blob: d872f0ed537094f687af66def08b9c7e6c0c5205 [file] [log] [blame]
#ifndef _ASM_IA64_PGALLOC_H
#define _ASM_IA64_PGALLOC_H
/*
* This file contains the functions and defines necessary to allocate
* page tables.
*
* This hopefully works with any (fixed) ia-64 page-size, as defined
* in <asm/page.h> (currently 8192).
*
* Copyright (C) 1998-2002 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 2000, Goutham Rao <goutham.rao@intel.com>
*/
#include <linux/config.h>
#include <linux/compiler.h>
#include <linux/mm.h>
#include <linux/threads.h>
#include <asm/mmu_context.h>
#include <asm/processor.h>
/*
* Very stupidly, we used to get new pgd's and pmd's, init their contents
* to point to the NULL versions of the next level page table, later on
* completely re-init them the same way, then free them up. This wasted
* a lot of work and caused unnecessary memory traffic. How broken...
* We fix this by caching them.
*/
#define pgd_quicklist (local_cpu_data->pgd_quick)
#define pmd_quicklist (local_cpu_data->pmd_quick)
#define pte_quicklist (local_cpu_data->pte_quick)
#define pgtable_cache_size (local_cpu_data->pgtable_cache_sz)
static inline pgd_t*
pgd_alloc_one_fast (struct mm_struct *mm)
{
unsigned long *ret = pgd_quicklist;
if (__builtin_expect(ret != NULL, 1)) {
pgd_quicklist = (unsigned long *)(*ret);
ret[0] = 0;
--pgtable_cache_size;
} else
ret = NULL;
return (pgd_t *) ret;
}
static inline pgd_t*
pgd_alloc (struct mm_struct *mm)
{
/* the VM system never calls pgd_alloc_one_fast(), so we do it here. */
pgd_t *pgd = pgd_alloc_one_fast(mm);
if (__builtin_expect(pgd == NULL, 0)) {
pgd = (pgd_t *)__get_free_page(GFP_KERNEL);
if (__builtin_expect(pgd != NULL, 1))
clear_page(pgd);
}
return pgd;
}
static inline void
pgd_free (pgd_t *pgd)
{
*(unsigned long *)pgd = (unsigned long) pgd_quicklist;
pgd_quicklist = (unsigned long *) pgd;
++pgtable_cache_size;
}
static inline void
pgd_populate (struct mm_struct *mm, pgd_t *pgd_entry, pmd_t *pmd)
{
pgd_val(*pgd_entry) = __pa(pmd);
}
static inline pmd_t*
pmd_alloc_one_fast (struct mm_struct *mm, unsigned long addr)
{
unsigned long *ret = (unsigned long *)pmd_quicklist;
if (__builtin_expect(ret != NULL, 1)) {
pmd_quicklist = (unsigned long *)(*ret);
ret[0] = 0;
--pgtable_cache_size;
}
return (pmd_t *)ret;
}
static inline pmd_t*
pmd_alloc_one (struct mm_struct *mm, unsigned long addr)
{
pmd_t *pmd = (pmd_t *) __get_free_page(GFP_KERNEL);
if (__builtin_expect(pmd != NULL, 1))
clear_page(pmd);
return pmd;
}
static inline void
pmd_free (pmd_t *pmd)
{
*(unsigned long *)pmd = (unsigned long) pmd_quicklist;
pmd_quicklist = (unsigned long *) pmd;
++pgtable_cache_size;
}
static inline void
pmd_populate (struct mm_struct *mm, pmd_t *pmd_entry, pte_t *pte)
{
pmd_val(*pmd_entry) = __pa(pte);
}
static inline pte_t*
pte_alloc_one_fast (struct mm_struct *mm, unsigned long addr)
{
unsigned long *ret = (unsigned long *)pte_quicklist;
if (__builtin_expect(ret != NULL, 1)) {
pte_quicklist = (unsigned long *)(*ret);
ret[0] = 0;
--pgtable_cache_size;
}
return (pte_t *)ret;
}
static inline pte_t*
pte_alloc_one (struct mm_struct *mm, unsigned long addr)
{
pte_t *pte = (pte_t *) __get_free_page(GFP_KERNEL);
if (__builtin_expect(pte != NULL, 1))
clear_page(pte);
return pte;
}
static inline void
pte_free (pte_t *pte)
{
*(unsigned long *)pte = (unsigned long) pte_quicklist;
pte_quicklist = (unsigned long *) pte;
++pgtable_cache_size;
}
extern int do_check_pgt_cache (int, int);
/*
* Now for some TLB flushing routines. This is the kind of stuff that
* can be very expensive, so try to avoid them whenever possible.
*/
/*
* Flush everything (kernel mapping may also have changed due to
* vmalloc/vfree).
*/
extern void local_flush_tlb_all (void);
#ifdef CONFIG_SMP
extern void smp_flush_tlb_all (void);
extern void smp_flush_tlb_mm (struct mm_struct *mm);
# define flush_tlb_all() smp_flush_tlb_all()
#else
# define flush_tlb_all() local_flush_tlb_all()
#endif
static inline void
local_flush_tlb_mm (struct mm_struct *mm)
{
if (mm == current->active_mm)
activate_context(mm);
}
/*
* Flush a specified user mapping. This is called, e.g., as a result of fork() and
* exit(). fork() ends up here because the copy-on-write mechanism needs to write-protect
* the PTEs of the parent task.
*/
static inline void
flush_tlb_mm (struct mm_struct *mm)
{
if (!mm)
return;
mm->context = 0;
if (atomic_read(&mm->mm_users) == 0)
return; /* happens as a result of exit_mmap() */
#ifdef CONFIG_SMP
smp_flush_tlb_mm(mm);
#else
local_flush_tlb_mm(mm);
#endif
}
extern void flush_tlb_range (struct mm_struct *mm, unsigned long start, unsigned long end);
/*
* Page-granular tlb flush.
*/
static inline void
flush_tlb_page (struct vm_area_struct *vma, unsigned long addr)
{
#ifdef CONFIG_SMP
flush_tlb_range(vma->vm_mm, (addr & PAGE_MASK), (addr & PAGE_MASK) + PAGE_SIZE);
#else
if (vma->vm_mm == current->active_mm)
asm volatile ("ptc.l %0,%1" :: "r"(addr), "r"(PAGE_SHIFT << 2) : "memory");
else
vma->vm_mm->context = 0;
#endif
}
/*
* Flush the TLB entries mapping the virtually mapped linear page
* table corresponding to address range [START-END).
*/
static inline void
flush_tlb_pgtables (struct mm_struct *mm, unsigned long start, unsigned long end)
{
if (unlikely(end - start >= 1024*1024*1024*1024UL
|| rgn_index(start) != rgn_index(end - 1)))
/*
* This condition is very rare and normal applications shouldn't get
* here. No attempt has been made to optimize for this case.
*/
flush_tlb_all();
else
flush_tlb_range(mm, ia64_thash(start), ia64_thash(end));
}
/*
* Cache flushing routines. This is the kind of stuff that can be very expensive, so try
* to avoid them whenever possible.
*/
#define flush_cache_all() do { } while (0)
#define flush_cache_mm(mm) do { } while (0)
#define flush_cache_range(mm, start, end) do { } while (0)
#define flush_cache_page(vma, vmaddr) do { } while (0)
#define flush_page_to_ram(page) do { } while (0)
#define flush_icache_page(vma,page) do { } while (0)
#define flush_dcache_page(page) \
do { \
clear_bit(PG_arch_1, &(page)->flags); \
} while (0)
extern void flush_icache_range (unsigned long start, unsigned long end);
#define flush_icache_user_range(vma, page, user_addr, len) \
do { \
unsigned long _addr = (unsigned long) page_address(page) + ((user_addr) & ~PAGE_MASK); \
flush_icache_range(_addr, _addr + (len)); \
} while (0)
static inline void
clear_user_page (void *addr, unsigned long vaddr, struct page *page)
{
clear_page(addr);
flush_dcache_page(page);
}
static inline void
copy_user_page (void *to, void *from, unsigned long vaddr, struct page *page)
{
copy_page(to, from);
flush_dcache_page(page);
}
/*
* IA-64 doesn't have any external MMU info: the page tables contain all the necessary
* information. However, we use this macro to take care of any (delayed) i-cache flushing
* that may be necessary.
*/
static inline void
update_mmu_cache (struct vm_area_struct *vma, unsigned long vaddr, pte_t pte)
{
unsigned long addr;
struct page *page;
if (!pte_exec(pte))
return; /* not an executable page... */
page = pte_page(pte);
/* don't use VADDR: it may not be mapped on this CPU (or may have just been flushed): */
addr = (unsigned long) page_address(page);
if (test_bit(PG_arch_1, &page->flags))
return; /* i-cache is already coherent with d-cache */
flush_icache_range(addr, addr + PAGE_SIZE);
set_bit(PG_arch_1, &page->flags); /* mark page as clean */
}
#endif /* _ASM_IA64_PGALLOC_H */