blob: 27c14a634e61550582e8c59641672aa94a8aeb8d [file] [log] [blame]
/*
* acpi_processor.c - ACPI Processor Driver ($Revision: 69 $)
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* TBD:
* 1. Make # power/performance states dynamic.
* 2. Support duty_cycle values that span bit 4.
* 3. Optimize by having scheduler determine business instead of
* having us try to calculate it here.
* 4. Need C1 timing -- must modify kernel (IRQ handler) to get this.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/pm.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/delay.h>
#include <linux/compatmac.h>
#include <linux/proc_fs.h>
#include <acpi/acpi_bus.h>
#include <acpi/acpi_drivers.h>
#define _COMPONENT ACPI_PROCESSOR_COMPONENT
ACPI_MODULE_NAME ("acpi_processor")
MODULE_AUTHOR("Paul Diefenbaugh");
MODULE_DESCRIPTION(ACPI_PROCESSOR_DRIVER_NAME);
MODULE_LICENSE("GPL");
#define PREFIX "ACPI: "
#define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
#define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
#define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
#define ACPI_PROCESSOR_BUSY_METRIC 10
#define ACPI_PROCESSOR_MAX_POWER ACPI_C_STATE_COUNT
#define ACPI_PROCESSOR_MAX_C2_LATENCY 100
#define ACPI_PROCESSOR_MAX_C3_LATENCY 1000
#define ACPI_PROCESSOR_MAX_PERFORMANCE 8
#define ACPI_PROCESSOR_MAX_THROTTLING 16
#define ACPI_PROCESSOR_MAX_THROTTLE 250 /* 25% */
#define ACPI_PROCESSOR_MAX_DUTY_WIDTH 4
#define ACPI_PROCESSOR_LIMIT_USER 0
#define ACPI_PROCESSOR_LIMIT_THERMAL 1
static int acpi_processor_add (struct acpi_device *device);
static int acpi_processor_remove (struct acpi_device *device, int type);
static struct acpi_driver acpi_processor_driver = {
.name = ACPI_PROCESSOR_DRIVER_NAME,
.class = ACPI_PROCESSOR_CLASS,
.ids = ACPI_PROCESSOR_HID,
.ops = {
.add = acpi_processor_add,
.remove = acpi_processor_remove,
},
};
/* Power Management */
struct acpi_processor_cx_policy {
u32 count;
int state;
struct {
u32 time;
u32 ticks;
u32 count;
u32 bm;
} threshold;
};
struct acpi_processor_cx {
u8 valid;
u32 address;
u32 latency;
u32 latency_ticks;
u32 power;
u32 usage;
struct acpi_processor_cx_policy promotion;
struct acpi_processor_cx_policy demotion;
};
struct acpi_processor_power {
int state;
int default_state;
u32 bm_activity;
struct acpi_processor_cx states[ACPI_PROCESSOR_MAX_POWER];
};
/* Performance Management */
struct acpi_pct_register {
u8 descriptor;
u16 length;
u8 space_id;
u8 bit_width;
u8 bit_offset;
u8 reserved;
u64 address;
} __attribute__ ((packed));
struct acpi_processor_px {
acpi_integer core_frequency; /* megahertz */
acpi_integer power; /* milliWatts */
acpi_integer transition_latency; /* microseconds */
acpi_integer bus_master_latency; /* microseconds */
acpi_integer control; /* control value */
acpi_integer status; /* success indicator */
};
struct acpi_processor_performance {
int state;
int platform_limit;
u16 control_register;
u16 status_register;
u8 control_register_bit_width;
u8 status_register_bit_width;
int state_count;
struct acpi_processor_px states[ACPI_PROCESSOR_MAX_PERFORMANCE];
};
/* Throttling Control */
struct acpi_processor_tx {
u16 power;
u16 performance;
};
struct acpi_processor_throttling {
int state;
u32 address;
u8 duty_offset;
u8 duty_width;
int state_count;
struct acpi_processor_tx states[ACPI_PROCESSOR_MAX_THROTTLING];
};
/* Limit Interface */
struct acpi_processor_lx {
int px; /* performace state */
int tx; /* throttle level */
};
struct acpi_processor_limit {
struct acpi_processor_lx state; /* current limit */
struct acpi_processor_lx thermal; /* thermal limit */
struct acpi_processor_lx user; /* user limit */
};
struct acpi_processor_flags {
u8 power:1;
u8 performance:1;
u8 throttling:1;
u8 limit:1;
u8 bm_control:1;
u8 bm_check:1;
u8 reserved:2;
};
struct acpi_processor {
acpi_handle handle;
u32 acpi_id;
u32 id;
struct acpi_processor_flags flags;
struct acpi_processor_power power;
struct acpi_processor_performance performance;
struct acpi_processor_throttling throttling;
struct acpi_processor_limit limit;
};
struct acpi_processor_errata {
u8 smp;
struct {
u8 throttle:1;
u8 fdma:1;
u8 reserved:6;
u32 bmisx;
} piix4;
};
static struct acpi_processor *processors[NR_CPUS];
static struct acpi_processor_errata errata;
static void (*pm_idle_save)(void);
/* --------------------------------------------------------------------------
Errata Handling
-------------------------------------------------------------------------- */
int
acpi_processor_errata_piix4 (
struct pci_dev *dev)
{
u8 rev = 0;
u8 value1 = 0;
u8 value2 = 0;
ACPI_FUNCTION_TRACE("acpi_processor_errata_piix4");
if (!dev)
return_VALUE(-EINVAL);
/*
* Note that 'dev' references the PIIX4 ACPI Controller.
*/
pci_read_config_byte(dev, PCI_REVISION_ID, &rev);
switch (rev) {
case 0:
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4 A-step\n"));
break;
case 1:
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4 B-step\n"));
break;
case 2:
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4E\n"));
break;
case 3:
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4M\n"));
break;
default:
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found unknown PIIX4\n"));
break;
}
switch (rev) {
case 0: /* PIIX4 A-step */
case 1: /* PIIX4 B-step */
/*
* See specification changes #13 ("Manual Throttle Duty Cycle")
* and #14 ("Enabling and Disabling Manual Throttle"), plus
* erratum #5 ("STPCLK# Deassertion Time") from the January
* 2002 PIIX4 specification update. Applies to only older
* PIIX4 models.
*/
errata.piix4.throttle = 1;
case 2: /* PIIX4E */
case 3: /* PIIX4M */
/*
* See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
* Livelock") from the January 2002 PIIX4 specification update.
* Applies to all PIIX4 models.
*/
/*
* BM-IDE
* ------
* Find the PIIX4 IDE Controller and get the Bus Master IDE
* Status register address. We'll use this later to read
* each IDE controller's DMA status to make sure we catch all
* DMA activity.
*/
dev = pci_find_subsys(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_82371AB,
PCI_ANY_ID, PCI_ANY_ID, NULL);
if (dev)
errata.piix4.bmisx = pci_resource_start(dev, 4);
/*
* Type-F DMA
* ----------
* Find the PIIX4 ISA Controller and read the Motherboard
* DMA controller's status to see if Type-F (Fast) DMA mode
* is enabled (bit 7) on either channel. Note that we'll
* disable C3 support if this is enabled, as some legacy
* devices won't operate well if fast DMA is disabled.
*/
dev = pci_find_subsys(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_82371AB_0,
PCI_ANY_ID, PCI_ANY_ID, NULL);
if (dev) {
pci_read_config_byte(dev, 0x76, &value1);
pci_read_config_byte(dev, 0x77, &value2);
if ((value1 & 0x80) || (value2 & 0x80))
errata.piix4.fdma = 1;
}
break;
}
if (errata.piix4.bmisx)
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Bus master activity detection (BM-IDE) erratum enabled\n"));
if (errata.piix4.fdma)
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Type-F DMA livelock erratum (C3 disabled)\n"));
return_VALUE(0);
}
int
acpi_processor_errata (
struct acpi_processor *pr)
{
int result = 0;
struct pci_dev *dev = NULL;
ACPI_FUNCTION_TRACE("acpi_processor_errata");
if (!pr)
return_VALUE(-EINVAL);
/*
* PIIX4
*/
dev = pci_find_subsys(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_82371AB_3, PCI_ANY_ID, PCI_ANY_ID, NULL);
if (dev)
result = acpi_processor_errata_piix4(dev);
return_VALUE(result);
}
/* --------------------------------------------------------------------------
Power Management
-------------------------------------------------------------------------- */
static inline u32
ticks_elapsed (
u32 t1,
u32 t2)
{
if (t2 >= t1)
return (t2 - t1);
else if (!acpi_fadt.tmr_val_ext)
return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
else
return ((0xFFFFFFFF - t1) + t2);
}
static void
acpi_processor_power_activate (
struct acpi_processor *pr,
int state)
{
if (!pr)
return;
pr->power.states[pr->power.state].promotion.count = 0;
pr->power.states[pr->power.state].demotion.count = 0;
/* Cleanup from old state. */
switch (pr->power.state) {
case ACPI_STATE_C3:
/* Disable bus master reload */
acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
break;
}
/* Prepare to use new state. */
switch (state) {
case ACPI_STATE_C3:
/* Enable bus master reload */
acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1, ACPI_MTX_DO_NOT_LOCK);
break;
}
pr->power.state = state;
return;
}
static void
acpi_processor_idle (void)
{
struct acpi_processor *pr = NULL;
struct acpi_processor_cx *cx = NULL;
int next_state = 0;
int sleep_ticks = 0;
u32 t1, t2 = 0;
pr = processors[smp_processor_id()];
if (!pr)
return;
/*
* Interrupts must be disabled during bus mastering calculations and
* for C2/C3 transitions.
*/
__cli();
cx = &(pr->power.states[pr->power.state]);
/*
* Check BM Activity
* -----------------
* Check for bus mastering activity (if required), record, and check
* for demotion.
*/
if (pr->flags.bm_check) {
u32 bm_status = 0;
pr->power.bm_activity <<= 1;
acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
&bm_status, ACPI_MTX_DO_NOT_LOCK);
if (bm_status) {
pr->power.bm_activity++;
acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
1, ACPI_MTX_DO_NOT_LOCK);
}
/*
* PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
* the true state of bus mastering activity; forcing us to
* manually check the BMIDEA bit of each IDE channel.
*/
else if (errata.piix4.bmisx) {
if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
|| (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
pr->power.bm_activity++;
}
/*
* Apply bus mastering demotion policy. Automatically demote
* to avoid a faulty transition. Note that the processor
* won't enter a low-power state during this call (to this
* funciton) but should upon the next.
*
* TBD: A better policy might be to fallback to the demotion
* state (use it for this quantum only) istead of
* demoting -- and rely on duration as our sole demotion
* qualification. This may, however, introduce DMA
* issues (e.g. floppy DMA transfer overrun/underrun).
*/
if (pr->power.bm_activity & cx->demotion.threshold.bm) {
__sti();
next_state = cx->demotion.state;
goto end;
}
}
cx->usage++;
/*
* Sleep:
* ------
* Invoke the current Cx state to put the processor to sleep.
*/
switch (pr->power.state) {
case ACPI_STATE_C1:
/* Invoke C1. */
safe_halt();
/*
* TBD: Can't get time duration while in C1, as resumes
* go to an ISR rather than here. Need to instrument
* base interrupt handler.
*/
sleep_ticks = 0xFFFFFFFF;
break;
case ACPI_STATE_C2:
/* Get start time (ticks) */
t1 = inl(acpi_fadt.xpm_tmr_blk.address);
/* Invoke C2 */
inb(pr->power.states[ACPI_STATE_C2].address);
/* Dummy op - must do something useless after P_LVL2 read */
t2 = inl(acpi_fadt.xpm_tmr_blk.address);
/* Get end time (ticks) */
t2 = inl(acpi_fadt.xpm_tmr_blk.address);
/* Re-enable interrupts */
__sti();
/* Compute time (ticks) that we were actually asleep */
sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
break;
case ACPI_STATE_C3:
/* Disable bus master arbitration */
acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
/* Get start time (ticks) */
t1 = inl(acpi_fadt.xpm_tmr_blk.address);
/* Invoke C3 */
inb(pr->power.states[ACPI_STATE_C3].address);
/* Dummy op - must do something useless after P_LVL3 read */
t2 = inl(acpi_fadt.xpm_tmr_blk.address);
/* Get end time (ticks) */
t2 = inl(acpi_fadt.xpm_tmr_blk.address);
/* Enable bus master arbitration */
acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
/* Re-enable interrupts */
__sti();
/* Compute time (ticks) that we were actually asleep */
sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
break;
default:
__sti();
return;
}
next_state = pr->power.state;
/*
* Promotion?
* ----------
* Track the number of longs (time asleep is greater than threshold)
* and promote when the count threshold is reached. Note that bus
* mastering activity may prevent promotions.
*/
if (cx->promotion.state) {
if (sleep_ticks > cx->promotion.threshold.ticks) {
cx->promotion.count++;
cx->demotion.count = 0;
if (cx->promotion.count >= cx->promotion.threshold.count) {
if (pr->flags.bm_check) {
if (!(pr->power.bm_activity & cx->promotion.threshold.bm)) {
next_state = cx->promotion.state;
goto end;
}
}
else {
next_state = cx->promotion.state;
goto end;
}
}
}
}
/*
* Demotion?
* ---------
* Track the number of shorts (time asleep is less than time threshold)
* and demote when the usage threshold is reached.
*/
if (cx->demotion.state) {
if (sleep_ticks < cx->demotion.threshold.ticks) {
cx->demotion.count++;
cx->promotion.count = 0;
if (cx->demotion.count >= cx->demotion.threshold.count) {
next_state = cx->demotion.state;
goto end;
}
}
}
end:
/*
* New Cx State?
* -------------
* If we're going to start using a new Cx state we must clean up
* from the previous and prepare to use the new.
*/
if (next_state != pr->power.state)
acpi_processor_power_activate(pr, next_state);
return;
}
static int
acpi_processor_set_power_policy (
struct acpi_processor *pr)
{
ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
/*
* This function sets the default Cx state policy (OS idle handler).
* Our scheme is to promote quickly to C2 but more conservatively
* to C3. We're favoring C2 for its characteristics of low latency
* (quick response), good power savings, and ability to allow bus
* mastering activity. Note that the Cx state policy is completely
* customizable and can be altered dynamically.
*/
if (!pr)
return_VALUE(-EINVAL);
/*
* C0/C1
* -----
*/
pr->power.state = ACPI_STATE_C1;
pr->power.default_state = ACPI_STATE_C1;
/*
* C1/C2
* -----
* Set the default C1 promotion and C2 demotion policies, where we
* promote from C1 to C2 after several (10) successive C1 transitions,
* as we cannot (currently) measure the time spent in C1. Demote from
* C2 to C1 anytime we experience a 'short' (time spent in C2 is less
* than the C2 transtion latency). Note the simplifying assumption
* that the 'cost' of a transition is amortized when we sleep for at
* least as long as the transition's latency (thus the total transition
* time is two times the latency).
*
* TBD: Measure C1 sleep times by instrumenting the core IRQ handler.
* TBD: Demote to default C-State after long periods of activity.
* TBD: Investigate policy's use of CPU utilization -vs- sleep duration.
*/
if (pr->power.states[ACPI_STATE_C2].valid) {
pr->power.states[ACPI_STATE_C1].promotion.threshold.count = 10;
pr->power.states[ACPI_STATE_C1].promotion.threshold.ticks =
pr->power.states[ACPI_STATE_C2].latency_ticks;
pr->power.states[ACPI_STATE_C1].promotion.state = ACPI_STATE_C2;
pr->power.states[ACPI_STATE_C2].demotion.threshold.count = 1;
pr->power.states[ACPI_STATE_C2].demotion.threshold.ticks =
pr->power.states[ACPI_STATE_C2].latency_ticks;
pr->power.states[ACPI_STATE_C2].demotion.state = ACPI_STATE_C1;
}
/*
* C2/C3
* -----
* Set default C2 promotion and C3 demotion policies, where we promote
* from C2 to C3 after several (4) cycles of no bus mastering activity
* while maintaining sleep time criteria. Demote immediately on a
* short or whenever bus mastering activity occurs.
*/
if ((pr->power.states[ACPI_STATE_C2].valid) &&
(pr->power.states[ACPI_STATE_C3].valid)) {
pr->power.states[ACPI_STATE_C2].promotion.threshold.count = 4;
pr->power.states[ACPI_STATE_C2].promotion.threshold.ticks =
pr->power.states[ACPI_STATE_C3].latency_ticks;
pr->power.states[ACPI_STATE_C2].promotion.threshold.bm = 0x0F;
pr->power.states[ACPI_STATE_C2].promotion.state = ACPI_STATE_C3;
pr->power.states[ACPI_STATE_C3].demotion.threshold.count = 1;
pr->power.states[ACPI_STATE_C3].demotion.threshold.ticks =
pr->power.states[ACPI_STATE_C3].latency_ticks;
pr->power.states[ACPI_STATE_C3].demotion.threshold.bm = 0x0F;
pr->power.states[ACPI_STATE_C3].demotion.state = ACPI_STATE_C2;
}
return_VALUE(0);
}
int
acpi_processor_get_power_info (
struct acpi_processor *pr)
{
int result = 0;
ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
if (!pr)
return_VALUE(-EINVAL);
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"lvl2[0x%08x] lvl3[0x%08x]\n",
pr->power.states[ACPI_STATE_C2].address,
pr->power.states[ACPI_STATE_C3].address));
/* TBD: Support ACPI 2.0 objects */
/*
* C0
* --
* This state exists only as filler in our array.
*/
pr->power.states[ACPI_STATE_C0].valid = 1;
/*
* C1
* --
* ACPI requires C1 support for all processors.
*
* TBD: What about PROC_C1?
*/
pr->power.states[ACPI_STATE_C1].valid = 1;
/*
* C2
* --
* We're (currently) only supporting C2 on UP systems.
*
* TBD: Support for C2 on MP (P_LVL2_UP).
*/
if (pr->power.states[ACPI_STATE_C2].address) {
pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
/*
* C2 latency must be less than or equal to 100 microseconds.
*/
if (acpi_fadt.plvl2_lat > ACPI_PROCESSOR_MAX_C2_LATENCY)
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C2 latency too large [%d]\n",
acpi_fadt.plvl2_lat));
/*
* Only support C2 on UP systems (see TBD above).
*/
else if (errata.smp)
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C2 not supported in SMP mode\n"));
/*
* Otherwise we've met all of our C2 requirements.
* Normalize the C2 latency to expidite policy.
*/
else {
pr->power.states[ACPI_STATE_C2].valid = 1;
pr->power.states[ACPI_STATE_C2].latency_ticks =
US_TO_PM_TIMER_TICKS(acpi_fadt.plvl2_lat);
}
}
/*
* C3
* --
* TBD: Investigate use of WBINVD on UP/SMP system in absence of
* bm_control.
*/
if (pr->power.states[ACPI_STATE_C3].address) {
pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
/*
* C3 latency must be less than or equal to 1000 microseconds.
*/
if (acpi_fadt.plvl3_lat > ACPI_PROCESSOR_MAX_C3_LATENCY)
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C3 latency too large [%d]\n",
acpi_fadt.plvl3_lat));
/*
* Only support C3 when bus mastering arbitration control
* is present (able to disable bus mastering to maintain
* cache coherency while in C3).
*/
else if (!pr->flags.bm_control)
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C3 support requires bus mastering control\n"));
/*
* Only support C3 on UP systems, as bm_control is only viable
* on a UP system and flushing caches (e.g. WBINVD) is simply
* too costly (at this time).
*/
else if (errata.smp)
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C3 not supported in SMP mode\n"));
/*
* PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
* DMA transfers are used by any ISA device to avoid livelock.
* Note that we could disable Type-F DMA (as recommended by
* the erratum), but this is known to disrupt certain ISA
* devices thus we take the conservative approach.
*/
else if (errata.piix4.fdma) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"C3 not supported on PIIX4 with Type-F DMA\n"));
}
/*
* Otherwise we've met all of our C3 requirements.
* Normalize the C2 latency to expidite policy. Enable
* checking of bus mastering status (bm_check) so we can
* use this in our C3 policy.
*/
else {
pr->power.states[ACPI_STATE_C3].valid = 1;
pr->power.states[ACPI_STATE_C3].latency_ticks =
US_TO_PM_TIMER_TICKS(acpi_fadt.plvl3_lat);
pr->flags.bm_check = 1;
}
}
/*
* Set Default Policy
* ------------------
* Now that we know which state are supported, set the default
* policy. Note that this policy can be changed dynamically
* (e.g. encourage deeper sleeps to conserve battery life when
* not on AC).
*/
result = acpi_processor_set_power_policy(pr);
if (result)
return_VALUE(result);
/*
* If this processor supports C2 or C3 we denote it as being 'power
* manageable'. Note that there's really no policy involved for
* when only C1 is supported.
*/
if (pr->power.states[ACPI_STATE_C2].valid
|| pr->power.states[ACPI_STATE_C3].valid)
pr->flags.power = 1;
return_VALUE(0);
}
/* --------------------------------------------------------------------------
Performance Management
-------------------------------------------------------------------------- */
static int
acpi_processor_get_platform_limit (
struct acpi_processor* pr)
{
acpi_status status = 0;
unsigned long ppc = 0;
ACPI_FUNCTION_TRACE("acpi_processor_get_platform_limit");
if (!pr)
return_VALUE(-EINVAL);
/*
* _PPC indicates the maximum state currently supported by the platform
* (e.g. 0 = states 0..n; 1 = states 1..n; etc.
*/
status = acpi_evaluate_integer(pr->handle, "_PPC", NULL, &ppc);
if(ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating _PPC\n"));
return_VALUE(-ENODEV);
}
pr->performance.platform_limit = (int) ppc;
return_VALUE(0);
}
static int
acpi_processor_get_performance_control (
struct acpi_processor *pr)
{
int result = 0;
acpi_status status = 0;
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
union acpi_object *pct = NULL;
union acpi_object obj = {0};
struct acpi_pct_register *reg = NULL;
ACPI_FUNCTION_TRACE("acpi_processor_get_performance_control");
status = acpi_evaluate_object(pr->handle, "_PCT", NULL, &buffer);
if(ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating _PCT\n"));
return_VALUE(-ENODEV);
}
pct = (union acpi_object *) buffer.pointer;
if (!pct || (pct->type != ACPI_TYPE_PACKAGE)
|| (pct->package.count != 2)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PCT data\n"));
result = -EFAULT;
goto end;
}
/*
* control_register
*/
obj = pct->package.elements[0];
if ((obj.type != ACPI_TYPE_BUFFER)
|| (obj.buffer.length < sizeof(struct acpi_pct_register))
|| (obj.buffer.pointer == NULL)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Invalid _PCT data (control_register)\n"));
result = -EFAULT;
goto end;
}
reg = (struct acpi_pct_register *) (obj.buffer.pointer);
if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unsupported address space [%d] (control_register)\n",
(u32) reg->space_id));
result = -EFAULT;
goto end;
}
pr->performance.control_register = (u16) reg->address;
pr->performance.control_register_bit_width = reg->bit_width;
/*
* status_register
*/
obj = pct->package.elements[1];
if ((obj.type != ACPI_TYPE_BUFFER)
|| (obj.buffer.length < sizeof(struct acpi_pct_register))
|| (obj.buffer.pointer == NULL)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Invalid _PCT data (status_register)\n"));
result = -EFAULT;
goto end;
}
reg = (struct acpi_pct_register *) (obj.buffer.pointer);
if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unsupported address space [%d] (status_register)\n",
(u32) reg->space_id));
result = -EFAULT;
goto end;
}
pr->performance.status_register = (u16) reg->address;
pr->performance.status_register_bit_width = reg->bit_width;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"control_register[0x%04x] status_register[0x%04x]\n",
pr->performance.control_register,
pr->performance.status_register));
end:
acpi_os_free(buffer.pointer);
return_VALUE(result);
}
static int
acpi_processor_get_performance_states (
struct acpi_processor* pr)
{
int result = 0;
acpi_status status = AE_OK;
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
struct acpi_buffer format = {sizeof("NNNNNN"), "NNNNNN"};
struct acpi_buffer state = {0, NULL};
union acpi_object *pss = NULL;
int i = 0;
ACPI_FUNCTION_TRACE("acpi_processor_get_performance_states");
status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
if(ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating _PSS\n"));
return_VALUE(-ENODEV);
}
pss = (union acpi_object *) buffer.pointer;
if (!pss || (pss->type != ACPI_TYPE_PACKAGE)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSS data\n"));
result = -EFAULT;
goto end;
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d performance states\n",
pss->package.count));
if (pss->package.count > ACPI_PROCESSOR_MAX_PERFORMANCE) {
pr->performance.state_count = ACPI_PROCESSOR_MAX_PERFORMANCE;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Limiting number of states to max (%d)\n",
ACPI_PROCESSOR_MAX_PERFORMANCE));
}
else
pr->performance.state_count = pss->package.count;
if (pr->performance.state_count > 1)
pr->flags.performance = 1;
for (i = 0; i < pr->performance.state_count; i++) {
struct acpi_processor_px *px = &(pr->performance.states[i]);
state.length = sizeof(struct acpi_processor_px);
state.pointer = px;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Extracting state %d\n", i));
status = acpi_extract_package(&(pss->package.elements[i]),
&format, &state);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSS data\n"));
result = -EFAULT;
goto end;
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"State [%d]: core_frequency[%d] power[%d] transition_latency[%d] bus_master_latency[%d] control[0x%x] status[0x%x]\n",
i,
(u32) px->core_frequency,
(u32) px->power,
(u32) px->transition_latency,
(u32) px->bus_master_latency,
(u32) px->control,
(u32) px->status));
}
end:
acpi_os_free(buffer.pointer);
return_VALUE(result);
}
static int
acpi_processor_write_port(
u16 port,
u8 bit_width,
u32 value)
{
if (bit_width <= 8) {
outb(value, port);
} else if (bit_width <= 16) {
outw(value, port);
} else if (bit_width <= 32) {
outl(value, port);
} else {
return -ENODEV;
}
return 0;
}
static int
acpi_processor_read_port(
u16 port,
u8 bit_width,
u32 *ret)
{
*ret = 0;
if (bit_width <= 8) {
*ret = inb(port);
} else if (bit_width <= 16) {
*ret = inw(port);
} else if (bit_width <= 32) {
*ret = inl(port);
} else {
return -ENODEV;
}
return 0;
}
static int
acpi_processor_set_performance (
struct acpi_processor *pr,
int state)
{
u16 port = 0;
u8 bit_width = 0;
int ret = 0;
u32 value = 0;
int i = 0;
ACPI_FUNCTION_TRACE("acpi_processor_set_performance");
if (!pr)
return_VALUE(-EINVAL);
if (!pr->flags.performance)
return_VALUE(-ENODEV);
if (state >= pr->performance.state_count) {
ACPI_DEBUG_PRINT((ACPI_DB_WARN,
"Invalid target state (P%d)\n", state));
return_VALUE(-ENODEV);
}
if (state < pr->performance.platform_limit) {
ACPI_DEBUG_PRINT((ACPI_DB_WARN,
"Platform limit (P%d) overrides target state (P%d)\n",
pr->performance.platform_limit, state));
return_VALUE(-ENODEV);
}
if (state == pr->performance.state) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Already at target state (P%d)\n", state));
return_VALUE(0);
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Transitioning from P%d to P%d\n",
pr->performance.state, state));
/*
* First we write the target state's 'control' value to the
* control_register.
*/
port = pr->performance.control_register;
value = (u32) pr->performance.states[state].control;
bit_width = pr->performance.control_register_bit_width;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Writing 0x%08x to port 0x%04x\n", value, port));
ret = acpi_processor_write_port(port, bit_width, value);
if (ret) {
ACPI_DEBUG_PRINT((ACPI_DB_WARN,
"Invalid port width 0x%04x\n", bit_width));
return_VALUE(ret);
}
/*
* Then we read the 'status_register' and compare the value with the
* target state's 'status' to make sure the transition was successful.
* Note that we'll poll for up to 1ms (100 cycles of 10us) before
* giving up.
*/
port = pr->performance.status_register;
bit_width = pr->performance.status_register_bit_width;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Looking for 0x%08x from port 0x%04x\n",
(u32) pr->performance.states[state].status, port));
for (i=0; i<100; i++) {
ret = acpi_processor_read_port(port, bit_width, &value);
if (ret) {
ACPI_DEBUG_PRINT((ACPI_DB_WARN,
"Invalid port width 0x%04x\n", bit_width));
return_VALUE(ret);
}
if (value == (u32) pr->performance.states[state].status)
break;
udelay(10);
}
if (value != (u32) pr->performance.states[state].status) {
ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Transition failed\n"));
return_VALUE(-ENODEV);
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Transition successful after %d microseconds\n",
i * 10));
pr->performance.state = state;
return_VALUE(0);
}
static int
acpi_processor_get_performance_info (
struct acpi_processor *pr)
{
int result = 0;
acpi_status status = AE_OK;
acpi_handle handle = NULL;
ACPI_FUNCTION_TRACE("acpi_processor_get_performance_info");
if (!pr)
return_VALUE(-EINVAL);
status = acpi_get_handle(pr->handle, "_PCT", &handle);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"ACPI-based processor performance control unavailable\n"));
return_VALUE(0);
}
result = acpi_processor_get_performance_control(pr);
if (result)
return_VALUE(result);
result = acpi_processor_get_performance_states(pr);
if (result)
return_VALUE(result);
result = acpi_processor_get_platform_limit(pr);
if (result)
return_VALUE(result);
/*
* TBD: Don't trust the latency values we get from BIOS, but rather
* measure the latencies during run-time (e.g. get_latencies).
*/
return_VALUE(0);
}
/* --------------------------------------------------------------------------
Throttling Control
-------------------------------------------------------------------------- */
static int
acpi_processor_get_throttling (
struct acpi_processor *pr)
{
int state = 0;
u32 value = 0;
u32 duty_mask = 0;
u32 duty_value = 0;
ACPI_FUNCTION_TRACE("acpi_processor_get_throttling");
if (!pr)
return_VALUE(-EINVAL);
if (!pr->flags.throttling)
return_VALUE(-ENODEV);
pr->throttling.state = 0;
__cli();
duty_mask = pr->throttling.state_count - 1;
duty_mask <<= pr->throttling.duty_offset;
value = inl(pr->throttling.address);
/*
* Compute the current throttling state when throttling is enabled
* (bit 4 is on).
*/
if (value & 0x10) {
duty_value = value & duty_mask;
duty_value >>= pr->throttling.duty_offset;
if (duty_value)
state = pr->throttling.state_count-duty_value;
}
pr->throttling.state = state;
__sti();
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Throttling state is T%d (%d%% throttling applied)\n",
state, pr->throttling.states[state].performance));
return_VALUE(0);
}
static int
acpi_processor_set_throttling (
struct acpi_processor *pr,
int state)
{
u32 value = 0;
u32 duty_mask = 0;
u32 duty_value = 0;
ACPI_FUNCTION_TRACE("acpi_processor_set_throttling");
if (!pr)
return_VALUE(-EINVAL);
if ((state < 0) || (state > (pr->throttling.state_count - 1)))
return_VALUE(-EINVAL);
if (!pr->flags.throttling)
return_VALUE(-ENODEV);
if (state == pr->throttling.state)
return_VALUE(0);
__cli();
/*
* Calculate the duty_value and duty_mask.
*/
if (state) {
duty_value = pr->throttling.state_count - state;
duty_value <<= pr->throttling.duty_offset;
/* Used to clear all duty_value bits */
duty_mask = pr->throttling.state_count - 1;
duty_mask <<= acpi_fadt.duty_offset;
duty_mask = ~duty_mask;
}
/*
* Disable throttling by writing a 0 to bit 4. Note that we must
* turn it off before you can change the duty_value.
*/
value = inl(pr->throttling.address);
if (value & 0x10) {
value &= 0xFFFFFFEF;
outl(value, pr->throttling.address);
}
/*
* Write the new duty_value and then enable throttling. Note
* that a state value of 0 leaves throttling disabled.
*/
if (state) {
value &= duty_mask;
value |= duty_value;
outl(value, pr->throttling.address);
value |= 0x00000010;
outl(value, pr->throttling.address);
}
pr->throttling.state = state;
__sti();
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Throttling state set to T%d (%d%%)\n", state,
(pr->throttling.states[state].performance?pr->throttling.states[state].performance/10:0)));
return_VALUE(0);
}
static int
acpi_processor_get_throttling_info (
struct acpi_processor *pr)
{
int result = 0;
int step = 0;
int i = 0;
ACPI_FUNCTION_TRACE("acpi_processor_get_throttling_info");
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"pblk_address[0x%08x] duty_offset[%d] duty_width[%d]\n",
pr->throttling.address,
pr->throttling.duty_offset,
pr->throttling.duty_width));
if (!pr)
return_VALUE(-EINVAL);
/* TBD: Support ACPI 2.0 objects */
if (!pr->throttling.address) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No throttling register\n"));
return_VALUE(0);
}
else if (!pr->throttling.duty_width) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No throttling states\n"));
return_VALUE(0);
}
/* TBD: Support duty_cycle values that span bit 4. */
else if ((pr->throttling.duty_offset
+ pr->throttling.duty_width) > 4) {
ACPI_DEBUG_PRINT((ACPI_DB_WARN, "duty_cycle spans bit 4\n"));
return_VALUE(0);
}
/*
* PIIX4 Errata: We don't support throttling on the original PIIX4.
* This shouldn't be an issue as few (if any) mobile systems ever
* used this part.
*/
if (errata.piix4.throttle) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Throttling not supported on PIIX4 A- or B-step\n"));
return_VALUE(0);
}
pr->throttling.state_count = 1 << acpi_fadt.duty_width;
/*
* Compute state values. Note that throttling displays a linear power/
* performance relationship (at 50% performance the CPU will consume
* 50% power). Values are in 1/10th of a percent to preserve accuracy.
*/
step = (1000 / pr->throttling.state_count);
for (i=0; i<pr->throttling.state_count; i++) {
pr->throttling.states[i].performance = step * i;
pr->throttling.states[i].power = step * i;
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d throttling states\n",
pr->throttling.state_count));
pr->flags.throttling = 1;
/*
* Disable throttling (if enabled). We'll let subsequent policy (e.g.
* thermal) decide to lower performance if it so chooses, but for now
* we'll crank up the speed.
*/
result = acpi_processor_get_throttling(pr);
if (result)
goto end;
if (pr->throttling.state) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Disabling throttling (was T%d)\n",
pr->throttling.state));
result = acpi_processor_set_throttling(pr, 0);
if (result)
goto end;
}
end:
if (result)
pr->flags.throttling = 0;
return_VALUE(result);
}
/* --------------------------------------------------------------------------
Limit Interface
-------------------------------------------------------------------------- */
static int
acpi_processor_apply_limit (
struct acpi_processor* pr)
{
int result = 0;
u16 px = 0;
u16 tx = 0;
ACPI_FUNCTION_TRACE("acpi_processor_apply_limit");
if (!pr)
return_VALUE(-EINVAL);
if (!pr->flags.limit)
return_VALUE(-ENODEV);
if (pr->flags.performance) {
px = pr->performance.platform_limit;
if (pr->limit.user.px > px)
px = pr->limit.user.px;
if (pr->limit.thermal.px > px)
px = pr->limit.thermal.px;
result = acpi_processor_set_performance(pr, px);
if (result)
goto end;
}
if (pr->flags.throttling) {
if (pr->limit.user.tx > tx)
tx = pr->limit.user.tx;
if (pr->limit.thermal.tx > tx)
tx = pr->limit.thermal.tx;
result = acpi_processor_set_throttling(pr, tx);
if (result)
goto end;
}
pr->limit.state.px = px;
pr->limit.state.tx = tx;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Processor [%d] limit set to (P%d:T%d)\n",
pr->id,
pr->limit.state.px,
pr->limit.state.tx));
end:
if (result)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unable to set limit\n"));
return_VALUE(result);
}
int
acpi_processor_set_thermal_limit (
acpi_handle handle,
int type)
{
int result = 0;
struct acpi_processor *pr = NULL;
struct acpi_device *device = NULL;
int px = 0;
int tx = 0;
ACPI_FUNCTION_TRACE("acpi_processor_set_thermal_limit");
if ((type < ACPI_PROCESSOR_LIMIT_NONE)
|| (type > ACPI_PROCESSOR_LIMIT_DECREMENT))
return_VALUE(-EINVAL);
result = acpi_bus_get_device(handle, &device);
if (result)
return_VALUE(result);
pr = (struct acpi_processor *) acpi_driver_data(device);
if (!pr)
return_VALUE(-ENODEV);
if (!pr->flags.limit)
return_VALUE(-ENODEV);
/* Thermal limits are always relative to the current Px/Tx state. */
if (pr->flags.performance)
pr->limit.thermal.px = pr->performance.state;
if (pr->flags.throttling)
pr->limit.thermal.tx = pr->throttling.state;
/*
* Our default policy is to only use throttling at the lowest
* performance state.
*/
px = pr->limit.thermal.px;
tx = pr->limit.thermal.tx;
switch (type) {
case ACPI_PROCESSOR_LIMIT_NONE:
px = 0;
tx = 0;
break;
case ACPI_PROCESSOR_LIMIT_INCREMENT:
if (pr->flags.performance) {
if (px == (pr->performance.state_count - 1))
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"At maximum performance state\n"));
else {
px++;
goto end;
}
}
if (pr->flags.throttling) {
if (tx == (pr->throttling.state_count - 1))
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"At maximum throttling state\n"));
else
tx++;
}
break;
case ACPI_PROCESSOR_LIMIT_DECREMENT:
if (pr->flags.performance) {
if (px == pr->performance.platform_limit)
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"At minimum performance state\n"));
else {
px--;
goto end;
}
}
if (pr->flags.throttling) {
if (tx == 0)
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"At minimum throttling state\n"));
else
tx--;
}
break;
}
end:
pr->limit.thermal.px = px;
pr->limit.thermal.tx = tx;
result = acpi_processor_apply_limit(pr);
if (result)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unable to set thermal limit\n"));
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Thermal limit now (P%d:T%d)\n",
pr->limit.thermal.px,
pr->limit.thermal.tx));
return_VALUE(result);
}
static int
acpi_processor_get_limit_info (
struct acpi_processor *pr)
{
ACPI_FUNCTION_TRACE("acpi_processor_get_limit_info");
if (!pr)
return_VALUE(-EINVAL);
if (pr->flags.performance || pr->flags.throttling)
pr->flags.limit = 1;
return_VALUE(0);
}
/* --------------------------------------------------------------------------
FS Interface (/proc)
-------------------------------------------------------------------------- */
struct proc_dir_entry *acpi_processor_dir = NULL;
static int
acpi_processor_read_info (
char *page,
char **start,
off_t off,
int count,
int *eof,
void *data)
{
struct acpi_processor *pr = (struct acpi_processor *) data;
char *p = page;
int len = 0;
ACPI_FUNCTION_TRACE("acpi_processor_read_info");
if (!pr || (off != 0))
goto end;
p += sprintf(p, "processor id: %d\n",
pr->id);
p += sprintf(p, "acpi id: %d\n",
pr->acpi_id);
p += sprintf(p, "bus mastering control: %s\n",
pr->flags.bm_control ? "yes" : "no");
p += sprintf(p, "power management: %s\n",
pr->flags.power ? "yes" : "no");
p += sprintf(p, "throttling control: %s\n",
pr->flags.throttling ? "yes" : "no");
p += sprintf(p, "performance management: %s\n",
pr->flags.performance ? "yes" : "no");
p += sprintf(p, "limit interface: %s\n",
pr->flags.limit ? "yes" : "no");
end:
len = (p - page);
if (len <= off+count) *eof = 1;
*start = page + off;
len -= off;
if (len>count) len = count;
if (len<0) len = 0;
return_VALUE(len);
}
static int
acpi_processor_read_power (
char *page,
char **start,
off_t off,
int count,
int *eof,
void *data)
{
struct acpi_processor *pr = (struct acpi_processor *) data;
char *p = page;
int len = 0;
int i = 0;
ACPI_FUNCTION_TRACE("acpi_processor_read_power");
if (!pr || (off != 0))
goto end;
p += sprintf(p, "active state: C%d\n",
pr->power.state);
p += sprintf(p, "default state: C%d\n",
pr->power.default_state);
p += sprintf(p, "bus master activity: %08x\n",
pr->power.bm_activity);
p += sprintf(p, "states:\n");
for (i=1; i<ACPI_C_STATE_COUNT; i++) {
p += sprintf(p, " %cC%d: ",
(i == pr->power.state?'*':' '), i);
if (!pr->power.states[i].valid) {
p += sprintf(p, "<not supported>\n");
continue;
}
if (pr->power.states[i].promotion.state)
p += sprintf(p, "promotion[C%d] ",
pr->power.states[i].promotion.state);
else
p += sprintf(p, "promotion[--] ");
if (pr->power.states[i].demotion.state)
p += sprintf(p, "demotion[C%d] ",
pr->power.states[i].demotion.state);
else
p += sprintf(p, "demotion[--] ");
p += sprintf(p, "latency[%03d] usage[%08d]\n",
pr->power.states[i].latency,
pr->power.states[i].usage);
}
end:
len = (p - page);
if (len <= off+count) *eof = 1;
*start = page + off;
len -= off;
if (len>count) len = count;
if (len<0) len = 0;
return_VALUE(len);
}
static int
acpi_processor_read_performance (
char *page,
char **start,
off_t off,
int count,
int *eof,
void *data)
{
struct acpi_processor *pr = (struct acpi_processor *) data;
char *p = page;
int len = 0;
int i = 0;
ACPI_FUNCTION_TRACE("acpi_processor_read_performance");
if (!pr || (off != 0))
goto end;
if (!pr->flags.performance) {
p += sprintf(p, "<not supported>\n");
goto end;
}
p += sprintf(p, "state count: %d\n",
pr->performance.state_count);
p += sprintf(p, "active state: P%d\n",
pr->performance.state);
p += sprintf(p, "states:\n");
for (i=0; i<pr->performance.state_count; i++)
p += sprintf(p, " %cP%d: %d MHz, %d mW, %d uS\n",
(i == pr->performance.state?'*':' '), i,
(u32) pr->performance.states[i].core_frequency,
(u32) pr->performance.states[i].power,
(u32) pr->performance.states[i].transition_latency);
end:
len = (p - page);
if (len <= off+count) *eof = 1;
*start = page + off;
len -= off;
if (len>count) len = count;
if (len<0) len = 0;
return_VALUE(len);
}
static int
acpi_processor_write_performance (
struct file *file,
const char *buffer,
unsigned long count,
void *data)
{
int result = 0;
struct acpi_processor *pr = (struct acpi_processor *) data;
char state_string[12] = {'\0'};
ACPI_FUNCTION_TRACE("acpi_processor_write_performance");
if (!pr || (count > sizeof(state_string) - 1))
return_VALUE(-EINVAL);
if (copy_from_user(state_string, buffer, count))
return_VALUE(-EFAULT);
state_string[count] = '\0';
result = acpi_processor_set_performance(pr,
simple_strtoul(state_string, NULL, 0));
if (result)
return_VALUE(result);
return_VALUE(count);
}
static int
acpi_processor_read_throttling (
char *page,
char **start,
off_t off,
int count,
int *eof,
void *data)
{
struct acpi_processor *pr = (struct acpi_processor *) data;
char *p = page;
int len = 0;
int i = 0;
int result = 0;
ACPI_FUNCTION_TRACE("acpi_processor_read_throttling");
if (!pr || (off != 0))
goto end;
if (!(pr->throttling.state_count > 0)) {
p += sprintf(p, "<not supported>\n");
goto end;
}
result = acpi_processor_get_throttling(pr);
if (result) {
p += sprintf(p, "Could not determine current throttling state.\n");
goto end;
}
p += sprintf(p, "state count: %d\n",
pr->throttling.state_count);
p += sprintf(p, "active state: T%d\n",
pr->throttling.state);
p += sprintf(p, "states:\n");
for (i=0; i<pr->throttling.state_count; i++)
p += sprintf(p, " %cT%d: %02d%%\n",
(i == pr->throttling.state?'*':' '), i,
(pr->throttling.states[i].performance?pr->throttling.states[i].performance/10:0));
end:
len = (p - page);
if (len <= off+count) *eof = 1;
*start = page + off;
len -= off;
if (len>count) len = count;
if (len<0) len = 0;
return_VALUE(len);
}
static int
acpi_processor_write_throttling (
struct file *file,
const char *buffer,
unsigned long count,
void *data)
{
int result = 0;
struct acpi_processor *pr = (struct acpi_processor *) data;
char state_string[12] = {'\0'};
ACPI_FUNCTION_TRACE("acpi_processor_write_throttling");
if (!pr || (count > sizeof(state_string) - 1))
return_VALUE(-EINVAL);
if (copy_from_user(state_string, buffer, count))
return_VALUE(-EFAULT);
state_string[count] = '\0';
result = acpi_processor_set_throttling(pr,
simple_strtoul(state_string, NULL, 0));
if (result)
return_VALUE(result);
return_VALUE(count);
}
static int
acpi_processor_read_limit (
char *page,
char **start,
off_t off,
int count,
int *eof,
void *data)
{
struct acpi_processor *pr = (struct acpi_processor *) data;
char *p = page;
int len = 0;
ACPI_FUNCTION_TRACE("acpi_processor_read_limit");
if (!pr || (off != 0))
goto end;
if (!pr->flags.limit) {
p += sprintf(p, "<not supported>\n");
goto end;
}
p += sprintf(p, "active limit: P%d:T%d\n",
pr->limit.state.px, pr->limit.state.tx);
p += sprintf(p, "platform limit: P%d:T0\n",
pr->flags.performance?pr->performance.platform_limit:0);
p += sprintf(p, "user limit: P%d:T%d\n",
pr->limit.user.px, pr->limit.user.tx);
p += sprintf(p, "thermal limit: P%d:T%d\n",
pr->limit.thermal.px, pr->limit.thermal.tx);
end:
len = (p - page);
if (len <= off+count) *eof = 1;
*start = page + off;
len -= off;
if (len>count) len = count;
if (len<0) len = 0;
return_VALUE(len);
}
static int
acpi_processor_write_limit (
struct file *file,
const char *buffer,
unsigned long count,
void *data)
{
int result = 0;
struct acpi_processor *pr = (struct acpi_processor *) data;
char limit_string[25] = {'\0'};
int px = 0;
int tx = 0;
ACPI_FUNCTION_TRACE("acpi_processor_write_limit");
if (!pr || (count > sizeof(limit_string) - 1)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid argument\n"));
return_VALUE(-EINVAL);
}
if (copy_from_user(limit_string, buffer, count)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid data\n"));
return_VALUE(-EFAULT);
}
limit_string[count] = '\0';
if (sscanf(limit_string, "%d:%d", &px, &tx) != 2) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid data format\n"));
return_VALUE(-EINVAL);
}
if (pr->flags.performance) {
if ((px < pr->performance.platform_limit)
|| (px > (pr->performance.state_count - 1))) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid px\n"));
return_VALUE(-EINVAL);
}
pr->limit.user.px = px;
}
if (pr->flags.throttling) {
if ((tx < 0) || (tx > (pr->throttling.state_count - 1))) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid tx\n"));
return_VALUE(-EINVAL);
}
pr->limit.user.tx = tx;
}
result = acpi_processor_apply_limit(pr);
return_VALUE(count);
}
static int
acpi_processor_add_fs (
struct acpi_device *device)
{
struct proc_dir_entry *entry = NULL;
ACPI_FUNCTION_TRACE("acpi_processor_add_fs");
if (!acpi_device_dir(device)) {
acpi_device_dir(device) = proc_mkdir(acpi_device_bid(device),
acpi_processor_dir);
if (!acpi_device_dir(device))
return_VALUE(-ENODEV);
}
acpi_device_dir(device)->owner = THIS_MODULE;
/* 'info' [R] */
entry = create_proc_entry(ACPI_PROCESSOR_FILE_INFO,
S_IRUGO, acpi_device_dir(device));
if (!entry)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unable to create '%s' fs entry\n",
ACPI_PROCESSOR_FILE_INFO));
else {
entry->read_proc = acpi_processor_read_info;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
/* 'power' [R] */
entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
S_IRUGO, acpi_device_dir(device));
if (!entry)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unable to create '%s' fs entry\n",
ACPI_PROCESSOR_FILE_POWER));
else {
entry->read_proc = acpi_processor_read_power;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
/* 'performance' [R/W] */
entry = create_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE,
S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device));
if (!entry)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unable to create '%s' fs entry\n",
ACPI_PROCESSOR_FILE_PERFORMANCE));
else {
entry->read_proc = acpi_processor_read_performance;
entry->write_proc = acpi_processor_write_performance;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
/* 'throttling' [R/W] */
entry = create_proc_entry(ACPI_PROCESSOR_FILE_THROTTLING,
S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device));
if (!entry)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unable to create '%s' fs entry\n",
ACPI_PROCESSOR_FILE_THROTTLING));
else {
entry->read_proc = acpi_processor_read_throttling;
entry->write_proc = acpi_processor_write_throttling;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
/* 'limit' [R/W] */
entry = create_proc_entry(ACPI_PROCESSOR_FILE_LIMIT,
S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device));
if (!entry)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Unable to create '%s' fs entry\n",
ACPI_PROCESSOR_FILE_LIMIT));
else {
entry->read_proc = acpi_processor_read_limit;
entry->write_proc = acpi_processor_write_limit;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
return_VALUE(0);
}
static int
acpi_processor_remove_fs (
struct acpi_device *device)
{
ACPI_FUNCTION_TRACE("acpi_processor_remove_fs");
if (acpi_device_dir(device)) {
remove_proc_entry(acpi_device_bid(device), acpi_processor_dir);
acpi_device_dir(device) = NULL;
}
return_VALUE(0);
}
/* --------------------------------------------------------------------------
Driver Interface
-------------------------------------------------------------------------- */
static int
acpi_processor_get_info (
struct acpi_processor *pr)
{
acpi_status status = 0;
union acpi_object object = {0};
struct acpi_buffer buffer = {sizeof(union acpi_object), &object};
static int cpu_index = 0;
ACPI_FUNCTION_TRACE("acpi_processor_get_info");
if (!pr)
return_VALUE(-EINVAL);
#ifdef CONFIG_SMP
if (smp_num_cpus > 1)
errata.smp = smp_num_cpus;
/*
* Extra Processor objects may be enumerated on MP systems with
* less than the max # of CPUs. They should be ignored.
*/
if ((cpu_index + 1) > smp_num_cpus)
return_VALUE(-ENODEV);
#endif
acpi_processor_errata(pr);
/*
* Check to see if we have bus mastering arbitration control. This
* is required for proper C3 usage (to maintain cache coherency).
*/
if (acpi_fadt.V1_pm2_cnt_blk && acpi_fadt.pm2_cnt_len) {
pr->flags.bm_control = 1;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Bus mastering arbitration control present\n"));
}
else
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"No bus mastering arbitration control\n"));
/*
* Evalute the processor object. Note that it is common on SMP to
* have the first (boot) processor with a valid PBLK address while
* all others have a NULL address.
*/
status = acpi_evaluate_object(pr->handle, NULL, NULL, &buffer);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Error evaluating processor object\n"));
return_VALUE(-ENODEV);
}
/*
* TBD: Synch processor ID (via LAPIC/LSAPIC structures) on SMP.
* >>> 'acpi_get_processor_id(acpi_id, &id)' in arch/xxx/acpi.c
*/
pr->id = cpu_index++;
pr->acpi_id = object.processor.proc_id;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Processor [%d:%d]\n", pr->id,
pr->acpi_id));
if (!object.processor.pblk_address)
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No PBLK (NULL address)\n"));
else if (object.processor.pblk_length != 6)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid PBLK length [%d]\n",
object.processor.pblk_length));
else {
pr->throttling.address = object.processor.pblk_address;
pr->throttling.duty_offset = acpi_fadt.duty_offset;
pr->throttling.duty_width = acpi_fadt.duty_width;
pr->power.states[ACPI_STATE_C2].address =
object.processor.pblk_address + 4;
pr->power.states[ACPI_STATE_C3].address =
object.processor.pblk_address + 5;
}
acpi_processor_get_power_info(pr);
acpi_processor_get_performance_info(pr);
acpi_processor_get_throttling_info(pr);
acpi_processor_get_limit_info(pr);
return_VALUE(0);
}
static void
acpi_processor_notify (
acpi_handle handle,
u32 event,
void *data)
{
int result = 0;
struct acpi_processor *pr = (struct acpi_processor *) data;
struct acpi_device *device = NULL;
ACPI_FUNCTION_TRACE("acpi_processor_notify");
if (!pr)
return_VOID;
if (acpi_bus_get_device(pr->handle, &device))
return_VOID;
switch (event) {
case ACPI_PROCESSOR_NOTIFY_PERFORMANCE:
result = acpi_processor_get_platform_limit(pr);
if (!result)
acpi_processor_apply_limit(pr);
acpi_bus_generate_event(device, event,
pr->performance.platform_limit);
break;
case ACPI_PROCESSOR_NOTIFY_POWER:
/* TBD */
acpi_bus_generate_event(device, event, 0);
break;
default:
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Unsupported event [0x%x]\n", event));
break;
}
return_VOID;
}
static int
acpi_processor_add (
struct acpi_device *device)
{
int result = 0;
acpi_status status = AE_OK;
struct acpi_processor *pr = NULL;
u32 i = 0;
ACPI_FUNCTION_TRACE("acpi_processor_add");
if (!device)
return_VALUE(-EINVAL);
pr = kmalloc(sizeof(struct acpi_processor), GFP_KERNEL);
if (!pr)
return_VALUE(-ENOMEM);
memset(pr, 0, sizeof(struct acpi_processor));
pr->handle = device->handle;
sprintf(acpi_device_name(device), "%s", ACPI_PROCESSOR_DEVICE_NAME);
sprintf(acpi_device_class(device), "%s", ACPI_PROCESSOR_CLASS);
acpi_driver_data(device) = pr;
result = acpi_processor_get_info(pr);
if (result)
goto end;
result = acpi_processor_add_fs(device);
if (result)
goto end;
status = acpi_install_notify_handler(pr->handle, ACPI_DEVICE_NOTIFY,
acpi_processor_notify, pr);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Error installing notify handler\n"));
result = -ENODEV;
goto end;
}
processors[pr->id] = pr;
/*
* Install the idle handler if processor power management is supported.
* Note that the default idle handler (default_idle) will be used on
* platforms that only support C1.
*/
if ((pr->id == 0) && (pr->flags.power)) {
pm_idle_save = pm_idle;
pm_idle = acpi_processor_idle;
}
printk(KERN_INFO PREFIX "%s [%s] (supports",
acpi_device_name(device), acpi_device_bid(device));
for (i=1; i<ACPI_C_STATE_COUNT; i++)
if (pr->power.states[i].valid)
printk(" C%d", i);
if (pr->flags.performance)
printk(", %d performance states", pr->performance.state_count);
if (pr->flags.throttling)
printk(", %d throttling states", pr->throttling.state_count);
printk(")\n");
end:
if (result) {
acpi_processor_remove_fs(device);
kfree(pr);
}
return_VALUE(result);
}
static int
acpi_processor_remove (
struct acpi_device *device,
int type)
{
acpi_status status = AE_OK;
struct acpi_processor *pr = NULL;
ACPI_FUNCTION_TRACE("acpi_processor_remove");
if (!device || !acpi_driver_data(device))
return_VALUE(-EINVAL);
pr = (struct acpi_processor *) acpi_driver_data(device);
/* Unregister the idle handler when processor #0 is removed. */
if (pr->id == 0)
pm_idle = pm_idle_save;
status = acpi_remove_notify_handler(pr->handle, ACPI_DEVICE_NOTIFY,
acpi_processor_notify);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Error removing notify handler\n"));
}
acpi_processor_remove_fs(device);
processors[pr->id] = NULL;
kfree(pr);
return_VALUE(0);
}
static int __init
acpi_processor_init (void)
{
int result = 0;
ACPI_FUNCTION_TRACE("acpi_processor_init");
memset(&processors, 0, sizeof(processors));
memset(&errata, 0, sizeof(errata));
acpi_processor_dir = proc_mkdir(ACPI_PROCESSOR_CLASS, acpi_root_dir);
if (!acpi_processor_dir)
return_VALUE(-ENODEV);
acpi_processor_dir->owner = THIS_MODULE;
result = acpi_bus_register_driver(&acpi_processor_driver);
if (result < 0) {
remove_proc_entry(ACPI_PROCESSOR_CLASS, acpi_root_dir);
return_VALUE(-ENODEV);
}
return_VALUE(0);
}
static void __exit
acpi_processor_exit (void)
{
ACPI_FUNCTION_TRACE("acpi_processor_exit");
acpi_bus_unregister_driver(&acpi_processor_driver);
remove_proc_entry(ACPI_PROCESSOR_CLASS, acpi_root_dir);
return_VOID;
}
module_init(acpi_processor_init);
module_exit(acpi_processor_exit);
EXPORT_SYMBOL(acpi_processor_set_thermal_limit);