_throttle"))
return;
if (I_IXOFF(tty))
rs_8xx_send_xchar(tty, STOP_CHAR(tty));
#ifdef modem_control
if (tty->termios->c_cflag & CRTSCTS)
info->MCR &= ~UART_MCR_RTS;
cli();
serial_out(info, UART_MCR, info->MCR);
sti();
#endif
}
static void rs_8xx_unthrottle(struct tty_struct * tty)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
#ifdef SERIAL_DEBUG_THROTTLE
char buf[64];
printk("unthrottle %s: %d....\n", _tty_name(tty, buf),
tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->device, "rs_unthrottle"))
return;
if (I_IXOFF(tty)) {
if (info->x_char)
info->x_char = 0;
else
rs_8xx_send_xchar(tty, START_CHAR(tty));
}
#ifdef modem_control
if (tty->termios->c_cflag & CRTSCTS)
info->MCR |= UART_MCR_RTS;
cli();
serial_out(info, UART_MCR, info->MCR);
sti();
#endif
}
/*
* ------------------------------------------------------------
* rs_ioctl() and friends
* ------------------------------------------------------------
*/
#ifdef maybe
/*
* get_lsr_info - get line status register info
*
* Purpose: Let user call ioctl() to get info when the UART physically
* is emptied. On bus types like RS485, the transmitter must
* release the bus after transmitting. This must be done when
* the transmit shift register is empty, not be done when the
* transmit holding register is empty. This functionality
* allows an RS485 driver to be written in user space.
*/
static int get_lsr_info(struct async_struct * info, unsigned int *value)
{
unsigned char status;
unsigned int result;
cli();
status = serial_in(info, UART_LSR);
sti();
result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0);
return put_user(result,value);
}
#endif
static int get_modem_info(ser_info_t *info, unsigned int *value)
{
unsigned int result = 0;
#ifdef modem_control
unsigned char control, status;
control = info->MCR;
cli();
status = serial_in(info, UART_MSR);
sti();
result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0)
| ((control & UART_MCR_DTR) ? TIOCM_DTR : 0)
#ifdef TIOCM_OUT1
| ((control & UART_MCR_OUT1) ? TIOCM_OUT1 : 0)
| ((control & UART_MCR_OUT2) ? TIOCM_OUT2 : 0)
#endif
| ((status & UART_MSR_DCD) ? TIOCM_CAR : 0)
| ((status & UART_MSR_RI) ? TIOCM_RNG : 0)
| ((status & UART_MSR_DSR) ? TIOCM_DSR : 0)
| ((status & UART_MSR_CTS) ? TIOCM_CTS : 0);
#endif
return put_user(result,value);
}
static int set_modem_info(ser_info_t *info, unsigned int cmd,
unsigned int *value)
{
int error;
unsigned int arg;
error = get_user(arg, value);
if (error)
return error;
#ifdef modem_control
switch (cmd) {
case TIOCMBIS:
if (arg & TIOCM_RTS)
info->MCR |= UART_MCR_RTS;
if (arg & TIOCM_DTR)
info->MCR |= UART_MCR_DTR;
#ifdef TIOCM_OUT1
if (arg & TIOCM_OUT1)
info->MCR |= UART_MCR_OUT1;
if (arg & TIOCM_OUT2)
info->MCR |= UART_MCR_OUT2;
#endif
break;
case TIOCMBIC:
if (arg & TIOCM_RTS)
info->MCR &= ~UART_MCR_RTS;
if (arg & TIOCM_DTR)
info->MCR &= ~UART_MCR_DTR;
#ifdef TIOCM_OUT1
if (arg & TIOCM_OUT1)
info->MCR &= ~UART_MCR_OUT1;
if (arg & TIOCM_OUT2)
info->MCR &= ~UART_MCR_OUT2;
#endif
break;
case TIOCMSET:
info->MCR = ((info->MCR & ~(UART_MCR_RTS |
#ifdef TIOCM_OUT1
UART_MCR_OUT1 |
UART_MCR_OUT2 |
#endif
UART_MCR_DTR))
| ((arg & TIOCM_RTS) ? UART_MCR_RTS : 0)
#ifdef TIOCM_OUT1
| ((arg & TIOCM_OUT1) ? UART_MCR_OUT1 : 0)
| ((arg & TIOCM_OUT2) ? UART_MCR_OUT2 : 0)
#endif
| ((arg & TIOCM_DTR) ? UART_MCR_DTR : 0));
break;
default:
return -EINVAL;
}
cli();
serial_out(info, UART_MCR, info->MCR);
sti();
#endif
return 0;
}
/* Sending a break is a two step process on the SMC/SCC. It is accomplished
* by sending a STOP TRANSMIT command followed by a RESTART TRANSMIT
* command. We take advantage of the begin/end functions to make this
* happen.
*/
static void begin_break(ser_info_t *info)
{
volatile cpm_cpm2_t *cp;
uint page, sblock;
ushort num;
cp = cpmp;
if ((num = info->state->smc_scc_num) < SCC_NUM_BASE) {
if (num == 0) {
page = CPM_CR_SMC1_PAGE;
sblock = CPM_CR_SMC1_SBLOCK;
}
else {
page = CPM_CR_SMC2_PAGE;
sblock = CPM_CR_SMC2_SBLOCK;
}
}
else {
num -= SCC_NUM_BASE;
switch (num) {
case 0:
page = CPM_CR_SCC1_PAGE;
sblock = CPM_CR_SCC1_SBLOCK;
break;
case 1:
page = CPM_CR_SCC2_PAGE;
sblock = CPM_CR_SCC2_SBLOCK;
break;
case 2:
page = CPM_CR_SCC3_PAGE;
sblock = CPM_CR_SCC3_SBLOCK;
break;
case 3:
page = CPM_CR_SCC4_PAGE;
sblock = CPM_CR_SCC4_SBLOCK;
break;
default: return;
}
}
cp->cp_cpcr = mk_cr_cmd(page, sblock, 0, CPM_CR_STOP_TX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
}
static void end_break(ser_info_t *info)
{
volatile cpm_cpm2_t *cp;
uint page, sblock;
ushort num;
cp = cpmp;
if ((num = info->state->smc_scc_num) < SCC_NUM_BASE) {
if (num == 0) {
page = CPM_CR_SMC1_PAGE;
sblock = CPM_CR_SMC1_SBLOCK;
}
else {
page = CPM_CR_SMC2_PAGE;
sblock = CPM_CR_SMC2_SBLOCK;
}
}
else {
num -= SCC_NUM_BASE;
switch (num) {
case 0:
page = CPM_CR_SCC1_PAGE;
sblock = CPM_CR_SCC1_SBLOCK;
break;
case 1:
page = CPM_CR_SCC2_PAGE;
sblock = CPM_CR_SCC2_SBLOCK;
break;
case 2:
page = CPM_CR_SCC3_PAGE;
sblock = CPM_CR_SCC3_SBLOCK;
break;
case 3:
page = CPM_CR_SCC4_PAGE;
sblock = CPM_CR_SCC4_SBLOCK;
break;
default: return;
}
}
cp->cp_cpcr = mk_cr_cmd(page, sblock, 0, CPM_CR_RESTART_TX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
}
/*
* This routine sends a break character out the serial port.
*/
static void send_break(ser_info_t *info, int duration)
{
current->state = TASK_INTERRUPTIBLE;
#ifdef SERIAL_DEBUG_SEND_BREAK
printk("rs_send_break(%d) jiff=%lu...", duration, jiffies);
#endif
begin_break(info);
schedule_timeout(duration);
end_break(info);
#ifdef SERIAL_DEBUG_SEND_BREAK
printk("done jiffies=%lu\n", jiffies);
#endif
}
static int rs_8xx_ioctl(struct tty_struct *tty, struct file * file,
unsigned int cmd, unsigned long arg)
{
int error;
ser_info_t *info = (ser_info_t *)tty->driver_data;
int retval;
struct async_icount cnow; /* kernel counter temps */
struct serial_icounter_struct *p_cuser; /* user space */
if (serial_paranoia_check(info, tty->device, "rs_ioctl"))
return -ENODEV;
if ((cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) {
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
}
switch (cmd) {
case TCSBRK: /* SVID version: non-zero arg --> no break */
retval = tty_check_change(tty);
if (retval)
return retval;
tty_wait_until_sent(tty, 0);
if (signal_pending(current))
return -EINTR;
if (!arg) {
send_break(info, HZ/4); /* 1/4 second */
if (signal_pending(current))
return -EINTR;
}
return 0;
case TCSBRKP: /* support for POSIX tcsendbreak() */
retval = tty_check_change(tty);
if (retval)
return retval;
tty_wait_until_sent(tty, 0);
if (signal_pending(current))
return -EINTR;
send_break(info, arg ? arg*(HZ/10) : HZ/4);
if (signal_pending(current))
return -EINTR;
return 0;
case TIOCSBRK:
retval = tty_check_change(tty);
if (retval)
return retval;
tty_wait_until_sent(tty, 0);
begin_break(info);
return 0;
case TIOCCBRK:
retval = tty_check_change(tty);
if (retval)
return retval;
end_break(info);
return 0;
case TIOCGSOFTCAR:
return put_user(C_CLOCAL(tty) ? 1 : 0, (int *) arg);
case TIOCSSOFTCAR:
error = get_user(arg, (unsigned int *) arg);
if (error)
return error;
tty->termios->c_cflag =
((tty->termios->c_cflag & ~CLOCAL) |
(arg ? CLOCAL : 0));
return 0;
case TIOCMGET:
return get_modem_info(info, (unsigned int *) arg);
case TIOCMBIS:
case TIOCMBIC:
case TIOCMSET:
return set_modem_info(info, cmd, (unsigned int *) arg);
#ifdef maybe
case TIOCSERGETLSR: /* Get line status register */
return get_lsr_info(info, (unsigned int *) arg);
#endif
/*
* Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change
* - mask passed in arg for lines of interest
* (use |'ed TIOCM_RNG/DSR/CD/CTS for masking)
* Caller should use TIOCGICOUNT to see which one it was
*/
case TIOCMIWAIT:
#ifdef modem_control
cli();
/* note the counters on entry */
cprev = info->state->icount;
sti();
while (1) {
interruptible_sleep_on(&info->delta_msr_wait);
/* see if a signal did it */
if (signal_pending(current))
return -ERESTARTSYS;
cli();
cnow = info->state->icount; /* atomic copy */
sti();
if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr &&
cnow.dcd == cprev.dcd && cnow.cts == cprev.cts)
return -EIO; /* no change => error */
if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) ||
((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) ||
((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) ||
((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) {
return 0;
}
cprev = cnow;
}
/* NOTREACHED */
#else
return 0;
#endif
/*
* Get counter of input serial line interrupts (DCD,RI,DSR,CTS)
* Return: write counters to the user passed counter struct
* NB: both 1->0 and 0->1 transitions are counted except for
* RI where only 0->1 is counted.
*/
case TIOCGICOUNT:
cli();
cnow = info->state->icount;
sti();
p_cuser = (struct serial_icounter_struct *) arg;
error = put_user(cnow.cts, &p_cuser->cts);
if (error) return error;
error = put_user(cnow.dsr, &p_cuser->dsr);
if (error) return error;
error = put_user(cnow.rng, &p_cuser->rng);
if (error) return error;
error = put_user(cnow.dcd, &p_cuser->dcd);
if (error) return error;
return 0;
default:
return -ENOIOCTLCMD;
}
return 0;
}
/* FIX UP modem control here someday......
*/
static void rs_8xx_set_termios(struct tty_struct *tty, struct termios *old_termios)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
if ( (tty->termios->c_cflag == old_termios->c_cflag)
&& ( RELEVANT_IFLAG(tty->termios->c_iflag)
== RELEVANT_IFLAG(old_termios->c_iflag)))
return;
change_speed(info);
#ifdef modem_control
/* Handle transition to B0 status */
if ((old_termios->c_cflag & CBAUD) &&
!(tty->termios->c_cflag & CBAUD)) {
info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS);
cli();
serial_out(info, UART_MCR, info->MCR);
sti();
}
/* Handle transition away from B0 status */
if (!(old_termios->c_cflag & CBAUD) &&
(tty->termios->c_cflag & CBAUD)) {
info->MCR |= UART_MCR_DTR;
if (!tty->hw_stopped ||
!(tty->termios->c_cflag & CRTSCTS)) {
info->MCR |= UART_MCR_RTS;
}
cli();
serial_out(info, UART_MCR, info->MCR);
sti();
}
/* Handle turning off CRTSCTS */
if ((old_termios->c_cflag & CRTSCTS) &&
!(tty->termios->c_cflag & CRTSCTS)) {
tty->hw_stopped = 0;
rs_8xx_start(tty);
}
#endif
#if 0
/*
* No need to wake up processes in open wait, since they
* sample the CLOCAL flag once, and don't recheck it.
* XXX It's not clear whether the current behavior is correct
* or not. Hence, this may change.....
*/
if (!(old_termios->c_cflag & CLOCAL) &&
(tty->termios->c_cflag & CLOCAL))
wake_up_interruptible(&info->open_wait);
#endif
}
/*
* ------------------------------------------------------------
* rs_close()
*
* This routine is called when the serial port gets closed. First, we
* wait for the last remaining data to be sent. Then, we unlink its
* async structure from the interrupt chain if necessary, and we free
* that IRQ if nothing is left in the chain.
* ------------------------------------------------------------
*/
static void rs_8xx_close(struct tty_struct *tty, struct file * filp)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
struct serial_state *state;
unsigned long flags;
int idx;
volatile smc_t *smcp;
volatile scc_t *sccp;
if (!info || serial_paranoia_check(info, tty->device, "rs_close"))
return;
state = info->state;
save_flags(flags); cli();
if (tty_hung_up_p(filp)) {
DBG_CNT("before DEC-hung");
MOD_DEC_USE_COUNT;
restore_flags(flags);
return;
}
#ifdef SERIAL_DEBUG_OPEN
printk("rs_close ttys%d, count = %d\n", info->line, state->count);
#endif
if ((tty->count == 1) && (state->count != 1)) {
/*
* Uh, oh. tty->count is 1, which means that the tty
* structure will be freed. state->count should always
* be one in these conditions. If it's greater than
* one, we've got real problems, since it means the
* serial port won't be shutdown.
*/
printk("rs_close: bad serial port count; tty->count is 1, "
"state->count is %d\n", state->count);
state->count = 1;
}
if (--state->count < 0) {
printk("rs_close: bad serial port count for ttys%d: %d\n",
info->line, state->count);
state->count = 0;
}
if (state->count) {
DBG_CNT("before DEC-2");
MOD_DEC_USE_COUNT;
restore_flags(flags);
return;
}
info->flags |= ASYNC_CLOSING;
/*
* Save the termios structure, since this port may have
* separate termios for callout and dialin.
*/
if (info->flags & ASYNC_NORMAL_ACTIVE)
info->state->normal_termios = *tty->termios;
if (info->flags & ASYNC_CALLOUT_ACTIVE)
info->state->callout_termios = *tty->termios;
/*
* Now we wait for the transmit buffer to clear; and we notify
* the line discipline to only process XON/XOFF characters.
*/
tty->closing = 1;
if (state->closing_wait != ASYNC_CLOSING_WAIT_NONE)
tty_wait_until_sent(tty, state->closing_wait);
/*
* At this point we stop accepting input. To do this, we
* disable the receive line status interrupts, and tell the
* interrupt driver to stop checking the data ready bit in the
* line status register.
*/
info->read_status_mask &= ~BD_SC_EMPTY;
if (info->flags & ASYNC_INITIALIZED) {
if ((idx = info->state->smc_scc_num) < SCC_NUM_BASE) {
smcp = &cpm2_immr->im_smc[idx];
smcp->smc_smcm &= ~SMCM_RX;
smcp->smc_smcmr &= ~SMCMR_REN;
}
else {
sccp = &cpm2_immr->im_scc[idx - SCC_IDX_BASE];
sccp->scc_sccm &= ~UART_SCCM_RX;
sccp->scc_gsmrl &= ~SCC_GSMRL_ENR;
}
/*
* Before we drop DTR, make sure the UART transmitter
* has completely drained; this is especially
* important if there is a transmit FIFO!
*/
rs_8xx_wait_until_sent(tty, info->timeout);
}
shutdown(info);
if (tty->driver.flush_buffer)
tty->driver.flush_buffer(tty);
if (tty->ldisc.flush_buffer)
tty->ldisc.flush_buffer(tty);
tty->closing = 0;
info->event = 0;
info->tty = 0;
if (info->blocked_open) {
if (state->close_delay) {
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(state->close_delay);
}
wake_up_interruptible(&info->open_wait);
}
info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE|
ASYNC_CLOSING);
wake_up_interruptible(&info->close_wait);
MOD_DEC_USE_COUNT;
restore_flags(flags);
}
/*
* rs_wait_until_sent() --- wait until the transmitter is empty
*/
static void rs_8xx_wait_until_sent(struct tty_struct *tty, int timeout)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
unsigned long orig_jiffies, char_time;
/*int lsr;*/
volatile cbd_t *bdp;
if (serial_paranoia_check(info, tty->device, "rs_wait_until_sent"))
return;
#ifdef maybe
if (info->state->type == PORT_UNKNOWN)
return;
#endif
orig_jiffies = jiffies;
/*
* Set the check interval to be 1/5 of the estimated time to
* send a single character, and make it at least 1. The check
* interval should also be less than the timeout.
*
* Note: we have to use pretty tight timings here to satisfy
* the NIST-PCTS.
*/
char_time = 1;
if (timeout)
char_time = MIN(char_time, timeout);
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
printk("In rs_wait_until_sent(%d) check=%lu...", timeout, char_time);
printk("jiff=%lu...", jiffies);
#endif
/* We go through the loop at least once because we can't tell
* exactly when the last character exits the shifter. There can
* be at least two characters waiting to be sent after the buffers
* are empty.
*/
do {
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
printk("lsr = %d (jiff=%lu)...", lsr, jiffies);
#endif
current->state = TASK_INTERRUPTIBLE;
/* current->counter = 0; make us low-priority */
schedule_timeout(char_time);
if (signal_pending(current))
break;
if (timeout && time_after(jiffies, orig_jiffies + timeout))
break;
bdp = info->tx_cur;
} while (bdp->cbd_sc & BD_SC_READY);
current->state = TASK_RUNNING;
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
printk("lsr = %d (jiff=%lu)...done\n", lsr, jiffies);
#endif
}
/*
* rs_hangup() --- called by tty_hangup() when a hangup is signaled.
*/
static void rs_8xx_hangup(struct tty_struct *tty)
{
ser_info_t *info = (ser_info_t *)tty->driver_data;
struct serial_state *state = info->state;
if (serial_paranoia_check(info, tty->device, "rs_hangup"))
return;
state = info->state;
rs_8xx_flush_buffer(tty);
shutdown(info);
info->event = 0;
state->count = 0;
info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE);
info->tty = 0;
wake_up_interruptible(&info->open_wait);
}
/*
* ------------------------------------------------------------
* rs_open() and friends
* ------------------------------------------------------------
*/
static int block_til_ready(struct tty_struct *tty, struct file * filp,
ser_info_t *info)
{
#ifdef DO_THIS_LATER
DECLARE_WAITQUEUE(wait, current);
#endif
struct serial_state *state = info->state;
int retval;
int do_clocal = 0;
/*
* If the device is in the middle of being closed, then block
* until it's done, and then try again.
*/
if (tty_hung_up_p(filp) ||
(info->flags & ASYNC_CLOSING)) {
if (info->flags & ASYNC_CLOSING)
interruptible_sleep_on(&info->close_wait);
#ifdef SERIAL_DO_RESTART
if (info->flags & ASYNC_HUP_NOTIFY)
return -EAGAIN;
else
return -ERESTARTSYS;
#else
return -EAGAIN;
#endif
}
/*
* If this is a callout device, then just make sure the normal
* device isn't being used.
*/
if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) {
if (info->flags & ASYNC_NORMAL_ACTIVE)
return -EBUSY;
if ((info->flags & ASYNC_CALLOUT_ACTIVE) &&
(info->flags & ASYNC_SESSION_LOCKOUT) &&
(info->session != current->session))
return -EBUSY;
if ((info->flags & ASYNC_CALLOUT_ACTIVE) &&
(info->flags & ASYNC_PGRP_LOCKOUT) &&
(info->pgrp != current->pgrp))
return -EBUSY;
info->flags |= ASYNC_CALLOUT_ACTIVE;
return 0;
}
/*
* If non-blocking mode is set, or the port is not enabled,
* then make the check up front and then exit.
* If this is an SMC port, we don't have modem control to wait
* for, so just get out here.
*/
if ((filp->f_flags & O_NONBLOCK) ||
(tty->flags & (1 << TTY_IO_ERROR)) ||
(info->state->smc_scc_num < SCC_NUM_BASE)) {
if (info->flags & ASYNC_CALLOUT_ACTIVE)
return -EBUSY;
info->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
if (info->flags & ASYNC_CALLOUT_ACTIVE) {
if (state->normal_termios.c_cflag & CLOCAL)
do_clocal = 1;
} else {
if (tty->termios->c_cflag & CLOCAL)
do_clocal = 1;
}
/*
* Block waiting for the carrier detect and the line to become
* free (i.e., not in use by the callout). While we are in
* this loop, state->count is dropped by one, so that
* rs_close() knows when to free things. We restore it upon
* exit, either normal or abnormal.
*/
retval = 0;
#ifdef DO_THIS_LATER
add_wait_queue(&info->open_wait, &wait);
#ifdef SERIAL_DEBUG_OPEN
printk("block_til_ready before block: ttys%d, count = %d\n",
state->line, state->count);
#endif
cli();
if (!tty_hung_up_p(filp))
state->count--;
sti();
info->blocked_open++;
while (1) {
cli();
if (!(info->flags & ASYNC_CALLOUT_ACTIVE) &&
(tty->termios->c_cflag & CBAUD))
serial_out(info, UART_MCR,
serial_inp(info, UART_MCR) |
(UART_MCR_DTR | UART_MCR_RTS));
sti();
set_current_state(TASK_INTERRUPTIBLE);
if (tty_hung_up_p(filp) ||
!(info->flags & ASYNC_INITIALIZED)) {
#ifdef SERIAL_DO_RESTART
if (info->flags & ASYNC_HUP_NOTIFY)
retval = -EAGAIN;
else
retval = -ERESTARTSYS;
#else
retval = -EAGAIN;
#endif
break;
}
if (!(info->flags & ASYNC_CALLOUT_ACTIVE) &&
!(info->flags & ASYNC_CLOSING) &&
(do_clocal || (serial_in(info, UART_MSR) &
UART_MSR_DCD)))
break;
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
#ifdef SERIAL_DEBUG_OPEN
printk("block_til_ready blocking: ttys%d, count = %d\n",
info->line, state->count);
#endif
schedule();
}
current->state = TASK_RUNNING;
remove_wait_queue(&info->open_wait, &wait);
if (!tty_hung_up_p(filp))
state->count++;
info->blocked_open--;
#ifdef SERIAL_DEBUG_OPEN
printk("block_til_ready after blocking: ttys%d, count = %d\n",
info->line, state->count);
#endif
#endif /* DO_THIS_LATER */
if (retval)
return retval;
info->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
static int get_async_struct(int line, ser_info_t **ret_info)
{
struct serial_state *sstate;
sstate = rs_table + line;
if (sstate->info) {
sstate->count++;
*ret_info = (ser_info_t *)sstate->info;
return 0;
}
else {
return -ENOMEM;
}
}
/*
* This routine is called whenever a serial port is opened. It
* enables interrupts for a serial port, linking in its async structure into
* the IRQ chain. It also performs the serial-specific
* initialization for the tty structure.
*/
static int rs_8xx_open(struct tty_struct *tty, struct file * filp)
{
ser_info_t *info;
int retval, line;
line = MINOR(tty->device) - tty->driver.minor_start;
if ((line < 0) || (line >= NR_PORTS))
return -ENODEV;
retval = get_async_struct(line, &info);
if (retval)
return retval;
if (serial_paranoia_check(info, tty->device, "rs_open"))
return -ENODEV;
#ifdef SERIAL_DEBUG_OPEN
printk("rs_open %s%d, count = %d\n", tty->driver.name, info->line,
info->state->count);
#endif
tty->driver_data = info;
info->tty = tty;
/*
* Start up serial port
*/
retval = startup(info);
if (retval)
return retval;
MOD_INC_USE_COUNT;
retval = block_til_ready(tty, filp, info);
if (retval) {
#ifdef SERIAL_DEBUG_OPEN
printk("rs_open returning after block_til_ready with %d\n",
retval);
#endif
return retval;
}
if ((info->state->count == 1) &&
(info->flags & ASYNC_SPLIT_TERMIOS)) {
if (tty->driver.subtype == SERIAL_TYPE_NORMAL)
*tty->termios = info->state->normal_termios;
else
*tty->termios = info->state->callout_termios;
change_speed(info);
}
info->session = current->session;
info->pgrp = current->pgrp;
#ifdef SERIAL_DEBUG_OPEN
printk("rs_open ttys%d successful...", info->line);
#endif
return 0;
}
/*
* /proc fs routines....
*/
static int inline line_info(char *buf, struct serial_state *state)
{
#ifdef notdef
struct async_struct *info = state->info, scr_info;
char stat_buf[30], control, status;
#endif
int ret;
ret = sprintf(buf, "%d: uart:%s port:%X irq:%d",
state->line,
(state->smc_scc_num < SCC_NUM_BASE) ? "SMC" : "SCC",
(unsigned int)(state->port), state->irq);
if (!state->port || (state->type == PORT_UNKNOWN)) {
ret += sprintf(buf+ret, "\n");
return ret;
}
#ifdef notdef
/*
* Figure out the current RS-232 lines
*/
if (!info) {
info = &scr_info; /* This is just for serial_{in,out} */
info->magic = SERIAL_MAGIC;
info->port = state->port;
info->flags = state->flags;
info->quot = 0;
info->tty = 0;
}
cli();
status = serial_in(info, UART_MSR);
control = info ? info->MCR : serial_in(info, UART_MCR);
sti();
stat_buf[0] = 0;
stat_buf[1] = 0;
if (control & UART_MCR_RTS)
strcat(stat_buf, "|RTS");
if (status & UART_MSR_CTS)
strcat(stat_buf, "|CTS");
if (control & UART_MCR_DTR)
strcat(stat_buf, "|DTR");
if (status & UART_MSR_DSR)
strcat(stat_buf, "|DSR");
if (status & UART_MSR_DCD)
strcat(stat_buf, "|CD");
if (status & UART_MSR_RI)
strcat(stat_buf, "|RI");
if (info->quot) {
ret += sprintf(buf+ret, " baud:%d",
state->baud_base / info->quot);
}
ret += sprintf(buf+ret, " tx:%d rx:%d",
state->icount.tx, state->icount.rx);
if (state->icount.frame)
ret += sprintf(buf+ret, " fe:%d", state->icount.frame);
if (state->icount.parity)
ret += sprintf(buf+ret, " pe:%d", state->icount.parity);
if (state->icount.brk)
ret += sprintf(buf+ret, " brk:%d", state->icount.brk);
if (state->icount.overrun)
ret += sprintf(buf+ret, " oe:%d", state->icount.overrun);
/*
* Last thing is the RS-232 status lines
*/
ret += sprintf(buf+ret, " %s\n", stat_buf+1);
#endif
return ret;
}
int rs_8xx_read_proc(char *page, char **start, off_t off, int count,
int *eof, void *data)
{
int i, len = 0;
off_t begin = 0;
len += sprintf(page, "serinfo:1.0 driver:%s\n", serial_version);
for (i = 0; i < NR_PORTS && len < 4000; i++) {
len += line_info(page + len, &rs_table[i]);
if (len+begin > off+count)
goto done;
if (len+begin < off) {
begin += len;
len = 0;
}
}
*eof = 1;
done:
if (off >= len+begin)
return 0;
*start = page + (begin-off);
return ((count < begin+len-off) ? count : begin+len-off);
}
/*
* ---------------------------------------------------------------------
* rs_init() and friends
*
* rs_init() is called at boot-time to initialize the serial driver.
* ---------------------------------------------------------------------
*/
/*
* This routine prints out the appropriate serial driver version
* number, and identifies which options were configured into this
* driver.
*/
static _INLINE_ void show_serial_version(void)
{
printk(KERN_INFO "%s version %s\n", serial_name, serial_version);
}
/*
* The serial console driver used during boot. Note that these names
* clash with those found in "serial.c", so we currently can't support
* the 16xxx uarts and these at the same time. I will fix this to become
* an indirect function call from tty_io.c (or something).
*/
#ifdef CONFIG_SERIAL_CONSOLE
/*
* Print a string to the serial port trying not to disturb any possible
* real use of the port...
* These funcitons work equally well for SCC, even though they are
* designed for SMC. Our only interests are the transmit/receive
* buffers, which are identically mapped for either the SCC or SMC.
*/
static void my_console_write(int idx, const char *s,
unsigned count)
{
struct serial_state *ser;
ser_info_t *info;
unsigned i;
volatile cbd_t *bdp, *bdbase;
volatile smc_uart_t *up;
volatile u_char *cp;
ser = rs_table + idx;
/* If the port has been initialized for general use, we have
* to use the buffer descriptors allocated there. Otherwise,
* we simply use the single buffer allocated.
*/
if ((info = (ser_info_t *)ser->info) != NULL) {
bdp = info->tx_cur;
bdbase = info->tx_bd_base;
}
else {
/* Pointer to UART in parameter ram.
*/
up = (smc_uart_t *)&cpm2_immr->im_dprambase[ser->port];
/* Get the address of the host memory buffer.
*/
bdp = bdbase = (cbd_t *)&cpm2_immr->im_dprambase[up->smc_tbase];
}
/*
* We need to gracefully shut down the transmitter, disable
* interrupts, then send our bytes out.
*/
/*
* Now, do each character. This is not as bad as it looks
* since this is a holding FIFO and not a transmitting FIFO.
* We could add the complexity of filling the entire transmit
* buffer, but we would just wait longer between accesses......
*/
for (i = 0; i < count; i++, s++) {
/* Wait for transmitter fifo to empty.
* Ready indicates output is ready, and xmt is doing
* that, not that it is ready for us to send.
*/
while (bdp->cbd_sc & BD_SC_READY);
/* Send the character out.
* If the buffer address is in the CPM DPRAM, don't
* convert it.
*/
if ((uint)(bdp->cbd_bufaddr) > (uint)CPM_MAP_ADDR)
cp = (u_char *)(bdp->cbd_bufaddr);
else
cp = __va(bdp->cbd_bufaddr);
*cp = *s;
bdp->cbd_datlen = 1;
bdp->cbd_sc |= BD_SC_READY;
if (bdp->cbd_sc & BD_SC_WRAP)
bdp = bdbase;
else
bdp++;
/* if a LF, also do CR... */
if (*s == 10) {
while (bdp->cbd_sc & BD_SC_READY);
cp = __va(bdp->cbd_bufaddr);
*cp = 13;
bdp->cbd_datlen = 1;
bdp->cbd_sc |= BD_SC_READY;
if (bdp->cbd_sc & BD_SC_WRAP) {
bdp = bdbase;
}
else {
bdp++;
}
}
}
/*
* Finally, Wait for transmitter & holding register to empty
* and restore the IER
*/
while (bdp->cbd_sc & BD_SC_READY);
if (info)
info->tx_cur = (cbd_t *)bdp;
}
static void serial_console_write(struct console *c, const char *s,
unsigned count)
{
#if defined(CONFIG_KGDB_CONSOLE) && !defined(CONFIG_USE_SERIAL2_KGDB)
/* Try to let stub handle output. Returns true if it did. */
if (kgdb_output_string(s, count))
return;
#endif
my_console_write(c->index, s, count);
}
#ifdef CONFIG_XMON
int
xmon_8xx_write(const char *s, unsigned count)
{
my_console_write(KGDB_SER_IDX, s, count);
return(count);
}
#endif
#ifdef CONFIG_KGDB
void
putDebugChar(char ch)
{
my_console_write(KGDB_SER_IDX, &ch, 1);
}
#endif
#if defined(CONFIG_KGDB) || defined(CONFIG_XMON)
/*
* Receive character from the serial port. This only works well
* before the port is initialize for real use.
*/
static int my_console_wait_key(int idx, int xmon, char *obuf)
{
struct serial_state *ser;
u_char c, *cp;
ser_info_t *info;
volatile cbd_t *bdp;
volatile smc_uart_t *up;
int i;
ser = rs_table + idx;
/* Pointer to UART in parameter ram.
*/
up = (smc_uart_t *)&cpm2_immr->im_dprambase[ser->port];
/* Get the address of the host memory buffer.
* If the port has been initialized for general use, we must
* use information from the port structure.
*/
if ((info = (ser_info_t *)ser->info))
bdp = info->rx_cur;
else
bdp = (cbd_t *)&cpm2_immr->im_dprambase[up->smc_rbase];
/*
* We need to gracefully shut down the receiver, disable
* interrupts, then read the input.
* XMON just wants a poll. If no character, return -1, else
* return the character.
*/
if (!xmon) {
while (bdp->cbd_sc & BD_SC_EMPTY);
}
else {
if (bdp->cbd_sc & BD_SC_EMPTY)
return -1;
}
/* If the buffer address is in the CPM DPRAM, don't
* convert it.
*/
if ((uint)(bdp->cbd_bufaddr) > (uint)CPM_MAP_ADDR)
cp = (u_char *)(bdp->cbd_bufaddr);
else
cp = __va(bdp->cbd_bufaddr);
if (obuf) {
i = c = bdp->cbd_datlen;
while (i-- > 0)
*obuf++ = *cp++;
}
else {
c = *cp;
}
bdp->cbd_sc |= BD_SC_EMPTY;
if (info) {
if (bdp->cbd_sc & BD_SC_WRAP) {
bdp = info->rx_bd_base;
}
else {
bdp++;
}
info->rx_cur = (cbd_t *)bdp;
}
return((int)c);
}
#endif
#ifdef CONFIG_XMON
int
xmon_8xx_read_poll(void)
{
return(my_console_wait_key(KGDB_SER_IDX, 1, NULL));
}
int
xmon_8xx_read_char(void)
{
return(my_console_wait_key(KGDB_SER_IDX, 0, NULL));
}
#endif
#ifdef CONFIG_KGDB
static char kgdb_buf[RX_BUF_SIZE], *kgdp;
static int kgdb_chars;
char
getDebugChar(void)
{
if (kgdb_chars <= 0) {
kgdb_chars = my_console_wait_key(KGDB_SER_IDX, 0, kgdb_buf);
kgdp = kgdb_buf;
}
kgdb_chars--;
return(*kgdp++);
}
void kgdb_interruptible(int yes)
{
volatile smc_t *smcp;
smcp = &cpm2_immr->im_smc[KGDB_SER_IDX];
if (yes == 1)
smcp->smc_smcm |= SMCM_RX;
else
smcp->smc_smcm &= ~SMCM_RX;
}
void kgdb_map_scc(void)
{
ushort serbase;
uint mem_addr;
volatile cbd_t *bdp;
volatile smc_uart_t *up;
/* The serial port has already been initialized before
* we get here. We have to assign some pointers needed by
* the kernel, and grab a memory location in the CPM that will
* work until the driver is really initialized.
*/
cpm2_immr = (cpm2_map_t *)CPM_MAP_ADDR;
/* Right now, assume we are using SMCs.
*/
#ifdef USE_KGDB_SMC2
*(ushort *)(&cpm2_immr->im_dprambase[PROFF_SMC2_BASE]) = serbase = PROFF_SMC2;
#else
*(ushort *)(&cpm2_immr->im_dprambase[PROFF_SMC1_BASE]) = serbase = PROFF_SMC1;
#endif
up = (smc_uart_t *)&cpm2_immr->im_dprambase[serbase];
/* Allocate space for an input FIFO, plus a few bytes for output.
* Allocate bytes to maintain word alignment.
*/
mem_addr = (uint)(&cpm2_immr->im_dprambase[0x1000]);
/* Set the physical address of the host memory buffers in
* the buffer descriptors.
*/
bdp = (cbd_t *)&cpm2_immr->im_dprambase[up->smc_rbase];
bdp->cbd_bufaddr = mem_addr;
bdp = (cbd_t *)&cpm2_immr->im_dprambase[up->smc_tbase];
bdp->cbd_bufaddr = mem_addr+RX_BUF_SIZE;
up->smc_mrblr = RX_BUF_SIZE; /* receive buffer length */
up->smc_maxidl = RX_BUF_SIZE;
}
#endif
static kdev_t serial_console_device(struct console *c)
{
return MKDEV(TTY_MAJOR, 64 + c->index);
}
/*
* Register console.
*/
long __init console_8xx_init(long kmem_start, long kmem_end)
{
register_console(&sercons);
return kmem_start;
}
#endif
/* Default console baud rate as determined by the board information
* structure.
*/
static int baud_idx;
/*
* The serial driver boot-time initialization code!
*/
int __init rs_8xx_init(void)
{
struct serial_state * state;
ser_info_t *info;
uint mem_addr, dp_addr;
int i, j, idx;
uint page, sblock;
volatile cbd_t *bdp;
volatile cpm_cpm2_t *cp;
volatile smc_t *sp;
volatile smc_uart_t *up;
volatile scc_t *scp;
volatile scc_uart_t *sup;
volatile cpm2_map_t *immap;
volatile iop_cpm2_t *io;
init_bh(SERIAL_BH, do_serial_bh);
show_serial_version();
/* Initialize the tty_driver structure */
/*memset(&serial_driver, 0, sizeof(struct tty_driver));*/
__clear_user(&serial_driver,sizeof(struct tty_driver));
serial_driver.magic = TTY_DRIVER_MAGIC;
serial_driver.driver_name = "serial";
#ifdef CONFIG_DEVFS_FS
serial_driver.name = "tts/%d";
#else
serial_driver.name = "ttyS";
#endif
serial_driver.major = TTY_MAJOR;
serial_driver.minor_start = 64;
serial_driver.num = NR_PORTS;
serial_driver.type = TTY_DRIVER_TYPE_SERIAL;
serial_driver.subtype = SERIAL_TYPE_NORMAL;
serial_driver.init_termios = tty_std_termios;
serial_driver.init_termios.c_cflag =
baud_idx | CS8 | CREAD | HUPCL | CLOCAL;
serial_driver.flags = TTY_DRIVER_REAL_RAW;
serial_driver.refcount = &serial_refcount;
serial_driver.table = serial_table;
serial_driver.termios = serial_termios;
serial_driver.termios_locked = serial_termios_locked;
serial_driver.open = rs_8xx_open;
serial_driver.close = rs_8xx_close;
serial_driver.write = rs_8xx_write;
serial_driver.put_char = rs_8xx_put_char;
serial_driver.write_room = rs_8xx_write_room;
serial_driver.chars_in_buffer = rs_8xx_chars_in_buffer;
serial_driver.flush_buffer = rs_8xx_flush_buffer;
serial_driver.ioctl = rs_8xx_ioctl;
serial_driver.throttle = rs_8xx_throttle;
serial_driver.unthrottle = rs_8xx_unthrottle;
serial_driver.send_xchar = rs_8xx_send_xchar;
serial_driver.set_termios = rs_8xx_set_termios;
serial_driver.stop = rs_8xx_stop;
serial_driver.start = rs_8xx_start;
serial_driver.hangup = rs_8xx_hangup;
serial_driver.wait_until_sent = rs_8xx_wait_until_sent;
serial_driver.read_proc = rs_8xx_read_proc;
/*
* The callout device is just like normal device except for
* major number and the subtype code.
*/
callout_driver = serial_driver;
#ifdef CONFIG_DEVFS_FS
callout_driver.name = "cua/%d";
#else
callout_driver.name = "cua";
#endif
callout_driver.major = TTYAUX_MAJOR;
callout_driver.subtype = SERIAL_TYPE_CALLOUT;
callout_driver.read_proc = 0;
callout_driver.proc_entry = 0;
if (tty_register_driver(&serial_driver))
panic("Couldn't register serial driver\n");
if (tty_register_driver(&callout_driver))
panic("Couldn't register callout driver\n");
immap = cpm2_immr;
cp = &immap->im_cpm;
io = &immap->im_ioport;
/* This should have been done long ago by the early boot code,
* but do it again to make sure.
*/
*(ushort *)(&immap->im_dprambase[PROFF_SMC1_BASE]) = PROFF_SMC1;
*(ushort *)(&immap->im_dprambase[PROFF_SMC2_BASE]) = PROFF_SMC2;
/* Geeze, here we go....Picking I/O port bits....Lots of
* choices. If you don't like mine, pick your own.
* Configure SMCs Tx/Rx. SMC1 is only on Port D, SMC2 is
* only on Port A. You either pick 'em, or not.
*/
#ifndef SCC_CONSOLE
io->iop_ppard |= 0x00c00000;
io->iop_pdird |= 0x00400000;
io->iop_pdird &= ~0x00800000;
io->iop_psord &= ~0x00c00000;
#if USE_SMC2
io->iop_ppara |= 0x00c00000;
io->iop_pdira |= 0x00400000;
io->iop_pdira &= ~0x00800000;
io->iop_psora &= ~0x00c00000;
#endif
/* Configure SCC2 and SCC3. Be careful about the fine print.
* Secondary options are only available when you take away
* the primary option. Unless the pins are used for something
* else, SCC2 and SCC3 are on Port B.
* Port B, 8 - SCC3 TxD
* Port B, 12 - SCC2 TxD
* Port B, 14 - SCC3 RxD
* Port B, 15 - SCC2 RxD
*/
io->iop_pparb |= 0x008b0000;
io->iop_pdirb |= 0x00880000;
io->iop_psorb |= 0x00880000;
io->iop_pdirb &= ~0x00030000;
io->iop_psorb &= ~0x00030000;
/* Wire BRG1 to SMC1 and BRG2 to SMC2.
*/
immap->im_cpmux.cmx_smr = 0;
/* Connect SCC2 and SCC3 to NMSI. Connect BRG3 to SCC2 and
* BRG4 to SCC3.
*/
immap->im_cpmux.cmx_scr &= ~0x00ffff00;
immap->im_cpmux.cmx_scr |= 0x00121b00;
#else
io->iop_pparb |= 0x008b0000;
io->iop_pdirb |= 0x00880000;
io->iop_psorb |= 0x00880000;
io->iop_pdirb &= ~0x00030000;
io->iop_psorb &= ~0x00030000;
/* Use Port D for SCC1 instead of other functions.
*/
io->iop_ppard |= 0x00000003;
io->iop_psord &= ~0x00000001; /* Rx */
io->iop_psord |= 0x00000002; /* Tx */
io->iop_pdird &= ~0x00000001; /* Rx */
io->iop_pdird |= 0x00000002; /* Tx */
/* Connect SCC1, SCC2, SCC3 to NMSI. Connect BRG1 to SCC1,
* BRG2 to SCC2, BRG3 to SCC3.
*/
immap->im_cpmux.cmx_scr &= ~0xffffff00;
immap->im_cpmux.cmx_scr |= 0x00091200;
#endif
for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) {
state->magic = SSTATE_MAGIC;
state->line = i;
state->type = PORT_UNKNOWN;
state->custom_divisor = 0;
state->close_delay = 5*HZ/10;
state->closing_wait = 30*HZ;
state->callout_termios = callout_driver.init_termios;
state->normal_termios = serial_driver.init_termios;
state->icount.cts = state->icount.dsr =
state->icount.rng = state->icount.dcd = 0;
state->icount.rx = state->icount.tx = 0;
state->icount.frame = state->icount.parity = 0;
state->icount.overrun = state->icount.brk = 0;
printk (KERN_INFO "ttyS%d on %s%d at 0x%04x, BRG%d\n",
i,
(state->smc_scc_num < SCC_NUM_BASE) ? "SMC" : "SCC",
PORT_NUM(state->smc_scc_num) + 1,
(unsigned int)(state->port),
state->smc_scc_num + 1);
#ifdef CONFIG_SERIAL_CONSOLE
/* If we just printed the message on the console port, and
* we are about to initialize it for general use, we have
* to wait a couple of character times for the CR/NL to
* make it out of the transmit buffer.
*/
if (i == CONFIG_SERIAL_CONSOLE_PORT)
mdelay(300);
#endif
info = kmalloc(sizeof(ser_info_t), GFP_KERNEL);
if (info) {
/*memset(info, 0, sizeof(ser_info_t));*/
__clear_user(info,sizeof(ser_info_t));
init_waitqueue_head(&info->open_wait);
init_waitqueue_head(&info->close_wait);
info->magic = SERIAL_MAGIC;
info->flags = state->flags;
info->tqueue.routine = do_softint;
info->tqueue.data = info;
info->tqueue_hangup.routine = do_serial_hangup;
info->tqueue_hangup.data = info;
info->line = i;
info->state = state;
state->info = (struct async_struct *)info;
/* We need to allocate a transmit and receive buffer
* descriptors from dual port ram, and a character
* buffer area from host mem.
*/
dp_addr = cpm2_dpalloc(sizeof(cbd_t) * RX_NUM_FIFO, 8);
/* Allocate space for FIFOs in the host memory.
*/
mem_addr = cpm2_hostalloc(RX_NUM_FIFO * RX_BUF_SIZE, 1);
/* Set the physical address of the host memory
* buffers in the buffer descriptors, and the
* virtual address for us to work with.
*/
bdp = (cbd_t *)&immap->im_dprambase[dp_addr];
info->rx_cur = info->rx_bd_base = (cbd_t *)bdp;
for (j=0; j<(RX_NUM_FIFO-1); j++) {
bdp->cbd_bufaddr = __pa(mem_addr);
bdp->cbd_sc = BD_SC_EMPTY | BD_SC_INTRPT;
mem_addr += RX_BUF_SIZE;
bdp++;
}
bdp->cbd_bufaddr = __pa(mem_addr);
bdp->cbd_sc = BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT;
if ((idx = state->smc_scc_num) < SCC_NUM_BASE) {
sp = &immap->im_smc[idx];
up = (smc_uart_t *)&immap->im_dprambase[state->port];
up->smc_rbase = dp_addr;
}
else {
scp = &immap->im_scc[idx - SCC_IDX_BASE];
sup = (scc_uart_t *)&immap->im_dprambase[state->port];
scp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
sup->scc_genscc.scc_rbase = dp_addr;
}
dp_addr = cpm2_dpalloc(sizeof(cbd_t) * TX_NUM_FIFO, 8);
/* Allocate space for FIFOs in the host memory.
*/
mem_addr = cpm2_hostalloc(TX_NUM_FIFO * TX_BUF_SIZE, 1);
/* Set the physical address of the host memory
* buffers in the buffer descriptors, and the
* virtual address for us to work with.
*/
bdp = (cbd_t *)&immap->im_dprambase[dp_addr];
info->tx_cur = info->tx_bd_base = (cbd_t *)bdp;
for (j=0; j<(TX_NUM_FIFO-1); j++) {
bdp->cbd_bufaddr = __pa(mem_addr);
bdp->cbd_sc = BD_SC_INTRPT;
mem_addr += TX_BUF_SIZE;
bdp++;
}
bdp->cbd_bufaddr = __pa(mem_addr);
bdp->cbd_sc = (BD_SC_WRAP | BD_SC_INTRPT);
if (idx < SCC_NUM_BASE) {
up->smc_tbase = dp_addr;
/* Set up the uart parameters in the
* parameter ram.
*/
up->smc_rfcr = CPMFCR_GBL | CPMFCR_EB;
up->smc_tfcr = CPMFCR_GBL | CPMFCR_EB;
/* Set this to 1 for now, so we get single
* character interrupts. Using idle charater
* time requires some additional tuning.
*/
up->smc_mrblr = 1;
up->smc_maxidl = 0;
up->smc_brkcr = 1;
/* Send the CPM an initialize command.
*/
if (state->smc_scc_num == 0) {
page = CPM_CR_SMC1_PAGE;
sblock = CPM_CR_SMC1_SBLOCK;
}
else {
page = CPM_CR_SMC2_PAGE;
sblock = CPM_CR_SMC2_SBLOCK;
}
cp->cp_cpcr = mk_cr_cmd(page, sblock, 0,
CPM_CR_INIT_TRX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
/* Set UART mode, 8 bit, no parity, one stop.
* Enable receive and transmit.
*/
sp->smc_smcmr = smcr_mk_clen(9) | SMCMR_SM_UART;
/* Disable all interrupts and clear all pending
* events.
*/
sp->smc_smcm = 0;
sp->smc_smce = 0xff;
}
else {
sup->scc_genscc.scc_tbase = dp_addr;
/* Set up the uart parameters in the
* parameter ram.
*/
sup->scc_genscc.scc_rfcr = CPMFCR_GBL | CPMFCR_EB;
sup->scc_genscc.scc_tfcr = CPMFCR_GBL | CPMFCR_EB;
/* Set this to 1 for now, so we get single
* character interrupts. Using idle charater
* time requires some additional tuning.
*/
sup->scc_genscc.scc_mrblr = 1;
sup->scc_maxidl = 0;
sup->scc_brkcr = 1;
sup->scc_parec = 0;
sup->scc_frmec = 0;
sup->scc_nosec = 0;
sup->scc_brkec = 0;
sup->scc_uaddr1 = 0;
sup->scc_uaddr2 = 0;
sup->scc_toseq = 0;
sup->scc_char1 = 0x8000;
sup->scc_char2 = 0x8000;
sup->scc_char3 = 0x8000;
sup->scc_char4 = 0x8000;
sup->scc_char5 = 0x8000;
sup->scc_char6 = 0x8000;
sup->scc_char7 = 0x8000;
sup->scc_char8 = 0x8000;
sup->scc_rccm = 0xc0ff;
/* Send the CPM an initialize command.
*/
#ifdef SCC_CONSOLE
switch (state->smc_scc_num) {
case 0:
page = CPM_CR_SCC1_PAGE;
sblock = CPM_CR_SCC1_SBLOCK;
break;
case 1:
page = CPM_CR_SCC2_PAGE;
sblock = CPM_CR_SCC2_SBLOCK;
break;
case 2:
page = CPM_CR_SCC3_PAGE;
sblock = CPM_CR_SCC3_SBLOCK;
break;
}
#else
if (state->smc_scc_num == 2) {
page = CPM_CR_SCC2_PAGE;
sblock = CPM_CR_SCC2_SBLOCK;
}
else {
page = CPM_CR_SCC3_PAGE;
sblock = CPM_CR_SCC3_SBLOCK;
}
#endif
cp->cp_cpcr = mk_cr_cmd(page, sblock, 0,
CPM_CR_INIT_TRX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
/* Set UART mode, 8 bit, no parity, one stop.
* Enable receive and transmit.
*/
scp->scc_gsmrh = 0;
scp->scc_gsmrl =
(SCC_GSMRL_MODE_UART | SCC_GSMRL_TDCR_16 | SCC_GSMRL_RDCR_16);
/* Disable all interrupts and clear all pending
* events.
*/
scp->scc_sccm = 0;
scp->scc_scce = 0xffff;
scp->scc_dsr = 0x7e7e;
scp->scc_psmr = 0x3000;
}
/* Install interrupt handler.
*/
request_irq(state->irq, rs_8xx_interrupt, 0, "uart",
info);
/* Set up the baud rate generator.
*/
cpm2_setbrg(state->smc_scc_num,
baud_table[baud_idx]);
/* If the port is the console, enable Rx and Tx.
*/
#ifdef CONFIG_SERIAL_CONSOLE
if (i == CONFIG_SERIAL_CONSOLE_PORT) {
if (idx < SCC_NUM_BASE)
sp->smc_smcmr |= SMCMR_REN | SMCMR_TEN;
else
scp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
}
#endif
}
}
return 0;
}
/* This must always be called before the rs_8xx_init() function, otherwise
* it blows away the port control information.
*/
static int __init serial_console_setup(struct console *co, char *options)
{
struct serial_state *ser;
uint mem_addr, dp_addr, bidx;
volatile cbd_t *bdp;
volatile cpm_cpm2_t *cp;
volatile cpm2_map_t *immap;
#ifndef SCC_CONSOLE
volatile smc_t *sp;
volatile smc_uart_t *up;
#endif
volatile scc_t *scp;
volatile scc_uart_t *sup;
volatile iop_cpm2_t *io;
bd_t *bd;
bd = (bd_t *)__res;
for (bidx = 0; bidx < (sizeof(baud_table) / sizeof(int)); bidx++)
if (bd->bi_baudrate == baud_table[bidx])
break;
co->cflag = CREAD|CLOCAL|bidx|CS8;
baud_idx = bidx;
ser = rs_table + co->index;
immap = cpm2_immr;
cp = &immap->im_cpm;
io = &immap->im_ioport;
#ifdef SCC_CONSOLE
scp = (scc_t *)&(immap->im_scc[SCC_CONSOLE-1]);
sup = (scc_uart_t *)&immap->im_dprambase[PROFF_SCC1 + ((SCC_CONSOLE-1) << 8)];
scp->scc_sccm &= ~(UART_SCCM_TX | UART_SCCM_RX);
scp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
/* Use Port D for SCC1 instead of other functions.
*/
io->iop_ppard |= 0x00000003;
io->iop_psord &= ~0x00000001; /* Rx */
io->iop_psord |= 0x00000002; /* Tx */
io->iop_pdird &= ~0x00000001; /* Rx */
io->iop_pdird |= 0x00000002; /* Tx */
#else
/* This should have been done long ago by the early boot code,
* but do it again to make sure.
*/
*(ushort *)(&immap->im_dprambase[PROFF_SMC1_BASE]) = PROFF_SMC1;
*(ushort *)(&immap->im_dprambase[PROFF_SMC2_BASE]) = PROFF_SMC2;
/* Right now, assume we are using SMCs.
*/
sp = &immap->im_smc[ser->smc_scc_num];
/* When we get here, the CPM has been reset, so we need
* to configure the port.
* We need to allocate a transmit and receive buffer descriptor
* from dual port ram, and a character buffer area from host mem.
*/
up = (smc_uart_t *)&immap->im_dprambase[ser->port];
/* Disable transmitter/receiver.
*/
sp->smc_smcmr &= ~(SMCMR_REN | SMCMR_TEN);
/* Use Port D for SMC1 instead of other functions.
*/
io->iop_ppard |= 0x00c00000;
io->iop_pdird |= 0x00400000;
io->iop_pdird &= ~0x00800000;
io->iop_psord &= ~0x00c00000;
#endif
/* Allocate space for two buffer descriptors in the DP ram.
*/
dp_addr = cpm2_dpalloc(sizeof(cbd_t) * 2, 8);
/* Allocate space for two 2 byte FIFOs in the host memory.
*/
mem_addr = cpm2_hostalloc(4, 1);
/* Set the physical address of the host memory buffers in
* the buffer descriptors.
*/
bdp = (cbd_t *)&immap->im_dprambase[dp_addr];
bdp->cbd_bufaddr = __pa(mem_addr);
(bdp+1)->cbd_bufaddr = __pa(mem_addr+2);
/* For the receive, set empty and wrap.
* For transmit, set wrap.
*/
bdp->cbd_sc = BD_SC_EMPTY | BD_SC_WRAP;
(bdp+1)->cbd_sc = BD_SC_WRAP;
/* Set up the uart parameters in the parameter ram.
*/
#ifdef SCC_CONSOLE
sup->scc_genscc.scc_rbase = dp_addr;
sup->scc_genscc.scc_tbase = dp_addr + sizeof(cbd_t);
/* Set up the uart parameters in the
* parameter ram.
*/
sup->scc_genscc.scc_rfcr = CPMFCR_GBL | CPMFCR_EB;
sup->scc_genscc.scc_tfcr = CPMFCR_GBL | CPMFCR_EB;
sup->scc_genscc.scc_mrblr = 1;
sup->scc_maxidl = 0;
sup->scc_brkcr = 1;
sup->scc_parec = 0;
sup->scc_frmec = 0;
sup->scc_nosec = 0;
sup->scc_brkec = 0;
sup->scc_uaddr1 = 0;
sup->scc_uaddr2 = 0;
sup->scc_toseq = 0;
sup->scc_char1 = 0x8000;
sup->scc_char2 = 0x8000;
sup->scc_char3 = 0x8000;
sup->scc_char4 = 0x8000;
sup->scc_char5 = 0x8000;
sup->scc_char6 = 0x8000;
sup->scc_char7 = 0x8000;
sup->scc_char8 = 0x8000;
sup->scc_rccm = 0xc0ff;
/* Send the CPM an initialize command.
*/
cp->cp_cpcr = mk_cr_cmd(CPM_CR_SCC1_PAGE, CPM_CR_SCC1_SBLOCK, 0,
CPM_CR_INIT_TRX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
/* Set UART mode, 8 bit, no parity, one stop.
* Enable receive and transmit.
*/
scp->scc_gsmrh = 0;
scp->scc_gsmrl =
(SCC_GSMRL_MODE_UART | SCC_GSMRL_TDCR_16 | SCC_GSMRL_RDCR_16);
/* Disable all interrupts and clear all pending
* events.
*/
scp->scc_sccm = 0;
scp->scc_scce = 0xffff;
scp->scc_dsr = 0x7e7e;
scp->scc_psmr = 0x3000;
/* Wire BRG1 to SCC1. The serial init will take care of
* others.
*/
immap->im_cpmux.cmx_scr = 0;
/* Set up the baud rate generator.
*/
cpm2_setbrg(ser->smc_scc_num, bd->bi_baudrate);
scp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
#else
up->smc_rbase = dp_addr; /* Base of receive buffer desc. */
up->smc_tbase = dp_addr+sizeof(cbd_t); /* Base of xmt buffer desc. */
up->smc_rfcr = CPMFCR_GBL | CPMFCR_EB;
up->smc_tfcr = CPMFCR_GBL | CPMFCR_EB;
/* Set this to 1 for now, so we get single character interrupts.
*/
up->smc_mrblr = 1; /* receive buffer length */
up->smc_maxidl = 0; /* wait forever for next char */
/* Send the CPM an initialize command.
*/
cp->cp_cpcr = mk_cr_cmd(CPM_CR_SMC1_PAGE, CPM_CR_SMC1_SBLOCK, 0,
CPM_CR_INIT_TRX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
/* Set UART mode, 8 bit, no parity, one stop.
* Enable receive and transmit.
*/
sp->smc_smcmr = smcr_mk_clen(9) | SMCMR_SM_UART;
/* Set up the baud rate generator.
*/
cpm2_setbrg(ser->smc_scc_num, bd->bi_baudrate);
/* And finally, enable Rx and Tx.
*/
sp->smc_smcmr |= SMCMR_REN | SMCMR_TEN;
#endif
return 0;
}