blob: 42c34eeeacc72e28e778f37e045c4f5aac0756e4 [file] [log] [blame]
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1994, 1995 Waldorf GmbH
* Copyright (C) 1994 - 2000, 03 Ralf Baechle
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
*/
#ifndef _ASM_IO_H
#define _ASM_IO_H
#include <linux/config.h>
#include <asm/addrspace.h>
#include <asm/page.h>
#include <asm/byteorder.h>
#ifdef CONFIG_MIPS_COBALT
#include <asm/cobalt/io.h>
#endif
#ifdef CONFIG_DECSTATION
#include <asm/dec/io.h>
#endif
#ifdef CONFIG_MIPS_ATLAS
#include <asm/mips-boards/io.h>
#endif
#ifdef CONFIG_MIPS_MALTA
#include <asm/mips-boards/io.h>
#endif
#ifdef CONFIG_MIPS_SEAD
#include <asm/mips-boards/io.h>
#endif
#ifdef CONFIG_SGI_IP22
#include <asm/sgi/io.h>
#endif
#ifdef CONFIG_SGI_IP27
#include <asm/sn/io.h>
#endif
#ifdef CONFIG_SIBYTE_SB1xxx_SOC
#include <asm/sibyte/io.h>
#endif
#ifdef CONFIG_SGI_IP27
extern unsigned long bus_to_baddr[256];
#define bus_to_baddr(bus, addr) (bus_to_baddr[(bus)->number] + (addr))
#define baddr_to_bus(bus, addr) ((addr) - bus_to_baddr[(bus)->number])
#define __swizzle_addr_w(port) ((port) ^ 2)
#else
#define bus_to_baddr(bus, addr) (addr)
#define baddr_to_bus(bus, addr) (addr)
#define __swizzle_addr_w(port) (port)
#endif
/*
* Slowdown I/O port space accesses for antique hardware.
*/
#undef CONF_SLOWDOWN_IO
/*
* Sane hardware offers swapping of I/O space accesses in hardware; less
* sane hardware forces software to fiddle with this. Totally insane hardware
* introduces special cases like:
*
* IP22 seems braindead enough to swap 16-bits values in hardware, but not
* 32-bits. Go figure... Can't tell without documentation.
*
* We only do the swapping to keep the kernel config bits of bi-endian
* machines a bit saner.
*/
#if defined(CONFIG_SWAP_IO_SPACE_W) && defined(__MIPSEB__)
#define __ioswab16(x) swab16(x)
#else
#define __ioswab16(x) (x)
#endif
#if defined(CONFIG_SWAP_IO_SPACE_L) && defined(__MIPSEB__)
#define __ioswab32(x) swab32(x)
#else
#define __ioswab32(x) (x)
#endif
/*
* Change "struct page" to physical address.
*/
#define page_to_phys(page) PAGE_TO_PA(page)
/*
* ioremap - map bus memory into CPU space
* @offset: bus address of the memory
* @size: size of the resource to map
*
* ioremap performs a platform specific sequence of operations to
* make bus memory CPU accessible via the readb/readw/readl/writeb/
* writew/writel functions and the other mmio helpers. The returned
* address is not guaranteed to be usable directly as a virtual
* address.
*/
static inline void * ioremap(unsigned long offset, unsigned long size)
{
return (void *) (IO_SPACE_BASE | offset);
}
/*
* ioremap_nocache - map bus memory into CPU space
* @offset: bus address of the memory
* @size: size of the resource to map
*
* ioremap_nocache performs a platform specific sequence of operations to
* make bus memory CPU accessible via the readb/readw/readl/writeb/
* writew/writel functions and the other mmio helpers. The returned
* address is not guaranteed to be usable directly as a virtual
* address.
*
* This version of ioremap ensures that the memory is marked uncachable
* on the CPU as well as honouring existing caching rules from things like
* the PCI bus. Note that there are other caches and buffers on many
* busses. In paticular driver authors should read up on PCI writes
*
* It's useful if some control registers are in such an area and
* write combining or read caching is not desirable:
*/
static inline void * ioremap_nocache (unsigned long offset, unsigned long size)
{
return (void *) (IO_SPACE_BASE | offset);
}
static inline void iounmap(void *addr)
{
}
/*
* XXX We need system specific versions of these to handle EISA address bits
* 24-31 on SNI.
* XXX more SNI hacks.
*/
#define readb(addr) (*(volatile unsigned char *)(addr))
#define readw(addr) __ioswab16((*(volatile unsigned short *)(addr)))
#define readl(addr) __ioswab32((*(volatile unsigned int *)(addr)))
#define __raw_readb(addr) (*(volatile unsigned char *)(addr))
#define __raw_readw(addr) (*(volatile unsigned short *)(addr))
#define __raw_readl(addr) (*(volatile unsigned int *)(addr))
#define writeb(b,addr) ((*(volatile unsigned char *)(addr)) = (b))
#define writew(b,addr) ((*(volatile unsigned short *)(addr)) = (__ioswab16(b)))
#define writel(b,addr) ((*(volatile unsigned int *)(addr)) = (__ioswab32(b)))
#define __raw_writeb(b,addr) ((*(volatile unsigned char *)(addr)) = (b))
#define __raw_writew(w,addr) ((*(volatile unsigned short *)(addr)) = (w))
#define __raw_writel(l,addr) ((*(volatile unsigned int *)(addr)) = (l))
/*
* TODO: Should use variants that don't do prefetching.
*/
#define memset_io(a,b,c) memset((void *)(a),(b),(c))
#define memcpy_fromio(a,b,c) memcpy((a),(void *)(b),(c))
#define memcpy_toio(a,b,c) memcpy((void *)(a),(b),(c))
/*
* isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
* for the processor. This implies the assumption that there is only
* one of these busses.
*/
extern unsigned long isa_slot_offset;
/*
* ISA space is 'always mapped' on currently supported MIPS systems, no need
* to explicitly ioremap() it. The fact that the ISA IO space is mapped
* to PAGE_OFFSET is pure coincidence - it does not mean ISA values
* are physical addresses. The following constant pointer can be
* used as the IO-area pointer (it can be iounmapped as well, so the
* analogy with PCI is quite large):
*/
#define __ISA_IO_base ((char *)(isa_slot_offset))
#define isa_readb(a) readb(__ISA_IO_base + (a))
#define isa_readw(a) readw(__ISA_IO_base + (a))
#define isa_readl(a) readl(__ISA_IO_base + (a))
#define isa_writeb(b,a) writeb(b,__ISA_IO_base + (a))
#define isa_writew(w,a) writew(w,__ISA_IO_base + (a))
#define isa_writel(l,a) writel(l,__ISA_IO_base + (a))
#define isa_memset_io(a,b,c) memset_io(__ISA_IO_base + (a),(b),(c))
#define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),__ISA_IO_base + (b),(c))
#define isa_memcpy_toio(a,b,c) memcpy_toio(__ISA_IO_base + (a),(b),(c))
/*
* We don't have csum_partial_copy_fromio() yet, so we cheat here and
* just copy it. The net code will then do the checksum later.
*/
#define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len))
#define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d))
/*
* check_signature - find BIOS signatures
* @io_addr: mmio address to check
* @signature: signature block
* @length: length of signature
*
* Perform a signature comparison with the mmio address io_addr. This
* address should have been obtained by ioremap.
* Returns 1 on a match.
*/
static inline int check_signature(unsigned long io_addr,
const unsigned char *signature, int length)
{
int retval = 0;
do {
if (readb(io_addr) != *signature)
goto out;
io_addr++;
signature++;
length--;
} while (length);
retval = 1;
out:
return retval;
}
/*
* isa_check_signature - find BIOS signatures
* @io_addr: mmio address to check
* @signature: signature block
* @length: length of signature
*
* Perform a signature comparison with the ISA mmio address io_addr.
* Returns 1 on a match.
*
* This function is deprecated. New drivers should use ioremap and
* check_signature.
*/
static inline int isa_check_signature(unsigned long io_addr,
const unsigned char *signature, int length)
{
int retval = 0;
do {
if (isa_readb(io_addr) != *signature)
goto out;
io_addr++;
signature++;
length--;
} while (length);
retval = 1;
out:
return retval;
}
/*
* virt_to_phys - map virtual addresses to physical
* @address: address to remap
*
* The returned physical address is the physical (CPU) mapping for
* the memory address given. It is only valid to use this function on
* addresses directly mapped or allocated via kmalloc.
*
* This function does not give bus mappings for DMA transfers. In
* almost all conceivable cases a device driver should not be using
* this function
*/
static inline unsigned long virt_to_phys(volatile void * address)
{
return (unsigned long)address - PAGE_OFFSET;
}
/*
* phys_to_virt - map physical address to virtual
* @address: address to remap
*
* The returned virtual address is a current CPU mapping for
* the memory address given. It is only valid to use this function on
* addresses that have a kernel mapping
*
* This function does not handle bus mappings for DMA transfers. In
* almost all conceivable cases a device driver should not be using
* this function
*/
static inline void * phys_to_virt(unsigned long address)
{
return (void *)(address + PAGE_OFFSET);
}
/*
* IO bus memory addresses are also 1:1 with the physical address
*/
static inline unsigned long virt_to_bus(volatile void * address)
{
return (unsigned long)address - PAGE_OFFSET;
}
static inline void * bus_to_virt(unsigned long address)
{
return (void *)(address + PAGE_OFFSET);
}
/* This is too simpleminded for more sophisticated than dumb hardware ... */
#define page_to_bus page_to_phys
/*
* On MIPS I/O ports are memory mapped, so we access them using normal
* load/store instructions. mips_io_port_base is the virtual address to
* which all ports are being mapped. For sake of efficiency some code
* assumes that this is an address that can be loaded with a single lui
* instruction, so the lower 16 bits must be zero. Should be true on
* on any sane architecture; generic code does not use this assumption.
*/
extern const unsigned long mips_io_port_base;
#define set_io_port_base(base) \
do { * (unsigned long *) &mips_io_port_base = (base); } while (0)
#define __SLOW_DOWN_IO \
__asm__ __volatile__( \
"sb\t$0,0x80(%0)" \
: : "r" (mips_io_port_base));
#ifdef CONF_SLOWDOWN_IO
#ifdef REALLY_SLOW_IO
#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
#else
#define SLOW_DOWN_IO __SLOW_DOWN_IO
#endif
#else
#define SLOW_DOWN_IO
#endif
#define outb(val,port) \
do { \
*(volatile u8 *)(mips_io_port_base + (port)) = (val); \
} while(0)
#define outw(val,port) \
do { \
*(volatile u16 *)(mips_io_port_base + __swizzle_addr_w(port)) = \
__ioswab16(val); \
} while(0)
#define outl(val,port) \
do { \
*(volatile u32 *)(mips_io_port_base + (port)) = __ioswab32(val);\
} while(0)
#define outb_p(val,port) \
do { \
*(volatile u8 *)(mips_io_port_base + (port)) = (val); \
SLOW_DOWN_IO; \
} while(0)
#define outw_p(val,port) \
do { \
*(volatile u16 *)(mips_io_port_base + __swizzle_addr_w(port)) = \
__ioswab16(val); \
SLOW_DOWN_IO; \
} while(0)
#define outl_p(val,port) \
do { \
*(volatile u32 *)(mips_io_port_base + (port)) = __ioswab32(val);\
SLOW_DOWN_IO; \
} while(0)
static inline unsigned char inb(unsigned long port)
{
return *(volatile u8 *)(mips_io_port_base + port);
}
static inline unsigned short inw(unsigned long port)
{
port = __swizzle_addr_w(port);
return __ioswab16(*(volatile u16 *)(mips_io_port_base + port));
}
static inline unsigned int inl(unsigned long port)
{
return __ioswab32(*(volatile u32 *)(mips_io_port_base + port));
}
static inline unsigned char inb_p(unsigned long port)
{
u8 __val;
__val = *(volatile u8 *)(mips_io_port_base + port);
SLOW_DOWN_IO;
return __val;
}
static inline unsigned short inw_p(unsigned long port)
{
u16 __val;
port = __swizzle_addr_w(port);
__val = *(volatile u16 *)(mips_io_port_base + port);
SLOW_DOWN_IO;
return __ioswab16(__val);
}
static inline unsigned int inl_p(unsigned long port)
{
u32 __val;
__val = *(volatile u32 *)(mips_io_port_base + port);
SLOW_DOWN_IO;
return __ioswab32(__val);
}
static inline void __outsb(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
outb(*(u8 *)addr, port);
addr++;
}
}
static inline void __insb(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
*(u8 *)addr = inb(port);
addr++;
}
}
static inline void __outsw(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
outw(*(u16 *)addr, port);
addr += 2;
}
}
static inline void __insw(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
*(u16 *)addr = inw(port);
addr += 2;
}
}
static inline void __outsl(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
outl(*(u32 *)addr, port);
addr += 4;
}
}
static inline void __insl(unsigned long port, void *addr, unsigned int count)
{
while (count--) {
*(u32 *)addr = inl(port);
addr += 4;
}
}
#define outsb(port, addr, count) __outsb(port, addr, count)
#define insb(port, addr, count) __insb(port, addr, count)
#define outsw(port, addr, count) __outsw(port, addr, count)
#define insw(port, addr, count) __insw(port, addr, count)
#define outsl(port, addr, count) __outsl(port, addr, count)
#define insl(port, addr, count) __insl(port, addr, count)
/*
* The caches on some architectures aren't dma-coherent and have need to
* handle this in software. There are three types of operations that
* can be applied to dma buffers.
*
* - dma_cache_wback_inv(start, size) makes caches and coherent by
* writing the content of the caches back to memory, if necessary.
* The function also invalidates the affected part of the caches as
* necessary before DMA transfers from outside to memory.
* - dma_cache_wback(start, size) makes caches and coherent by
* writing the content of the caches back to memory, if necessary.
* The function also invalidates the affected part of the caches as
* necessary before DMA transfers from outside to memory.
* - dma_cache_inv(start, size) invalidates the affected parts of the
* caches. Dirty lines of the caches may be written back or simply
* be discarded. This operation is necessary before dma operations
* to the memory.
*/
#ifdef CONFIG_NONCOHERENT_IO
extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
#define dma_cache_wback_inv(start,size) _dma_cache_wback_inv(start,size)
#define dma_cache_wback(start,size) _dma_cache_wback(start,size)
#define dma_cache_inv(start,size) _dma_cache_inv(start,size)
#else /* Sane hardware */
#define dma_cache_wback_inv(start,size) \
do { (void) (start); (void) (size); } while (0)
#define dma_cache_wback(start,size) \
do { (void) (start); (void) (size); } while (0)
#define dma_cache_inv(start,size) \
do { (void) (start); (void) (size); } while (0)
#endif /* CONFIG_NONCOHERENT_IO */
#endif /* _ASM_IO_H */