blob: ee9f0b76712b25a11d8c90ba028207678200d624 [file] [log] [blame]
/*
* drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
*
* This file is derived from the powermac console "imstt" driver:
* Copyright (C) 1997 Sigurdur Asgeirsson
* With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
* Modified by Danilo Beuche 1998
* Some register values added by Damien Doligez, INRIA Rocquencourt
* Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
*
* This file was written by Ryan Nielsen (ran@krazynet.com)
* Most of the frame buffer device stuff was copied from atyfb.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/fb.h>
#include <linux/console.h>
#include <linux/selection.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#if defined(CONFIG_PPC)
#include <linux/nvram.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <video/macmodes.h>
#endif
#include <video/fbcon.h>
#include <video/fbcon-cfb8.h>
#include <video/fbcon-cfb16.h>
#include <video/fbcon-cfb24.h>
#include <video/fbcon-cfb32.h>
#ifndef __powerpc__
#define eieio() /* Enforce In-order Execution of I/O */
#endif
/* TwinTurbo (Cosmo) registers */
enum {
S1SA = 0, /* 0x00 */
S2SA = 1, /* 0x04 */
SP = 2, /* 0x08 */
DSA = 3, /* 0x0C */
CNT = 4, /* 0x10 */
DP_OCTL = 5, /* 0x14 */
CLR = 6, /* 0x18 */
BI = 8, /* 0x20 */
MBC = 9, /* 0x24 */
BLTCTL = 10, /* 0x28 */
/* Scan Timing Generator Registers */
HES = 12, /* 0x30 */
HEB = 13, /* 0x34 */
HSB = 14, /* 0x38 */
HT = 15, /* 0x3C */
VES = 16, /* 0x40 */
VEB = 17, /* 0x44 */
VSB = 18, /* 0x48 */
VT = 19, /* 0x4C */
HCIV = 20, /* 0x50 */
VCIV = 21, /* 0x54 */
TCDR = 22, /* 0x58 */
VIL = 23, /* 0x5C */
STGCTL = 24, /* 0x60 */
/* Screen Refresh Generator Registers */
SSR = 25, /* 0x64 */
HRIR = 26, /* 0x68 */
SPR = 27, /* 0x6C */
CMR = 28, /* 0x70 */
SRGCTL = 29, /* 0x74 */
/* RAM Refresh Generator Registers */
RRCIV = 30, /* 0x78 */
RRSC = 31, /* 0x7C */
RRCR = 34, /* 0x88 */
/* System Registers */
GIOE = 32, /* 0x80 */
GIO = 33, /* 0x84 */
SCR = 35, /* 0x8C */
SSTATUS = 36, /* 0x90 */
PRC = 37, /* 0x94 */
#if 0
/* PCI Registers */
DVID = 0x00000000L,
SC = 0x00000004L,
CCR = 0x00000008L,
OG = 0x0000000CL,
BARM = 0x00000010L,
BARER = 0x00000030L,
#endif
};
/* IBM 624 RAMDAC Direct Registers */
enum {
PADDRW = 0x00,
PDATA = 0x04,
PPMASK = 0x08,
PADDRR = 0x0c,
PIDXLO = 0x10,
PIDXHI = 0x14,
PIDXDATA= 0x18,
PIDXCTL = 0x1c
};
/* IBM 624 RAMDAC Indirect Registers */
enum {
CLKCTL = 0x02, /* (0x01) Miscellaneous Clock Control */
SYNCCTL = 0x03, /* (0x00) Sync Control */
HSYNCPOS = 0x04, /* (0x00) Horizontal Sync Position */
PWRMNGMT = 0x05, /* (0x00) Power Management */
DACOP = 0x06, /* (0x02) DAC Operation */
PALETCTL = 0x07, /* (0x00) Palette Control */
SYSCLKCTL = 0x08, /* (0x01) System Clock Control */
PIXFMT = 0x0a, /* () Pixel Format [bpp >> 3 + 2] */
BPP8 = 0x0b, /* () 8 Bits/Pixel Control */
BPP16 = 0x0c, /* () 16 Bits/Pixel Control [bit 1=1 for 565] */
BPP24 = 0x0d, /* () 24 Bits/Pixel Control */
BPP32 = 0x0e, /* () 32 Bits/Pixel Control */
PIXCTL1 = 0x10, /* (0x05) Pixel PLL Control 1 */
PIXCTL2 = 0x11, /* (0x00) Pixel PLL Control 2 */
SYSCLKN = 0x15, /* () System Clock N (System PLL Reference Divider) */
SYSCLKM = 0x16, /* () System Clock M (System PLL VCO Divider) */
SYSCLKP = 0x17, /* () System Clock P */
SYSCLKC = 0x18, /* () System Clock C */
/*
* Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
* c is charge pump bias which depends on the VCO frequency
*/
PIXM0 = 0x20, /* () Pixel M 0 */
PIXN0 = 0x21, /* () Pixel N 0 */
PIXP0 = 0x22, /* () Pixel P 0 */
PIXC0 = 0x23, /* () Pixel C 0 */
CURSCTL = 0x30, /* (0x00) Cursor Control */
CURSXLO = 0x31, /* () Cursor X position, low 8 bits */
CURSXHI = 0x32, /* () Cursor X position, high 8 bits */
CURSYLO = 0x33, /* () Cursor Y position, low 8 bits */
CURSYHI = 0x34, /* () Cursor Y position, high 8 bits */
CURSHOTX = 0x35, /* () Cursor Hot Spot X */
CURSHOTY = 0x36, /* () Cursor Hot Spot Y */
CURSACCTL = 0x37, /* () Advanced Cursor Control Enable */
CURSACATTR = 0x38, /* () Advanced Cursor Attribute */
CURS1R = 0x40, /* () Cursor 1 Red */
CURS1G = 0x41, /* () Cursor 1 Green */
CURS1B = 0x42, /* () Cursor 1 Blue */
CURS2R = 0x43, /* () Cursor 2 Red */
CURS2G = 0x44, /* () Cursor 2 Green */
CURS2B = 0x45, /* () Cursor 2 Blue */
CURS3R = 0x46, /* () Cursor 3 Red */
CURS3G = 0x47, /* () Cursor 3 Green */
CURS3B = 0x48, /* () Cursor 3 Blue */
BORDR = 0x60, /* () Border Color Red */
BORDG = 0x61, /* () Border Color Green */
BORDB = 0x62, /* () Border Color Blue */
MISCTL1 = 0x70, /* (0x00) Miscellaneous Control 1 */
MISCTL2 = 0x71, /* (0x00) Miscellaneous Control 2 */
MISCTL3 = 0x72, /* (0x00) Miscellaneous Control 3 */
KEYCTL = 0x78 /* (0x00) Key Control/DB Operation */
};
/* TI TVP 3030 RAMDAC Direct Registers */
enum {
TVPADDRW = 0x00, /* 0 Palette/Cursor RAM Write Address/Index */
TVPPDATA = 0x04, /* 1 Palette Data RAM Data */
TVPPMASK = 0x08, /* 2 Pixel Read-Mask */
TVPPADRR = 0x0c, /* 3 Palette/Cursor RAM Read Address */
TVPCADRW = 0x10, /* 4 Cursor/Overscan Color Write Address */
TVPCDATA = 0x14, /* 5 Cursor/Overscan Color Data */
/* 6 reserved */
TVPCADRR = 0x1c, /* 7 Cursor/Overscan Color Read Address */
/* 8 reserved */
TVPDCCTL = 0x24, /* 9 Direct Cursor Control */
TVPIDATA = 0x28, /* 10 Index Data */
TVPCRDAT = 0x2c, /* 11 Cursor RAM Data */
TVPCXPOL = 0x30, /* 12 Cursor-Position X LSB */
TVPCXPOH = 0x34, /* 13 Cursor-Position X MSB */
TVPCYPOL = 0x38, /* 14 Cursor-Position Y LSB */
TVPCYPOH = 0x3c, /* 15 Cursor-Position Y MSB */
};
/* TI TVP 3030 RAMDAC Indirect Registers */
enum {
TVPIRREV = 0x01, /* Silicon Revision [RO] */
TVPIRICC = 0x06, /* Indirect Cursor Control (0x00) */
TVPIRBRC = 0x07, /* Byte Router Control (0xe4) */
TVPIRLAC = 0x0f, /* Latch Control (0x06) */
TVPIRTCC = 0x18, /* True Color Control (0x80) */
TVPIRMXC = 0x19, /* Multiplex Control (0x98) */
TVPIRCLS = 0x1a, /* Clock Selection (0x07) */
TVPIRPPG = 0x1c, /* Palette Page (0x00) */
TVPIRGEC = 0x1d, /* General Control (0x00) */
TVPIRMIC = 0x1e, /* Miscellaneous Control (0x00) */
TVPIRPLA = 0x2c, /* PLL Address */
TVPIRPPD = 0x2d, /* Pixel Clock PLL Data */
TVPIRMPD = 0x2e, /* Memory Clock PLL Data */
TVPIRLPD = 0x2f, /* Loop Clock PLL Data */
TVPIRCKL = 0x30, /* Color-Key Overlay Low */
TVPIRCKH = 0x31, /* Color-Key Overlay High */
TVPIRCRL = 0x32, /* Color-Key Red Low */
TVPIRCRH = 0x33, /* Color-Key Red High */
TVPIRCGL = 0x34, /* Color-Key Green Low */
TVPIRCGH = 0x35, /* Color-Key Green High */
TVPIRCBL = 0x36, /* Color-Key Blue Low */
TVPIRCBH = 0x37, /* Color-Key Blue High */
TVPIRCKC = 0x38, /* Color-Key Control (0x00) */
TVPIRMLC = 0x39, /* MCLK/Loop Clock Control (0x18) */
TVPIRSEN = 0x3a, /* Sense Test (0x00) */
TVPIRTMD = 0x3b, /* Test Mode Data */
TVPIRRML = 0x3c, /* CRC Remainder LSB [RO] */
TVPIRRMM = 0x3d, /* CRC Remainder MSB [RO] */
TVPIRRMS = 0x3e, /* CRC Bit Select [WO] */
TVPIRDID = 0x3f, /* Device ID [RO] (0x30) */
TVPIRRES = 0xff /* Software Reset [WO] */
};
struct initvalues {
__u8 addr, value;
};
static struct initvalues ibm_initregs[] __initdata = {
{ CLKCTL, 0x21 },
{ SYNCCTL, 0x00 },
{ HSYNCPOS, 0x00 },
{ PWRMNGMT, 0x00 },
{ DACOP, 0x02 },
{ PALETCTL, 0x00 },
{ SYSCLKCTL, 0x01 },
/*
* Note that colors in X are correct only if all video data is
* passed through the palette in the DAC. That is, "indirect
* color" must be configured. This is the case for the IBM DAC
* used in the 2MB and 4MB cards, at least.
*/
{ BPP8, 0x00 },
{ BPP16, 0x01 },
{ BPP24, 0x00 },
{ BPP32, 0x00 },
{ PIXCTL1, 0x05 },
{ PIXCTL2, 0x00 },
{ SYSCLKN, 0x08 },
{ SYSCLKM, 0x4f },
{ SYSCLKP, 0x00 },
{ SYSCLKC, 0x00 },
{ CURSCTL, 0x00 },
{ CURSACCTL, 0x01 },
{ CURSACATTR, 0xa8 },
{ CURS1R, 0xff },
{ CURS1G, 0xff },
{ CURS1B, 0xff },
{ CURS2R, 0xff },
{ CURS2G, 0xff },
{ CURS2B, 0xff },
{ CURS3R, 0xff },
{ CURS3G, 0xff },
{ CURS3B, 0xff },
{ BORDR, 0xff },
{ BORDG, 0xff },
{ BORDB, 0xff },
{ MISCTL1, 0x01 },
{ MISCTL2, 0x45 },
{ MISCTL3, 0x00 },
{ KEYCTL, 0x00 }
};
static struct initvalues tvp_initregs[] __initdata = {
{ TVPIRICC, 0x00 },
{ TVPIRBRC, 0xe4 },
{ TVPIRLAC, 0x06 },
{ TVPIRTCC, 0x80 },
{ TVPIRMXC, 0x4d },
{ TVPIRCLS, 0x05 },
{ TVPIRPPG, 0x00 },
{ TVPIRGEC, 0x00 },
{ TVPIRMIC, 0x08 },
{ TVPIRCKL, 0xff },
{ TVPIRCKH, 0xff },
{ TVPIRCRL, 0xff },
{ TVPIRCRH, 0xff },
{ TVPIRCGL, 0xff },
{ TVPIRCGH, 0xff },
{ TVPIRCBL, 0xff },
{ TVPIRCBH, 0xff },
{ TVPIRCKC, 0x00 },
{ TVPIRPLA, 0x00 },
{ TVPIRPPD, 0xc0 },
{ TVPIRPPD, 0xd5 },
{ TVPIRPPD, 0xea },
{ TVPIRPLA, 0x00 },
{ TVPIRMPD, 0xb9 },
{ TVPIRMPD, 0x3a },
{ TVPIRMPD, 0xb1 },
{ TVPIRPLA, 0x00 },
{ TVPIRLPD, 0xc1 },
{ TVPIRLPD, 0x3d },
{ TVPIRLPD, 0xf3 },
};
struct imstt_regvals {
__u32 pitch;
__u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
__u8 pclk_m, pclk_n, pclk_p;
/* Values of the tvp which change depending on colormode x resolution */
__u8 mlc[3]; /* Memory Loop Config 0x39 */
__u8 lckl_p[3]; /* P value of LCKL PLL */
};
struct imstt_cursor {
struct timer_list timer;
int enable;
int on;
int vbl_cnt;
int blink_rate;
__u16 x, y, width, height;
};
struct fb_info_imstt {
struct fb_info info;
struct fb_fix_screeninfo fix;
struct display disp;
struct display_switch dispsw;
union {
#ifdef FBCON_HAS_CFB16
__u16 cfb16[16];
#endif
#ifdef FBCON_HAS_CFB24
__u32 cfb24[16];
#endif
#ifdef FBCON_HAS_CFB32
__u32 cfb32[16];
#endif
} fbcon_cmap;
struct {
__u8 red, green, blue;
} palette[256];
struct imstt_regvals init;
struct imstt_cursor cursor;
unsigned long frame_buffer_phys;
unsigned long board_size;
__u8 *frame_buffer;
unsigned long dc_regs_phys;
__u32 *dc_regs;
unsigned long cmap_regs_phys;
__u8 *cmap_regs;
__u32 total_vram;
__u32 ramdac;
};
enum {
IBM = 0,
TVP = 1
};
#define INIT_BPP 8
#define INIT_XRES 640
#define INIT_YRES 480
#define CURSOR_BLINK_RATE 20
#define CURSOR_DRAW_DELAY 2
static int currcon = 0;
static int inverse = 0;
static char fontname[40] __initdata = { 0 };
static char curblink __initdata = 1;
static char noaccel __initdata = 0;
#if defined(CONFIG_PPC)
static signed char init_vmode __initdata = VMODE_NVRAM;
static signed char init_cmode __initdata = CMODE_NVRAM;
#endif
static struct imstt_regvals tvp_reg_init_2 = {
512,
0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
0xec, 0x2a, 0xf3,
{ 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
};
static struct imstt_regvals tvp_reg_init_6 = {
640,
0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
0xef, 0x2e, 0xb2,
{ 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
};
static struct imstt_regvals tvp_reg_init_12 = {
800,
0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
0xf6, 0x2e, 0xf2,
{ 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
};
static struct imstt_regvals tvp_reg_init_13 = {
832,
0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
0xfe, 0x3e, 0xf1,
{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
};
static struct imstt_regvals tvp_reg_init_17 = {
1024,
0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
0xfc, 0x3a, 0xf1,
{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
};
static struct imstt_regvals tvp_reg_init_18 = {
1152,
0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
0xfd, 0x3a, 0xf1,
{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
};
static struct imstt_regvals tvp_reg_init_19 = {
1280,
0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
0xf7, 0x36, 0xf0,
{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
};
static struct imstt_regvals tvp_reg_init_20 = {
1280,
0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
0xf0, 0x2d, 0xf0,
{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
};
/*
* PCI driver prototypes
*/
static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
static void imsttfb_remove(struct pci_dev *pdev);
static __u32
getclkMHz (struct fb_info_imstt *p)
{
__u32 clk_m, clk_n, clk_p;
clk_m = p->init.pclk_m;
clk_n = p->init.pclk_n;
clk_p = p->init.pclk_p;
return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
}
static void
setclkMHz (struct fb_info_imstt *p, __u32 MHz)
{
__u32 clk_m, clk_n, clk_p, x, stage, spilled;
clk_m = clk_n = clk_p = 0;
stage = spilled = 0;
for (;;) {
switch (stage) {
case 0:
clk_m++;
break;
case 1:
clk_n++;
break;
}
x = 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
if (x == MHz)
break;
if (x > MHz) {
spilled = 1;
stage = 1;
} else if (spilled && x < MHz) {
stage = 0;
}
}
p->init.pclk_m = clk_m;
p->init.pclk_n = clk_n;
p->init.pclk_p = clk_p;
}
static struct imstt_regvals *
compute_imstt_regvals_ibm (struct fb_info_imstt *p, int xres, int yres)
{
struct imstt_regvals *init = &p->init;
__u32 MHz, hes, heb, veb, htp, vtp;
switch (xres) {
case 640:
hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
MHz = 30 /* .25 */ ;
break;
case 832:
hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
MHz = 57 /* .27_ */ ;
break;
case 1024:
hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
MHz = 80;
break;
case 1152:
hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
MHz = 101 /* .6_ */ ;
break;
case 1280:
hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
MHz = yres == 960 ? 126 : 135;
break;
case 1600:
hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
MHz = 200;
break;
default:
return 0;
}
setclkMHz(p, MHz);
init->hes = hes;
init->heb = heb;
init->hsb = init->heb + (xres >> 3);
init->ht = init->hsb + htp;
init->ves = 0x0003;
init->veb = veb;
init->vsb = init->veb + yres;
init->vt = init->vsb + vtp;
init->vil = init->vsb;
init->pitch = xres;
return init;
}
static struct imstt_regvals *
compute_imstt_regvals_tvp (struct fb_info_imstt *p, int xres, int yres)
{
struct imstt_regvals *init;
switch (xres) {
case 512:
init = &tvp_reg_init_2;
break;
case 640:
init = &tvp_reg_init_6;
break;
case 800:
init = &tvp_reg_init_12;
break;
case 832:
init = &tvp_reg_init_13;
break;
case 1024:
init = &tvp_reg_init_17;
break;
case 1152:
init = &tvp_reg_init_18;
break;
case 1280:
init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
break;
default:
return 0;
}
p->init = *init;
return init;
}
static struct imstt_regvals *
compute_imstt_regvals (struct fb_info_imstt *p, u_int xres, u_int yres)
{
if (p->ramdac == IBM)
return compute_imstt_regvals_ibm(p, xres, yres);
else
return compute_imstt_regvals_tvp(p, xres, yres);
}
static void
set_imstt_regvals_ibm (struct fb_info_imstt *p, u_int bpp)
{
struct imstt_regvals *init = &p->init;
__u8 pformat = (bpp >> 3) + 2;
p->cmap_regs[PIDXHI] = 0; eieio();
p->cmap_regs[PIDXLO] = PIXM0; eieio();
p->cmap_regs[PIDXDATA] = init->pclk_m; eieio();
p->cmap_regs[PIDXLO] = PIXN0; eieio();
p->cmap_regs[PIDXDATA] = init->pclk_n; eieio();
p->cmap_regs[PIDXLO] = PIXP0; eieio();
p->cmap_regs[PIDXDATA] = init->pclk_p; eieio();
p->cmap_regs[PIDXLO] = PIXC0; eieio();
p->cmap_regs[PIDXDATA] = 0x02; eieio();
p->cmap_regs[PIDXLO] = PIXFMT; eieio();
p->cmap_regs[PIDXDATA] = pformat; eieio();
}
static void
set_imstt_regvals_tvp (struct fb_info_imstt *p, u_int bpp)
{
struct imstt_regvals *init = &p->init;
__u8 tcc, mxc, lckl_n, mic;
__u8 mlc, lckl_p;
switch (bpp) {
case 8:
tcc = 0x80;
mxc = 0x4d;
lckl_n = 0xc1;
mlc = init->mlc[0];
lckl_p = init->lckl_p[0];
break;
case 16:
tcc = 0x44;
mxc = 0x55;
lckl_n = 0xe1;
mlc = init->mlc[1];
lckl_p = init->lckl_p[1];
break;
case 24:
tcc = 0x5e;
mxc = 0x5d;
lckl_n = 0xf1;
mlc = init->mlc[2];
lckl_p = init->lckl_p[2];
break;
case 32:
tcc = 0x46;
mxc = 0x5d;
lckl_n = 0xf1;
mlc = init->mlc[2];
lckl_p = init->lckl_p[2];
break;
}
mic = 0x08;
p->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
p->cmap_regs[TVPIDATA] = 0x00; eieio();
p->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
p->cmap_regs[TVPIDATA] = init->pclk_m; eieio();
p->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
p->cmap_regs[TVPIDATA] = init->pclk_n; eieio();
p->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
p->cmap_regs[TVPIDATA] = init->pclk_p; eieio();
p->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
p->cmap_regs[TVPIDATA] = tcc; eieio();
p->cmap_regs[TVPADDRW] = TVPIRMXC; eieio();
p->cmap_regs[TVPIDATA] = mxc; eieio();
p->cmap_regs[TVPADDRW] = TVPIRMIC; eieio();
p->cmap_regs[TVPIDATA] = mic; eieio();
p->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
p->cmap_regs[TVPIDATA] = 0x00; eieio();
p->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
p->cmap_regs[TVPIDATA] = lckl_n; eieio();
p->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
p->cmap_regs[TVPIDATA] = 0x15; eieio();
p->cmap_regs[TVPADDRW] = TVPIRMLC; eieio();
p->cmap_regs[TVPIDATA] = mlc; eieio();
p->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
p->cmap_regs[TVPIDATA] = 0x2a; eieio();
p->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
p->cmap_regs[TVPIDATA] = lckl_p; eieio();
}
static void
set_imstt_regvals (struct fb_info_imstt *p, u_int bpp)
{
struct imstt_regvals *init = &p->init;
__u32 ctl, pitch, byteswap, scr;
if (p->ramdac == IBM)
set_imstt_regvals_ibm(p, bpp);
else
set_imstt_regvals_tvp(p, bpp);
/*
* From what I (jsk) can gather poking around with MacsBug,
* bits 8 and 9 in the SCR register control endianness
* correction (byte swapping). These bits must be set according
* to the color depth as follows:
* Color depth Bit 9 Bit 8
* ========== ===== =====
* 8bpp 0 0
* 16bpp 0 1
* 32bpp 1 1
*/
switch (bpp) {
case 8:
ctl = 0x17b1;
pitch = init->pitch >> 2;
byteswap = 0x000;
break;
case 16:
ctl = 0x17b3;
pitch = init->pitch >> 1;
byteswap = 0x100;
break;
case 24:
ctl = 0x17b9;
pitch = init->pitch - (p->init.pitch >> 2);
byteswap = 0x200;
break;
case 32:
ctl = 0x17b5;
pitch = init->pitch;
byteswap = 0x300;
break;
}
if (p->ramdac == TVP)
ctl -= 0x30;
out_le32(&p->dc_regs[HES], init->hes);
out_le32(&p->dc_regs[HEB], init->heb);
out_le32(&p->dc_regs[HSB], init->hsb);
out_le32(&p->dc_regs[HT], init->ht);
out_le32(&p->dc_regs[VES], init->ves);
out_le32(&p->dc_regs[VEB], init->veb);
out_le32(&p->dc_regs[VSB], init->vsb);
out_le32(&p->dc_regs[VT], init->vt);
out_le32(&p->dc_regs[VIL], init->vil);
out_le32(&p->dc_regs[HCIV], 1);
out_le32(&p->dc_regs[VCIV], 1);
out_le32(&p->dc_regs[TCDR], 4);
out_le32(&p->dc_regs[RRCIV], 1);
out_le32(&p->dc_regs[RRSC], 0x980);
out_le32(&p->dc_regs[RRCR], 0x11);
if (p->ramdac == IBM) {
out_le32(&p->dc_regs[HRIR], 0x0100);
out_le32(&p->dc_regs[CMR], 0x00ff);
out_le32(&p->dc_regs[SRGCTL], 0x0073);
} else {
out_le32(&p->dc_regs[HRIR], 0x0200);
out_le32(&p->dc_regs[CMR], 0x01ff);
out_le32(&p->dc_regs[SRGCTL], 0x0003);
}
switch (p->total_vram) {
case 0x200000:
scr = 0x059d | byteswap;
break;
/* case 0x400000:
case 0x800000: */
default:
pitch >>= 1;
scr = 0x150dd | byteswap;
break;
}
out_le32(&p->dc_regs[SCR], scr);
out_le32(&p->dc_regs[SPR], pitch);
out_le32(&p->dc_regs[STGCTL], ctl);
}
static inline void
set_offset (struct display *disp, struct fb_info_imstt *p)
{
__u32 off = disp->var.yoffset * (disp->line_length >> 3)
+ ((disp->var.xoffset * (disp->var.bits_per_pixel >> 3)) >> 3);
out_le32(&p->dc_regs[SSR], off);
}
static inline void
set_555 (struct fb_info_imstt *p)
{
if (p->ramdac == IBM) {
p->cmap_regs[PIDXHI] = 0; eieio();
p->cmap_regs[PIDXLO] = BPP16; eieio();
p->cmap_regs[PIDXDATA] = 0x01; eieio();
} else {
p->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
p->cmap_regs[TVPIDATA] = 0x44; eieio();
}
}
static inline void
set_565 (struct fb_info_imstt *p)
{
if (p->ramdac == IBM) {
p->cmap_regs[PIDXHI] = 0; eieio();
p->cmap_regs[PIDXLO] = BPP16; eieio();
p->cmap_regs[PIDXDATA] = 0x03; eieio();
} else {
p->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
p->cmap_regs[TVPIDATA] = 0x45; eieio();
}
}
static void
imstt_set_cursor (struct fb_info_imstt *p, int on)
{
struct imstt_cursor *c = &p->cursor;
if (p->ramdac == IBM) {
p->cmap_regs[PIDXHI] = 0; eieio();
if (!on) {
p->cmap_regs[PIDXLO] = CURSCTL; eieio();
p->cmap_regs[PIDXDATA] = 0x00; eieio();
} else {
p->cmap_regs[PIDXLO] = CURSXHI; eieio();
p->cmap_regs[PIDXDATA] = c->x >> 8; eieio();
p->cmap_regs[PIDXLO] = CURSXLO; eieio();
p->cmap_regs[PIDXDATA] = c->x & 0xff; eieio();
p->cmap_regs[PIDXLO] = CURSYHI; eieio();
p->cmap_regs[PIDXDATA] = c->y >> 8; eieio();
p->cmap_regs[PIDXLO] = CURSYLO; eieio();
p->cmap_regs[PIDXDATA] = c->y & 0xff; eieio();
p->cmap_regs[PIDXLO] = CURSCTL; eieio();
p->cmap_regs[PIDXDATA] = 0x02; eieio();
}
} else {
if (!on) {
p->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
p->cmap_regs[TVPIDATA] = 0x00; eieio();
} else {
__u16 x = c->x + 0x40, y = c->y + 0x40;
p->cmap_regs[TVPCXPOH] = x >> 8; eieio();
p->cmap_regs[TVPCXPOL] = x & 0xff; eieio();
p->cmap_regs[TVPCYPOH] = y >> 8; eieio();
p->cmap_regs[TVPCYPOL] = y & 0xff; eieio();
p->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
p->cmap_regs[TVPIDATA] = 0x02; eieio();
}
}
}
static void
imsttfbcon_cursor (struct display *disp, int mode, int x, int y)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)disp->fb_info;
struct imstt_cursor *c = &p->cursor;
x *= fontwidth(disp);
y *= fontheight(disp);
if (c->x == x && c->y == y && (mode == CM_ERASE) == !c->enable)
return;
c->enable = 0;
if (c->on)
imstt_set_cursor(p, 0);
c->x = x - disp->var.xoffset;
c->y = y - disp->var.yoffset;
switch (mode) {
case CM_ERASE:
c->on = 0;
break;
case CM_DRAW:
case CM_MOVE:
if (c->on)
imstt_set_cursor(p, c->on);
else
c->vbl_cnt = CURSOR_DRAW_DELAY;
c->enable = 1;
break;
}
}
static int
imsttfbcon_set_font (struct display *disp, int width, int height)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)disp->fb_info;
struct imstt_cursor *c = &p->cursor;
u_int x, y;
__u8 fgc;
if (width > 32 || height > 32)
return -EINVAL;
c->height = height;
c->width = width;
fgc = ~attr_bgcol_ec(disp, disp->conp);
if (p->ramdac == IBM) {
p->cmap_regs[PIDXHI] = 1; eieio();
for (x = 0; x < 0x100; x++) {
p->cmap_regs[PIDXLO] = x; eieio();
p->cmap_regs[PIDXDATA] = 0x00; eieio();
}
p->cmap_regs[PIDXHI] = 1; eieio();
for (y = 0; y < height; y++)
for (x = 0; x < width >> 2; x++) {
p->cmap_regs[PIDXLO] = x + y * 8; eieio();
p->cmap_regs[PIDXDATA] = 0xff; eieio();
}
p->cmap_regs[PIDXHI] = 0; eieio();
p->cmap_regs[PIDXLO] = CURS1R; eieio();
p->cmap_regs[PIDXDATA] = fgc; eieio();
p->cmap_regs[PIDXLO] = CURS1G; eieio();
p->cmap_regs[PIDXDATA] = fgc; eieio();
p->cmap_regs[PIDXLO] = CURS1B; eieio();
p->cmap_regs[PIDXDATA] = fgc; eieio();
p->cmap_regs[PIDXLO] = CURS2R; eieio();
p->cmap_regs[PIDXDATA] = fgc; eieio();
p->cmap_regs[PIDXLO] = CURS2G; eieio();
p->cmap_regs[PIDXDATA] = fgc; eieio();
p->cmap_regs[PIDXLO] = CURS2B; eieio();
p->cmap_regs[PIDXDATA] = fgc; eieio();
p->cmap_regs[PIDXLO] = CURS3R; eieio();
p->cmap_regs[PIDXDATA] = fgc; eieio();
p->cmap_regs[PIDXLO] = CURS3G; eieio();
p->cmap_regs[PIDXDATA] = fgc; eieio();
p->cmap_regs[PIDXLO] = CURS3B; eieio();
p->cmap_regs[PIDXDATA] = fgc; eieio();
} else {
p->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
p->cmap_regs[TVPIDATA] &= 0x03; eieio();
p->cmap_regs[TVPADDRW] = 0; eieio();
for (x = 0; x < 0x200; x++) {
p->cmap_regs[TVPCRDAT] = 0x00; eieio();
}
for (x = 0; x < 0x200; x++) {
p->cmap_regs[TVPCRDAT] = 0xff; eieio();
}
p->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
p->cmap_regs[TVPIDATA] &= 0x03; eieio();
for (y = 0; y < height; y++)
for (x = 0; x < width >> 3; x++) {
p->cmap_regs[TVPADDRW] = x + y * 8; eieio();
p->cmap_regs[TVPCRDAT] = 0xff; eieio();
}
p->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
p->cmap_regs[TVPIDATA] |= 0x08; eieio();
for (y = 0; y < height; y++)
for (x = 0; x < width >> 3; x++) {
p->cmap_regs[TVPADDRW] = x + y * 8; eieio();
p->cmap_regs[TVPCRDAT] = 0xff; eieio();
}
p->cmap_regs[TVPCADRW] = 0x00; eieio();
for (x = 0; x < 12; x++) {
p->cmap_regs[TVPCDATA] = fgc; eieio();
}
}
return 1;
}
static void
imstt_cursor_timer_handler (unsigned long dev_addr)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)dev_addr;
struct imstt_cursor *c = &p->cursor;
if (!c->enable)
goto out;
if (c->vbl_cnt && --c->vbl_cnt == 0) {
c->on ^= 1;
imstt_set_cursor(p, c->on);
c->vbl_cnt = c->blink_rate;
}
out:
c->timer.expires = jiffies + (HZ / 50);
add_timer(&c->timer);
}
static void __init
imstt_cursor_init (struct fb_info_imstt *p)
{
struct imstt_cursor *c = &p->cursor;
imsttfbcon_set_font(&p->disp, fontwidth(&p->disp), fontheight(&p->disp));
c->enable = 1;
c->on = 1;
c->x = c->y = 0;
c->blink_rate = 0;
c->vbl_cnt = CURSOR_DRAW_DELAY;
if (curblink) {
c->blink_rate = CURSOR_BLINK_RATE;
init_timer(&c->timer);
c->timer.expires = jiffies + (HZ / 50);
c->timer.data = (unsigned long)p;
c->timer.function = imstt_cursor_timer_handler;
add_timer(&c->timer);
}
}
static void
imsttfbcon_bmove (struct display *disp, int sy, int sx, int dy, int dx, int height, int width)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)disp->fb_info;
__u32 Bpp, line_pitch,
fb_offset_old, fb_offset_new,
sp, dp_octl, cnt, bltctl;
Bpp = disp->var.bits_per_pixel >> 3,
sy *= fontheight(disp);
sx *= fontwidth(disp);
sx *= Bpp;
dy *= fontheight(disp);
dx *= fontwidth(disp);
dx *= Bpp;
height *= fontheight(disp);
height--;
width *= fontwidth(disp);
width *= Bpp;
width--;
line_pitch = disp->line_length;
bltctl = 0x05;
sp = line_pitch << 16;
cnt = height << 16;
if (sy < dy) {
sy += height;
dy += height;
sp |= -(line_pitch) & 0xffff;
dp_octl = -(line_pitch) & 0xffff;
} else {
sp |= line_pitch;
dp_octl = line_pitch;
}
if (sx < dx) {
sx += width;
dx += width;
bltctl |= 0x80;
cnt |= -(width) & 0xffff;
} else {
cnt |= width;
}
fb_offset_old = sy * line_pitch + sx;
fb_offset_new = dy * line_pitch + dx;
while(in_le32(&p->dc_regs[SSTATUS]) & 0x80);
out_le32(&p->dc_regs[S1SA], fb_offset_old);
out_le32(&p->dc_regs[SP], sp);
out_le32(&p->dc_regs[DSA], fb_offset_new);
out_le32(&p->dc_regs[CNT], cnt);
out_le32(&p->dc_regs[DP_OCTL], dp_octl);
out_le32(&p->dc_regs[BLTCTL], bltctl);
while(in_le32(&p->dc_regs[SSTATUS]) & 0x80);
while(in_le32(&p->dc_regs[SSTATUS]) & 0x40);
}
static void
imsttfbcon_clear (struct vc_data *conp, struct display *disp,
int sy, int sx, int height, int width)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)disp->fb_info;
__u32 Bpp, line_pitch, bgc;
bgc = attr_bgcol_ec(disp, conp);
bgc |= (bgc << 8);
bgc |= (bgc << 16);
Bpp = disp->var.bits_per_pixel >> 3,
line_pitch = disp->line_length;
sy *= fontheight(disp);
sy *= line_pitch;
sx *= fontwidth(disp);
sx *= Bpp;
height *= fontheight(disp);
height--;
width *= fontwidth(disp);
width *= Bpp;
width--;
while(in_le32(&p->dc_regs[SSTATUS]) & 0x80);
out_le32(&p->dc_regs[DSA], sy + sx);
out_le32(&p->dc_regs[CNT], (height << 16) | width);
out_le32(&p->dc_regs[DP_OCTL], line_pitch);
out_le32(&p->dc_regs[BI], 0xffffffff);
out_le32(&p->dc_regs[MBC], 0xffffffff);
out_le32(&p->dc_regs[CLR], bgc);
out_le32(&p->dc_regs[BLTCTL], 0x840); /* 0x200000 */
while(in_le32(&p->dc_regs[SSTATUS]) & 0x80);
while(in_le32(&p->dc_regs[SSTATUS]) & 0x40);
}
static void
imsttfbcon_revc (struct display *disp, int sx, int sy)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)disp->fb_info;
__u32 Bpp, line_pitch, height, width;
Bpp = disp->var.bits_per_pixel >> 3,
line_pitch = disp->line_length;
height = fontheight(disp);
width = fontwidth(disp) * Bpp;
sy *= height;
sy *= line_pitch;
sx *= width;
height--;
width--;
while(in_le32(&p->dc_regs[SSTATUS]) & 0x80);
out_le32(&p->dc_regs[DSA], sy + sx);
out_le32(&p->dc_regs[S1SA], sy + sx);
out_le32(&p->dc_regs[CNT], (height << 16) | width);
out_le32(&p->dc_regs[DP_OCTL], line_pitch);
out_le32(&p->dc_regs[SP], line_pitch);
out_le32(&p->dc_regs[BLTCTL], 0x40005);
while(in_le32(&p->dc_regs[SSTATUS]) & 0x80);
while(in_le32(&p->dc_regs[SSTATUS]) & 0x40);
}
#ifdef FBCON_HAS_CFB8
static struct display_switch fbcon_imstt8 = {
setup: fbcon_cfb8_setup,
bmove: imsttfbcon_bmove,
clear: imsttfbcon_clear,
putc: fbcon_cfb8_putc,
putcs: fbcon_cfb8_putcs,
revc: imsttfbcon_revc,
cursor: imsttfbcon_cursor,
set_font: imsttfbcon_set_font,
clear_margins: fbcon_cfb8_clear_margins,
fontwidthmask: FONTWIDTH(4)|FONTWIDTH(8)|FONTWIDTH(12)|FONTWIDTH(16)
};
#endif
#ifdef FBCON_HAS_CFB16
static struct display_switch fbcon_imstt16 = {
setup: fbcon_cfb16_setup,
bmove: imsttfbcon_bmove,
clear: imsttfbcon_clear,
putc: fbcon_cfb16_putc,
putcs: fbcon_cfb16_putcs,
revc: imsttfbcon_revc,
cursor: imsttfbcon_cursor,
set_font: imsttfbcon_set_font,
clear_margins: fbcon_cfb16_clear_margins,
fontwidthmask: FONTWIDTH(4)|FONTWIDTH(8)|FONTWIDTH(12)|FONTWIDTH(16)
};
#endif
#ifdef FBCON_HAS_CFB24
static struct display_switch fbcon_imstt24 = {
setup: fbcon_cfb24_setup,
bmove: imsttfbcon_bmove,
clear: imsttfbcon_clear,
putc: fbcon_cfb24_putc,
putcs: fbcon_cfb24_putcs,
revc: imsttfbcon_revc,
cursor: imsttfbcon_cursor,
set_font: imsttfbcon_set_font,
clear_margins: fbcon_cfb24_clear_margins,
fontwidthmask: FONTWIDTH(4)|FONTWIDTH(8)|FONTWIDTH(12)|FONTWIDTH(16)
};
#endif
#ifdef FBCON_HAS_CFB32
static struct display_switch fbcon_imstt32 = {
setup: fbcon_cfb32_setup,
bmove: imsttfbcon_bmove,
clear: imsttfbcon_clear,
putc: fbcon_cfb32_putc,
putcs: fbcon_cfb32_putcs,
revc: imsttfbcon_revc,
cursor: imsttfbcon_cursor,
set_font: imsttfbcon_set_font,
clear_margins: fbcon_cfb32_clear_margins,
fontwidthmask: FONTWIDTH(4)|FONTWIDTH(8)|FONTWIDTH(12)|FONTWIDTH(16)
};
#endif
#ifdef CONFIG_FB_COMPAT_XPMAC
#include <asm/vc_ioctl.h>
extern struct vc_mode display_info;
extern struct fb_info *console_fb_info;
static void
set_display_info (struct display *disp)
{
display_info.width = disp->var.xres;
display_info.height = disp->var.yres;
display_info.depth = disp->var.bits_per_pixel;
display_info.pitch = disp->line_length;
switch (disp->var.xres) {
case 512:
display_info.mode = 2;
break;
case 640:
display_info.mode = 6;
break;
case 800:
display_info.mode = 12;
break;
case 832:
display_info.mode = 13;
break;
case 1024:
display_info.mode = 17;
break;
case 1152:
display_info.mode = 18;
break;
case 1280:
display_info.mode = disp->var.yres == 960 ? 19 : 20;
break;
default:
display_info.mode = 0;
}
}
#endif
static int
imsttfb_getcolreg (u_int regno, u_int *red, u_int *green,
u_int *blue, u_int *transp, struct fb_info *info)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)info;
if (regno > 255)
return 1;
*red = (p->palette[regno].red << 8) | p->palette[regno].red;
*green = (p->palette[regno].green << 8) | p->palette[regno].green;
*blue = (p->palette[regno].blue << 8) | p->palette[regno].blue;
*transp = 0;
return 0;
}
static int
imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)info;
u_int bpp = fb_display[currcon].var.bits_per_pixel;
if (regno > 255)
return 1;
red >>= 8;
green >>= 8;
blue >>= 8;
p->palette[regno].red = red;
p->palette[regno].green = green;
p->palette[regno].blue = blue;
/* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
if (0 && bpp == 16) /* screws up X */
p->cmap_regs[PADDRW] = regno << 3;
else
p->cmap_regs[PADDRW] = regno;
eieio();
p->cmap_regs[PDATA] = red; eieio();
p->cmap_regs[PDATA] = green; eieio();
p->cmap_regs[PDATA] = blue; eieio();
if (regno < 16)
switch (bpp) {
#ifdef FBCON_HAS_CFB16
case 16:
p->fbcon_cmap.cfb16[regno] = (regno << (fb_display[currcon].var.green.length == 5 ? 10 : 11)) | (regno << 5) | regno;
break;
#endif
#ifdef FBCON_HAS_CFB24
case 24:
p->fbcon_cmap.cfb24[regno] = (regno << 16) | (regno << 8) | regno;
break;
#endif
#ifdef FBCON_HAS_CFB32
case 32: {
int i = (regno << 8) | regno;
p->fbcon_cmap.cfb32[regno] = (i << 16) | i;
break;
}
#endif
}
return 0;
}
static void
do_install_cmap (int con, struct fb_info *info)
{
if (fb_display[con].cmap.len)
fb_set_cmap(&fb_display[con].cmap, 1, imsttfb_setcolreg, info);
else {
u_int size = fb_display[con].var.bits_per_pixel == 16 ? 32 : 256;
fb_set_cmap(fb_default_cmap(size), 1, imsttfb_setcolreg, info);
}
}
static int
imsttfb_get_fix (struct fb_fix_screeninfo *fix, int con, struct fb_info *info)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)info;
struct fb_var_screeninfo *var = &fb_display[con].var;
*fix = p->fix;
fix->visual = var->bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
: FB_VISUAL_DIRECTCOLOR;
fix->line_length = var->xres * (var->bits_per_pixel >> 3);
return 0;
}
static int
imsttfb_get_var (struct fb_var_screeninfo *var, int con, struct fb_info *info)
{
*var = fb_display[con].var;
return 0;
}
static void
set_dispsw (struct display *disp, struct fb_info_imstt *p)
{
u_int accel = disp->var.accel_flags & FB_ACCELF_TEXT;
if (disp->conp && disp->conp->vc_sw && disp->conp->vc_sw->con_cursor)
disp->conp->vc_sw->con_cursor(disp->conp, CM_ERASE);
p->dispsw = fbcon_dummy;
disp->dispsw = &p->dispsw;
disp->dispsw_data = 0;
switch (disp->var.bits_per_pixel) {
case 8:
disp->var.red.offset = 0;
disp->var.red.length = 8;
disp->var.green.offset = 0;
disp->var.green.length = 8;
disp->var.blue.offset = 0;
disp->var.blue.length = 8;
disp->var.transp.offset = 0;
disp->var.transp.length = 0;
#ifdef FBCON_HAS_CFB8
p->dispsw = accel ? fbcon_imstt8 : fbcon_cfb8;
#endif
break;
case 16: /* RGB 555 or 565 */
if (disp->var.green.length != 6)
disp->var.red.offset = 10;
disp->var.red.length = 5;
disp->var.green.offset = 5;
if (disp->var.green.length != 6)
disp->var.green.length = 5;
disp->var.blue.offset = 0;
disp->var.blue.length = 5;
disp->var.transp.offset = 0;
disp->var.transp.length = 0;
#ifdef FBCON_HAS_CFB16
p->dispsw = accel ? fbcon_imstt16 : fbcon_cfb16;
disp->dispsw_data = p->fbcon_cmap.cfb16;
#endif
break;
case 24: /* RGB 888 */
disp->var.red.offset = 16;
disp->var.red.length = 8;
disp->var.green.offset = 8;
disp->var.green.length = 8;
disp->var.blue.offset = 0;
disp->var.blue.length = 8;
disp->var.transp.offset = 0;
disp->var.transp.length = 0;
#ifdef FBCON_HAS_CFB24
p->dispsw = accel ? fbcon_imstt24 : fbcon_cfb24;
disp->dispsw_data = p->fbcon_cmap.cfb24;
#endif
break;
case 32: /* RGBA 8888 */
disp->var.red.offset = 16;
disp->var.red.length = 8;
disp->var.green.offset = 8;
disp->var.green.length = 8;
disp->var.blue.offset = 0;
disp->var.blue.length = 8;
disp->var.transp.offset = 24;
disp->var.transp.length = 8;
#ifdef FBCON_HAS_CFB32
p->dispsw = accel ? fbcon_imstt32 : fbcon_cfb32;
disp->dispsw_data = p->fbcon_cmap.cfb32;
#endif
break;
}
if (accel && p->ramdac != IBM) {
p->dispsw.cursor = 0;
p->dispsw.set_font = 0;
}
#ifdef CONFIG_FB_COMPAT_XPMAC
set_display_info(disp);
#endif
}
static void
set_disp (struct display *disp, struct fb_info_imstt *p)
{
u_int accel = disp->var.accel_flags & FB_ACCELF_TEXT;
disp->fb_info = &p->info;
set_dispsw(disp, p);
disp->visual = disp->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
: FB_VISUAL_DIRECTCOLOR;
disp->screen_base = (__u8 *)p->frame_buffer;
disp->visual = p->fix.visual;
disp->type = p->fix.type;
disp->type_aux = p->fix.type_aux;
disp->line_length = disp->var.xres * (disp->var.bits_per_pixel >> 3);
disp->can_soft_blank = 1;
disp->inverse = inverse;
disp->ypanstep = 1;
disp->ywrapstep = 0;
if (accel) {
disp->scrollmode = SCROLL_YNOMOVE;
if (disp->var.yres == disp->var.yres_virtual) {
__u32 vram = (p->total_vram - (PAGE_SIZE << 2));
disp->var.yres_virtual = ((vram << 3) / disp->var.bits_per_pixel) / disp->var.xres_virtual;
if (disp->var.yres_virtual < disp->var.yres)
disp->var.yres_virtual = disp->var.yres;
}
} else {
disp->scrollmode = SCROLL_YREDRAW;
}
disp->var.activate = 0;
disp->var.red.msb_right = 0;
disp->var.green.msb_right = 0;
disp->var.blue.msb_right = 0;
disp->var.transp.msb_right = 0;
disp->var.height = -1;
disp->var.width = -1;
disp->var.vmode = FB_VMODE_NONINTERLACED;
disp->var.left_margin = disp->var.right_margin = 16;
disp->var.upper_margin = disp->var.lower_margin = 16;
disp->var.hsync_len = disp->var.vsync_len = 8;
}
static int
imsttfb_set_var (struct fb_var_screeninfo *var, int con, struct fb_info *info)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)info;
struct display *disp;
u_int oldbpp, oldxres, oldyres, oldgreenlen, oldaccel;
disp = &fb_display[con];
if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
&& var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
|| var->xres_virtual < var->xres || var->yres_virtual < var->yres
|| var->nonstd
|| (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
return -EINVAL;
if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > p->total_vram
|| (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > p->total_vram)
return -EINVAL;
if (!((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW))
return 0;
if (!compute_imstt_regvals(p, var->xres, var->yres))
return -EINVAL;
oldbpp = disp->var.bits_per_pixel;
oldxres = disp->var.xres;
oldyres = disp->var.yres;
oldgreenlen = disp->var.green.length;
oldaccel = disp->var.accel_flags;
disp->var.bits_per_pixel = var->bits_per_pixel;
disp->var.xres = var->xres;
disp->var.yres = var->yres;
disp->var.xres_virtual = var->xres_virtual;
disp->var.yres_virtual = var->yres_virtual;
disp->var.green.length = var->green.length;
disp->var.accel_flags = var->accel_flags;
set_disp(disp, p);
if (info->changevar)
(*info->changevar)(con);
if (con == currcon) {
if (oldgreenlen != disp->var.green.length) {
if (disp->var.green.length == 6)
set_565(p);
else
set_555(p);
}
if (oldxres != disp->var.xres || oldyres != disp->var.yres || oldbpp != disp->var.bits_per_pixel)
set_imstt_regvals(p, disp->var.bits_per_pixel);
}
disp->var.pixclock = 1000000 / getclkMHz(p);
if (oldbpp != disp->var.bits_per_pixel) {
int err = fb_alloc_cmap(&disp->cmap, 0, 0);
if (err)
return err;
do_install_cmap(con, info);
}
*var = disp->var;
return 0;
}
static int
imsttfb_pan_display (struct fb_var_screeninfo *var, int con, struct fb_info *info)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)info;
struct display *disp = &fb_display[con];
if (var->xoffset + disp->var.xres > disp->var.xres_virtual
|| var->yoffset + disp->var.yres > disp->var.yres_virtual)
return -EINVAL;
disp->var.xoffset = var->xoffset;
disp->var.yoffset = var->yoffset;
if (con == currcon)
set_offset(disp, p);
return 0;
}
static int
imsttfb_get_cmap (struct fb_cmap *cmap, int kspc, int con, struct fb_info *info)
{
if (con == currcon) /* current console? */
return fb_get_cmap(cmap, kspc, imsttfb_getcolreg, info);
else if (fb_display[con].cmap.len) /* non default colormap? */
fb_copy_cmap(&fb_display[con].cmap, cmap, kspc ? 0 : 2);
else {
u_int size = fb_display[con].var.bits_per_pixel == 16 ? 32 : 256;
fb_copy_cmap(fb_default_cmap(size), cmap, kspc ? 0 : 2);
}
return 0;
}
static int
imsttfb_set_cmap (struct fb_cmap *cmap, int kspc, int con, struct fb_info *info)
{
int err;
if (!fb_display[con].cmap.len) { /* no colormap allocated? */
int size = fb_display[con].var.bits_per_pixel == 16 ? 32 : 256;
if ((err = fb_alloc_cmap(&fb_display[con].cmap, size, 0)))
return err;
}
if (con == currcon) /* current console? */
return fb_set_cmap(cmap, kspc, imsttfb_setcolreg, info);
else
fb_copy_cmap(cmap, &fb_display[con].cmap, kspc ? 0 : 1);
return 0;
}
#define FBIMSTT_SETREG 0x545401
#define FBIMSTT_GETREG 0x545402
#define FBIMSTT_SETCMAPREG 0x545403
#define FBIMSTT_GETCMAPREG 0x545404
#define FBIMSTT_SETIDXREG 0x545405
#define FBIMSTT_GETIDXREG 0x545406
static int
imsttfb_ioctl (struct inode *inode, struct file *file, u_int cmd,
u_long arg, int con, struct fb_info *info)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)info;
__u8 idx[2];
__u32 reg[2];
switch (cmd) {
case FBIMSTT_SETREG:
if (copy_from_user(reg, (void *)arg, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
return -EFAULT;
out_le32(&p->dc_regs[reg[0]], reg[1]);
return 0;
case FBIMSTT_GETREG:
if (copy_from_user(reg, (void *)arg, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
return -EFAULT;
reg[1] = in_le32(&p->dc_regs[reg[0]]);
if (copy_to_user((void *)(arg + 4), &reg[1], 4))
return -EFAULT;
return 0;
case FBIMSTT_SETCMAPREG:
if (copy_from_user(reg, (void *)arg, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
return -EFAULT;
out_le32(&((u_int *)p->cmap_regs)[reg[0]], reg[1]);
return 0;
case FBIMSTT_GETCMAPREG:
if (copy_from_user(reg, (void *)arg, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
return -EFAULT;
reg[1] = in_le32(&((u_int *)p->cmap_regs)[reg[0]]);
if (copy_to_user((void *)(arg + 4), &reg[1], 4))
return -EFAULT;
return 0;
case FBIMSTT_SETIDXREG:
if (copy_from_user(idx, (void *)arg, 2))
return -EFAULT;
p->cmap_regs[PIDXHI] = 0; eieio();
p->cmap_regs[PIDXLO] = idx[0]; eieio();
p->cmap_regs[PIDXDATA] = idx[1]; eieio();
return 0;
case FBIMSTT_GETIDXREG:
if (copy_from_user(idx, (void *)arg, 1))
return -EFAULT;
p->cmap_regs[PIDXHI] = 0; eieio();
p->cmap_regs[PIDXLO] = idx[0]; eieio();
idx[1] = p->cmap_regs[PIDXDATA];
if (copy_to_user((void *)(arg + 1), &idx[1], 1))
return -EFAULT;
return 0;
default:
return -ENOIOCTLCMD;
}
}
static struct pci_device_id imsttfb_pci_tbl[] __devinitdata = {
{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
static struct pci_driver imsttfb_pci_driver = {
name: "imsttfb",
id_table: imsttfb_pci_tbl,
probe: imsttfb_probe,
remove: __devexit_p(imsttfb_remove),
};
static struct fb_ops imsttfb_ops = {
owner: THIS_MODULE,
fb_get_fix: imsttfb_get_fix,
fb_get_var: imsttfb_get_var,
fb_set_var: imsttfb_set_var,
fb_get_cmap: imsttfb_get_cmap,
fb_set_cmap: imsttfb_set_cmap,
fb_pan_display: imsttfb_pan_display,
fb_ioctl: imsttfb_ioctl,
};
static int
imsttfbcon_switch (int con, struct fb_info *info)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)info;
struct display *old = &fb_display[currcon], *new = &fb_display[con];
if (old->cmap.len)
fb_get_cmap(&old->cmap, 1, imsttfb_getcolreg, info);
if (old->conp && old->conp->vc_sw && old->conp->vc_sw->con_cursor)
old->conp->vc_sw->con_cursor(old->conp, CM_ERASE);
currcon = con;
if (old->var.xres != new->var.xres
|| old->var.yres != new->var.yres
|| old->var.bits_per_pixel != new->var.bits_per_pixel
|| old->var.green.length != new->var.green.length
|| old->var.accel_flags != new->var.accel_flags) {
set_dispsw(new, p);
if (!compute_imstt_regvals(p, new->var.xres, new->var.yres))
return -1;
if (new->var.bits_per_pixel == 16) {
if (new->var.green.length == 6)
set_565(p);
else
set_555(p);
}
set_imstt_regvals(p, new->var.bits_per_pixel);
}
set_offset(new, p);
imsttfbcon_set_font(new, fontwidth(new), fontheight(new));
do_install_cmap(con, info);
return 0;
}
static int
imsttfbcon_updatevar (int con, struct fb_info *info)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)info;
struct display *disp = &fb_display[con];
if (con != currcon)
goto out;
if (p->ramdac == IBM)
imsttfbcon_cursor(disp, CM_ERASE, p->cursor.x, p->cursor.y);
set_offset(disp, p);
out:
return 0;
}
static void
imsttfbcon_blank (int blank, struct fb_info *info)
{
struct fb_info_imstt *p = (struct fb_info_imstt *)info;
__u32 ctrl;
ctrl = in_le32(&p->dc_regs[STGCTL]);
if (blank > 0) {
switch (blank - 1) {
case VESA_NO_BLANKING:
case VESA_POWERDOWN:
ctrl &= ~0x00000380;
if (p->ramdac == IBM) {
p->cmap_regs[PIDXHI] = 0; eieio();
p->cmap_regs[PIDXLO] = MISCTL2; eieio();
p->cmap_regs[PIDXDATA] = 0x55; eieio();
p->cmap_regs[PIDXLO] = MISCTL1; eieio();
p->cmap_regs[PIDXDATA] = 0x11; eieio();
p->cmap_regs[PIDXLO] = SYNCCTL; eieio();
p->cmap_regs[PIDXDATA] = 0x0f; eieio();
p->cmap_regs[PIDXLO] = PWRMNGMT;eieio();
p->cmap_regs[PIDXDATA] = 0x1f; eieio();
p->cmap_regs[PIDXLO] = CLKCTL; eieio();
p->cmap_regs[PIDXDATA] = 0xc0;
}
break;
case VESA_VSYNC_SUSPEND:
ctrl &= ~0x00000020;
break;
case VESA_HSYNC_SUSPEND:
ctrl &= ~0x00000010;
break;
}
} else {
if (p->ramdac == IBM) {
ctrl |= 0x000017b0;
p->cmap_regs[PIDXHI] = 0; eieio();
p->cmap_regs[PIDXLO] = CLKCTL; eieio();
p->cmap_regs[PIDXDATA] = 0x01; eieio();
p->cmap_regs[PIDXLO] = PWRMNGMT;eieio();
p->cmap_regs[PIDXDATA] = 0x00; eieio();
p->cmap_regs[PIDXLO] = SYNCCTL; eieio();
p->cmap_regs[PIDXDATA] = 0x00; eieio();
p->cmap_regs[PIDXLO] = MISCTL1; eieio();
p->cmap_regs[PIDXDATA] = 0x01; eieio();
p->cmap_regs[PIDXLO] = MISCTL2; eieio();
p->cmap_regs[PIDXDATA] = 0x45; eieio();
} else
ctrl |= 0x00001780;
}
out_le32(&p->dc_regs[STGCTL], ctrl);
}
static void __init
init_imstt(struct fb_info_imstt *p)
{
__u32 i, tmp;
__u32 *ip, *end;
tmp = in_le32(&p->dc_regs[PRC]);
if (p->ramdac == IBM)
p->total_vram = (tmp & 0x0004) ? 0x400000 : 0x200000;
else
p->total_vram = 0x800000;
ip = (__u32 *)p->frame_buffer;
end = (__u32 *)(p->frame_buffer + p->total_vram);
while (ip < end)
*ip++ = 0;
/* initialize the card */
tmp = in_le32(&p->dc_regs[STGCTL]);
out_le32(&p->dc_regs[STGCTL], tmp & ~0x1);
out_le32(&p->dc_regs[SSR], 0);
/* set default values for DAC registers */
if (p->ramdac == IBM) {
p->cmap_regs[PPMASK] = 0xff; eieio();
p->cmap_regs[PIDXHI] = 0; eieio();
for (i = 0; i < sizeof(ibm_initregs) / sizeof(*ibm_initregs); i++) {
p->cmap_regs[PIDXLO] = ibm_initregs[i].addr; eieio();
p->cmap_regs[PIDXDATA] = ibm_initregs[i].value; eieio();
}
} else {
for (i = 0; i < sizeof(tvp_initregs) / sizeof(*tvp_initregs); i++) {
p->cmap_regs[TVPADDRW] = tvp_initregs[i].addr; eieio();
p->cmap_regs[TVPIDATA] = tvp_initregs[i].value; eieio();
}
}
#ifdef CONFIG_ALL_PPC
{
int vmode = init_vmode, cmode = init_cmode;
#ifdef CONFIG_NVRAM
/* Attempt to read vmode/cmode from NVRAM */
if (vmode == VMODE_NVRAM)
vmode = nvram_read_byte(NV_VMODE);
if (cmode == CMODE_NVRAM)
cmode = nvram_read_byte(NV_CMODE);
#endif
/* If we didn't get something from NVRAM, pick a
* sane default.
*/
if (vmode <= 0 || vmode > VMODE_MAX)
vmode = VMODE_640_480_67;
if (cmode < CMODE_8 || cmode > CMODE_32)
cmode = CMODE_8;
if (mac_vmode_to_var(vmode, cmode, &p->disp.var)) {
p->disp.var.xres = p->disp.var.xres_virtual = INIT_XRES;
p->disp.var.yres = p->disp.var.yres_virtual = INIT_YRES;
p->disp.var.bits_per_pixel = INIT_BPP;
}
}
#else
p->disp.var.xres = p->disp.var.xres_virtual = INIT_XRES;
p->disp.var.yres = p->disp.var.yres_virtual = INIT_YRES;
p->disp.var.bits_per_pixel = INIT_BPP;
#endif
if ((p->disp.var.xres * p->disp.var.yres) * (p->disp.var.bits_per_pixel >> 3) > p->total_vram
|| !(compute_imstt_regvals(p, p->disp.var.xres, p->disp.var.yres))) {
printk("imsttfb: %ux%ux%u not supported\n", p->disp.var.xres, p->disp.var.yres, p->disp.var.bits_per_pixel);
kfree(p);
return;
}
sprintf(p->fix.id, "IMS TT (%s)", p->ramdac == IBM ? "IBM" : "TVP");
p->fix.smem_start = p->frame_buffer_phys;
p->fix.smem_len = p->total_vram;
p->fix.mmio_start = p->dc_regs_phys;
p->fix.mmio_len = 0x1000;
p->fix.accel = FB_ACCEL_IMS_TWINTURBO;
p->fix.type = FB_TYPE_PACKED_PIXELS;
p->fix.visual = p->disp.var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
: FB_VISUAL_DIRECTCOLOR;
p->fix.line_length = p->disp.var.xres * (p->disp.var.bits_per_pixel >> 3);
p->fix.xpanstep = 8;
p->fix.ypanstep = 1;
p->fix.ywrapstep = 0;
p->disp.var.accel_flags = noaccel ? 0 : FB_ACCELF_TEXT;
set_disp(&p->disp, p);
if (!noaccel && p->ramdac == IBM)
imstt_cursor_init(p);
if (p->disp.var.green.length == 6)
set_565(p);
else
set_555(p);
set_imstt_regvals(p, p->disp.var.bits_per_pixel);
p->disp.var.pixclock = 1000000 / getclkMHz(p);
strcpy(p->info.modename, p->fix.id);
strcpy(p->info.fontname, fontname);
p->info.node = -1;
p->info.fbops = &imsttfb_ops;
p->info.disp = &p->disp;
p->info.changevar = 0;
p->info.switch_con = &imsttfbcon_switch;
p->info.updatevar = &imsttfbcon_updatevar;
p->info.blank = &imsttfbcon_blank;
p->info.flags = FBINFO_FLAG_DEFAULT;
for (i = 0; i < 16; i++) {
u_int j = color_table[i];
p->palette[i].red = default_red[j];
p->palette[i].green = default_grn[j];
p->palette[i].blue = default_blu[j];
}
if (register_framebuffer(&p->info) < 0) {
kfree(p);
return;
}
i = GET_FB_IDX(p->info.node);
tmp = (in_le32(&p->dc_regs[SSTATUS]) & 0x0f00) >> 8;
printk("fb%u: %s frame buffer; %uMB vram; chip version %u\n",
i, p->fix.id, p->total_vram >> 20, tmp);
#ifdef CONFIG_FB_COMPAT_XPMAC
strncpy(display_info.name, "IMS,tt128mb", sizeof(display_info.name));
display_info.fb_address = p->frame_buffer_phys;
display_info.cmap_adr_address = p->cmap_regs_phys + PADDRW;
display_info.cmap_data_address = p->cmap_regs_phys + PDATA;
display_info.disp_reg_address = p->dc_regs_phys;
if (!console_fb_info)
console_fb_info = &p->info;
#endif /* CONFIG_FB_COMPAT_XPMAC */
}
static int __devinit
imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct fb_info_imstt *p;
unsigned long addr, size;
addr = pci_resource_start (pdev, 0);
size = pci_resource_len (pdev, 0);
p = kmalloc(sizeof(struct fb_info_imstt), GFP_KERNEL);
if (!p) {
printk(KERN_ERR "imsttfb: Can't allocate memory\n");
return -ENOMEM;
}
memset(p, 0, sizeof(struct fb_info_imstt));
if (!request_mem_region(addr, size, "imsttfb")) {
printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
kfree(p);
return -ENODEV;
}
switch (pdev->device) {
case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
p->ramdac = IBM;
break;
case PCI_DEVICE_ID_IMS_TT3D: /* IMS,tt3d */
p->ramdac = TVP;
break;
default:
printk(KERN_INFO "imsttfb: Device 0x%lx unknown, "
"contact maintainer.\n", pdev->device);
return -ENODEV;
}
p->frame_buffer_phys = addr;
p->board_size = size;
p->frame_buffer = (__u8 *)ioremap(addr, p->ramdac == IBM ? 0x400000 : 0x800000);
p->dc_regs_phys = addr + 0x800000;
p->dc_regs = (__u32 *)ioremap(addr + 0x800000, 0x1000);
p->cmap_regs_phys = addr + 0x840000;
p->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
init_imstt(p);
pci_set_drvdata(pdev, p);
return 0;
}
static void __devexit
imsttfb_remove(struct pci_dev *pdev)
{
struct fb_info_imstt *p = pci_get_drvdata(pdev);
unregister_framebuffer(&p->info);
iounmap(p->cmap_regs);
iounmap(p->dc_regs);
iounmap(p->frame_buffer);
release_mem_region(p->frame_buffer_phys, p->board_size);
kfree(p);
}
#ifndef MODULE
int __init
imsttfb_setup(char *options)
{
char *this_opt;
if (!options || !*options)
return 0;
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!strncmp(this_opt, "font:", 5)) {
char *p;
int i;
p = this_opt + 5;
for (i = 0; i < sizeof(fontname) - 1; i++)
if (!*p || *p == ' ' || *p == ',')
break;
memcpy(fontname, this_opt + 5, i);
fontname[i] = 0;
} else if (!strncmp(this_opt, "noblink", 7)) {
curblink = 0;
} else if (!strncmp(this_opt, "noaccel", 7)) {
noaccel = 1;
} else if (!strncmp(this_opt, "inverse", 7)) {
inverse = 1;
fb_invert_cmaps();
}
#if defined(CONFIG_PPC)
else if (!strncmp(this_opt, "vmode:", 6)) {
int vmode = simple_strtoul(this_opt+6, NULL, 0);
if (vmode > 0 && vmode <= VMODE_MAX)
init_vmode = vmode;
} else if (!strncmp(this_opt, "cmode:", 6)) {
int cmode = simple_strtoul(this_opt+6, NULL, 0);
switch (cmode) {
case CMODE_8:
case 8:
init_cmode = CMODE_8;
break;
case CMODE_16:
case 15:
case 16:
init_cmode = CMODE_16;
break;
case CMODE_32:
case 24:
case 32:
init_cmode = CMODE_32;
break;
}
}
#endif
}
return 0;
}
#endif /* MODULE */
int __init imsttfb_init(void)
{
return pci_module_init(&imsttfb_pci_driver);
}
static void __exit imsttfb_exit(void)
{
pci_unregister_driver(&imsttfb_pci_driver);
}
#ifdef MODULE
MODULE_LICENSE("GPL");
module_init(imsttfb_init);
#endif
module_exit(imsttfb_exit);