blob: 248ec146acd34f6892fd4782cedaea54c554d38d [file] [log] [blame]
/*
* ocp.h
*
* (c) Benjamin Herrenschmidt (benh@kernel.crashing.org)
* Mipsys - France
*
* Derived from work (c) Armin Kuster akuster@pacbell.net
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* TODO: - Add get/put interface & fixup locking to provide same API for
* 2.4 and 2.5
* - Rework PM callbacks
*/
#ifdef __KERNEL__
#ifndef __OCP_H__
#define __OCP_H__
#include <linux/init.h>
#include <linux/list.h>
#include <linux/config.h>
#include <linux/devfs_fs_kernel.h>
#include <asm/mmu.h>
#include <asm/ocp_ids.h>
#include <asm/rwsem.h>
#include <asm/semaphore.h>
#if defined(CONFIG_IBM_OCP)
#include <platforms/ibm_ocp.h>
#endif
#if defined(CONFIG_MPC_OCP)
#include <asm/mpc_ocp.h>
#endif
#define OCP_MAX_IRQS 7
#define MAX_EMACS 4
#define OCP_IRQ_NA -1 /* used when ocp device does not have an irq */
#define OCP_IRQ_MUL -2 /* used for ocp devices with multiply irqs */
#define OCP_NULL_TYPE -1 /* used to mark end of list */
#define OCP_CPM_NA 0 /* No Clock or Power Management avaliable */
#define OCP_PADDR_NA 0 /* No MMIO registers */
#define OCP_ANY_ID (~0)
#define OCP_ANY_INDEX -1
extern struct list_head ocp_devices;
extern struct list_head ocp_drivers;
extern struct rw_semaphore ocp_devices_sem;
extern struct semaphore ocp_drivers_sem;
struct ocp_device_id {
unsigned int vendor, function; /* Vendor and function ID or OCP_ANY_ID */
unsigned long driver_data; /* Data private to the driver */
};
/*
* Static definition of an OCP device.
*
* @vendor: Vendor code. It is _STRONGLY_ discouraged to use
* the vendor code as a way to match a unique device,
* though I kept that possibility open, you should
* really define different function codes for different
* device types
* @function: This is the function code for this device.
* @index: This index is used for mapping the Nth function of a
* given core. This is typically used for cross-driver
* matching, like looking for a given MAL or ZMII from
* an EMAC or for getting to the proper set of DCRs.
* Indices are no longer magically calculated based on
* structure ordering, they have to be actually coded
* into the ocp_def to avoid any possible confusion
* I _STRONGLY_ (again ? wow !) encourage anybody relying
* on index mapping to encode the "target" index in an
* associated structure pointed to by "additions", see
* how it's done for the EMAC driver.
* @paddr: Device physical address (may not mean anything...)
* @irq: Interrupt line for this device (TODO: think about making
* an array with this)
* @pm: Currently, contains the bitmask in CPMFR DCR for the device
* @additions: Optionally points to a function specific structure
* providing additional informations for a given device
* instance. It's currently used by the EMAC driver for MAL
* channel & ZMII port mapping among others.
*/
struct ocp_def {
unsigned int vendor;
unsigned int function;
int index;
phys_addr_t paddr;
int irq;
unsigned long pm;
void *additions;
};
/* Struct for a given device instance */
struct ocp_device {
struct list_head link;
char name[80]; /* device name */
struct ocp_def *def; /* device definition */
void *drvdata; /* driver data for this device */
struct ocp_driver *driver;
u32 current_state; /* Current operating state. In ACPI-speak,
this is D0-D3, D0 being fully functional,
and D3 being off. */
};
/* Structure for a device driver */
struct ocp_driver {
const char *name;
const struct ocp_device_id *id_table; /* NULL if wants all devices */
int (*probe) (struct ocp_device *dev); /* New device inserted */
void (*remove) (struct ocp_device *dev); /* Device removed (NULL if not a
hot-plug capable driver) */
int (*save_state) (struct ocp_device *dev, u32 state); /* Save Device Context */
int (*suspend) (struct ocp_device *dev, u32 state); /* Device suspended */
int (*resume) (struct ocp_device *dev); /* Device woken up */
int (*enable_wake) (struct ocp_device *dev, u32 state, int enable);
/* Enable wake event */
struct list_head link;
};
/* Similar to the helpers above, these manipulate per-ocp_dev
* driver-specific data. Currently stored as ocp_dev::ocpdev,
* a void pointer, but it is not present on older kernels.
*/
static inline void *
ocp_get_drvdata(struct ocp_device *pdev)
{
return pdev->drvdata;
}
static inline void
ocp_set_drvdata(struct ocp_device *pdev, void *data)
{
pdev->drvdata = data;
}
#if defined (CONFIG_PM)
/*
* This is right for the IBM 405 and 440 but will need to be
* generalized if the OCP stuff gets used on other processors.
*/
static inline void
ocp_force_power_off(struct ocp_device *odev)
{
mtdcr(DCRN_CPMFR, mfdcr(DCRN_CPMFR) | odev->def->pm);
}
static inline void
ocp_force_power_on(struct ocp_device *odev)
{
mtdcr(DCRN_CPMFR, mfdcr(DCRN_CPMFR) & ~odev->def->pm);
}
#else
#define ocp_force_power_off(x) (void)(x)
#define ocp_force_power_on(x) (void)(x)
#endif
/* Register/Unregister an OCP driver */
extern int ocp_register_driver(struct ocp_driver *drv);
extern void ocp_unregister_driver(struct ocp_driver *drv);
/* Build list of devices */
extern int ocp_early_init(void) __init;
/* Initialize the driver portion of OCP management layer */
extern int ocp_driver_init(void);
/* Find a device by index */
extern struct ocp_device *ocp_find_device(unsigned int vendor, unsigned int function, int index);
/* Get a def by index */
extern struct ocp_def *ocp_get_one_device(unsigned int vendor, unsigned int function, int index);
/* Add a device by index */
extern int ocp_add_one_device(struct ocp_def *def);
/* Remove a device by index */
extern int ocp_remove_one_device(unsigned int vendor, unsigned int function, int index);
#endif /* __OCP_H__ */
#endif /* __KERNEL__ */