blob: 456674156e60c347bdcc32b0099dcf11234517f9 [file] [log] [blame]
/*
* ia64/kernel/entry.S
*
* Kernel entry points.
*
* Copyright (C) 2002-2003
* Suresh Siddha <suresh.b.siddha@intel.com>
* Fenghua Yu <fenghua.yu@intel.com>
* Copyright (C) 1998-2002 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
* Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
* Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
*/
/*
* ia64_switch_to now places correct virtual mapping in in TR2 for
* kernel stack. This allows us to handle interrupts without changing
* to physical mode.
*
* Jonathan Nicklin <nicklin@missioncriticallinux.com>
* Patrick O'Rourke <orourke@missioncriticallinux.com>
* 11/07/2000
/
/*
* Global (preserved) predicate usage on syscall entry/exit path:
*
* pKern: See entry.h.
* pUser: See entry.h.
* pSys: See entry.h.
* pNonSys: !pSys
*/
#include <linux/config.h>
#include <asm/cache.h>
#include <asm/errno.h>
#include <asm/kregs.h>
#include <asm/offsets.h>
#include <asm/processor.h>
#include <asm/unistd.h>
#include <asm/asmmacro.h>
#include <asm/pgtable.h>
#include "minstate.h"
/*
* execve() is special because in case of success, we need to
* setup a null register window frame.
*/
ENTRY(ia64_execve)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,4,0
/* Leave from kernel and restore all pt_regs to correspending registers. This is special
* because ia32 application needs scratch registers after return from execve.
*/
movl loc0=ia64_ret_from_execve_syscall
.body
mov out0=in0 // filename
;; // stop bit between alloc and call
mov out1=in1 // argv
mov out2=in2 // envp
add out3=16,sp // regs
br.call.sptk.many rp=sys_execve
.ret0: cmp4.ge p6,p7=r8,r0
mov ar.pfs=loc1 // restore ar.pfs
sxt4 r8=r8 // return 64-bit result
;;
stf.spill [sp]=f0
(p6) cmp.ne pKern,pUser=r0,r0 // a successful execve() lands us in user-mode...
mov rp=loc0
(p6) mov ar.pfs=r0 // clear ar.pfs on success
(p7) br.ret.sptk.many rp
/*
* In theory, we'd have to zap this state only to prevent leaking of
* security sensitive state (e.g., if current->mm->dumpable is zero). However,
* this executes in less than 20 cycles even on Itanium, so it's not worth
* optimizing for...).
*/
mov ar.unat=0; mov ar.lc=0;
mov r4=0; mov f2=f0; mov b1=r0
mov r5=0; mov f3=f0; mov b2=r0
mov r6=0; mov f4=f0; mov b3=r0
mov r7=0; mov f5=f0; mov b4=r0
ldf.fill f12=[sp]; mov f13=f0; mov b5=r0
ldf.fill f14=[sp]; ldf.fill f15=[sp]; mov f16=f0
ldf.fill f17=[sp]; ldf.fill f18=[sp]; mov f19=f0
ldf.fill f20=[sp]; ldf.fill f21=[sp]; mov f22=f0
ldf.fill f23=[sp]; ldf.fill f24=[sp]; mov f25=f0
ldf.fill f26=[sp]; ldf.fill f27=[sp]; mov f28=f0
ldf.fill f29=[sp]; ldf.fill f30=[sp]; mov f31=f0
br.ret.sptk.many rp
END(ia64_execve)
GLOBAL_ENTRY(sys_clone2)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc r16=ar.pfs,8,2,4,0
DO_SAVE_SWITCH_STACK
mov loc0=rp
mov loc1=r16 // save ar.pfs across do_fork
.body
mov out1=in1
mov out3=in2
adds out2=IA64_SWITCH_STACK_SIZE+16,sp // out2 = &regs
mov out0=in0 // out0 = clone_flags
br.call.sptk.many rp=do_fork
.ret1: .restore sp
adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack
mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(sys_clone2)
GLOBAL_ENTRY(sys_clone)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc r16=ar.pfs,8,2,4,0
DO_SAVE_SWITCH_STACK
mov loc0=rp
mov loc1=r16 // save ar.pfs across do_fork
.body
mov out1=in1
mov out3=16 // stacksize (compensates for 16-byte scratch area)
adds out2=IA64_SWITCH_STACK_SIZE+16,sp // out2 = &regs
mov out0=in0 // out0 = clone_flags
br.call.sptk.many rp=do_fork
.ret2: .restore sp
adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack
mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(sys_clone)
/*
* prev_task <- ia64_switch_to(struct task_struct *next)
*/
GLOBAL_ENTRY(ia64_switch_to)
.prologue
alloc r16=ar.pfs,1,0,0,0
DO_SAVE_SWITCH_STACK
.body
adds r22=IA64_TASK_THREAD_KSP_OFFSET,r13
mov r27=IA64_KR(CURRENT_STACK)
dep r20=0,in0,61,3 // physical address of "current"
;;
st8 [r22]=sp // save kernel stack pointer of old task
shr.u r26=r20,IA64_GRANULE_SHIFT
shr.u r17=r20,KERNEL_TR_PAGE_SHIFT
;;
cmp.ne p6,p7=KERNEL_TR_PAGE_NUM,r17
adds r21=IA64_TASK_THREAD_KSP_OFFSET,in0
;;
/*
* If we've already mapped this task's page, we can skip doing it again.
*/
(p6) cmp.eq p7,p6=r26,r27
(p6) br.cond.dpnt .map
;;
.done:
(p6) ssm psr.ic // if we we had to map, renable the psr.ic bit FIRST!!!
;;
(p6) srlz.d
ld8 sp=[r21] // load kernel stack pointer of new task
mov IA64_KR(CURRENT)=r20 // update "current" application register
mov r8=r13 // return pointer to previously running task
mov r13=in0 // set "current" pointer
;;
ssm psr.i // renable psr.i AFTER the ic bit is serialized
DO_LOAD_SWITCH_STACK
#ifdef CONFIG_SMP
sync.i // ensure "fc"s done by this CPU are visible on other CPUs
#endif
br.ret.sptk.many rp // boogie on out in new context
.map:
rsm psr.i | psr.ic
movl r25=PAGE_KERNEL
;;
srlz.d
or r23=r25,r20 // construct PA | page properties
mov r25=IA64_GRANULE_SHIFT<<2
;;
mov cr.itir=r25
mov cr.ifa=in0 // VA of next task...
;;
mov r25=IA64_TR_CURRENT_STACK
mov IA64_KR(CURRENT_STACK)=r26 // remember last page we mapped...
;;
itr.d dtr[r25]=r23 // wire in new mapping...
br.cond.sptk .done
END(ia64_switch_to)
/*
* Note that interrupts are enabled during save_switch_stack and
* load_switch_stack. This means that we may get an interrupt with
* "sp" pointing to the new kernel stack while ar.bspstore is still
* pointing to the old kernel backing store area. Since ar.rsc,
* ar.rnat, ar.bsp, and ar.bspstore are all preserved by interrupts,
* this is not a problem. Also, we don't need to specify unwind
* information for preserved registers that are not modified in
* save_switch_stack as the right unwind information is already
* specified at the call-site of save_switch_stack.
*/
/*
* save_switch_stack:
* - r16 holds ar.pfs
* - b7 holds address to return to
* - rp (b0) holds return address to save
*/
GLOBAL_ENTRY(save_switch_stack)
.prologue
.altrp b7
flushrs // flush dirty regs to backing store (must be first in insn group)
.save @priunat,r17
mov r17=ar.unat // preserve caller's
.body
adds r3=80,sp
;;
lfetch.fault.excl.nt1 [r3],128
mov ar.rsc=0 // put RSE in mode: enforced lazy, little endian, pl 0
adds r2=16+128,sp
;;
lfetch.fault.excl.nt1 [r2],128
lfetch.fault.excl.nt1 [r3],128
adds r14=SW(R4)+16,sp
;;
lfetch.fault.excl [r2]
lfetch.fault.excl [r3]
adds r15=SW(R5)+16,sp
;;
mov r18=ar.fpsr // preserve fpsr
mov r19=ar.rnat
add r2=SW(F2)+16,sp // r2 = &sw->f2
.mem.offset 0,0; st8.spill [r14]=r4,16 // spill r4
.mem.offset 8,0; st8.spill [r15]=r5,16 // spill r5
add r3=SW(F3)+16,sp // r3 = &sw->f3
;;
stf.spill [r2]=f2,32
stf.spill [r3]=f3,32
mov r21=b0
.mem.offset 0,0; st8.spill [r14]=r6,16 // spill r6
.mem.offset 8,0; st8.spill [r15]=r7,16 // spill r7
mov r22=b1
;;
// since we're done with the spills, read and save ar.unat:
mov r29=ar.unat // M-unit
mov r20=ar.bspstore // M-unit
mov r23=b2
stf.spill [r2]=f4,32
stf.spill [r3]=f5,32
mov r24=b3
;;
st8 [r14]=r21,16 // save b0
st8 [r15]=r22,16 // save b1
mov r25=b4
mov r26=b5
;;
st8 [r14]=r23,16 // save b2
st8 [r15]=r24,16 // save b3
mov r21=ar.lc // I-unit
stf.spill [r2]=f12,32
stf.spill [r3]=f13,32
;;
st8 [r14]=r25,16 // save b4
st8 [r15]=r26,16 // save b5
stf.spill [r2]=f14,32
stf.spill [r3]=f15,32
;;
st8 [r14]=r16 // save ar.pfs
st8 [r15]=r21 // save ar.lc
stf.spill [r2]=f16,32
stf.spill [r3]=f17,32
;;
stf.spill [r2]=f18,32
stf.spill [r3]=f19,32
;;
stf.spill [r2]=f20,32
stf.spill [r3]=f21,32
;;
stf.spill [r2]=f22,32
stf.spill [r3]=f23,32
;;
stf.spill [r2]=f24,32
stf.spill [r3]=f25,32
add r14=SW(CALLER_UNAT)+16,sp
;;
stf.spill [r2]=f26,32
stf.spill [r3]=f27,32
add r15=SW(AR_FPSR)+16,sp
;;
stf.spill [r2]=f28,32
stf.spill [r3]=f29,32
st8 [r14]=r17 // save caller_unat
st8 [r15]=r18 // save fpsr
mov r21=pr
;;
stf.spill [r2]=f30,(SW(AR_UNAT)-SW(F30))
stf.spill [r3]=f31,(SW(AR_RNAT)-SW(F31))
;;
st8 [r2]=r29,16 // save ar.unat
st8 [r3]=r19,16 // save ar.rnat
;;
st8 [r2]=r20 // save ar.bspstore
st8 [r3]=r21 // save predicate registers
mov ar.rsc=3 // put RSE back into eager mode, pl 0
br.cond.sptk.many b7
END(save_switch_stack)
/*
* load_switch_stack:
* - "invala" MUST be done at call site (normally in DO_LOAD_SWITCH_STACK)
* - b7 holds address to return to
* - must not touch r8-r11
*/
ENTRY(load_switch_stack)
.prologue
.altrp b7
.body
lfetch.fault.nt1 [sp]
adds r2=SW(AR_BSPSTORE)+16,sp
adds r3=SW(AR_UNAT)+16,sp
mov ar.rsc=0 // put RSE into enforced lazy mode
adds r14=SW(CALLER_UNAT)+16,sp
adds r15=SW(AR_FPSR)+16,sp
;;
ld8 r27=[r2],(SW(B0)-SW(AR_BSPSTORE)) // bspstore
ld8 r29=[r3],(SW(B1)-SW(AR_UNAT)) // unat
;;
ld8 r21=[r2],16 // restore b0
ld8 r22=[r3],16 // restore b1
;;
ld8 r23=[r2],16 // restore b2
ld8 r24=[r3],16 // restore b3
;;
ld8 r25=[r2],16 // restore b4
ld8 r26=[r3],16 // restore b5
;;
ld8 r16=[r2],(SW(PR)-SW(AR_PFS)) // ar.pfs
ld8 r17=[r3],(SW(AR_RNAT)-SW(AR_LC)) // ar.lc
;;
ld8 r28=[r2] // restore pr
ld8 r30=[r3] // restore rnat
;;
ld8 r18=[r14],16 // restore caller's unat
ld8 r19=[r15],24 // restore fpsr
;;
ldf.fill f2=[r14],32
ldf.fill f3=[r15],32
;;
ldf.fill f4=[r14],32
ldf.fill f5=[r15],32
;;
ldf.fill f12=[r14],32
ldf.fill f13=[r15],32
;;
ldf.fill f14=[r14],32
ldf.fill f15=[r15],32
;;
ldf.fill f16=[r14],32
ldf.fill f17=[r15],32
;;
ldf.fill f18=[r14],32
ldf.fill f19=[r15],32
mov b0=r21
;;
ldf.fill f20=[r14],32
ldf.fill f21=[r15],32
mov b1=r22
;;
ldf.fill f22=[r14],32
ldf.fill f23=[r15],32
mov b2=r23
;;
mov ar.bspstore=r27
mov ar.unat=r29 // establish unat holding the NaT bits for r4-r7
mov b3=r24
;;
ldf.fill f24=[r14],32
ldf.fill f25=[r15],32
mov b4=r25
;;
ldf.fill f26=[r14],32
ldf.fill f27=[r15],32
mov b5=r26
;;
ldf.fill f28=[r14],32
ldf.fill f29=[r15],32
mov ar.pfs=r16
;;
ldf.fill f30=[r14],32
ldf.fill f31=[r15],24
mov ar.lc=r17
;;
ld8.fill r4=[r14],16
ld8.fill r5=[r15],16
mov pr=r28,-1
;;
ld8.fill r6=[r14],16
ld8.fill r7=[r15],16
mov ar.unat=r18 // restore caller's unat
mov ar.rnat=r30 // must restore after bspstore but before rsc!
mov ar.fpsr=r19 // restore fpsr
mov ar.rsc=3 // put RSE back into eager mode, pl 0
br.cond.sptk.many b7
END(load_switch_stack)
GLOBAL_ENTRY(__ia64_syscall)
.regstk 6,0,0,0
mov r15=in5 // put syscall number in place
break __BREAK_SYSCALL
movl r2=errno
cmp.eq p6,p7=-1,r10
;;
(p6) st4 [r2]=r8
(p6) mov r8=-1
br.ret.sptk.many rp
END(__ia64_syscall)
/*
* We invoke syscall_trace through this intermediate function to
* ensure that the syscall input arguments are not clobbered. We
* also use it to preserve b6, which contains the syscall entry point.
*/
GLOBAL_ENTRY(invoke_syscall_trace)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,3,0,0
mov loc0=rp
.body
mov loc2=b6
;;
br.call.sptk.many rp=syscall_trace
.ret3: mov rp=loc0
mov ar.pfs=loc1
mov b6=loc2
br.ret.sptk.many rp
END(invoke_syscall_trace)
/*
* Invoke a system call, but do some tracing before and after the call.
* We MUST preserve the current register frame throughout this routine
* because some system calls (such as ia64_execve) directly
* manipulate ar.pfs.
*
* Input:
* r15 = syscall number
* b6 = syscall entry point
*/
.global ia64_strace_leave_kernel
GLOBAL_ENTRY(ia64_trace_syscall)
PT_REGS_UNWIND_INFO(0)
{ /*
* Some versions of gas generate bad unwind info if the first instruction of a
* procedure doesn't go into the first slot of a bundle. This is a workaround.
*/
nop.m 0
nop.i 0
br.call.sptk.many rp=invoke_syscall_trace // give parent a chance to catch syscall args
}
.ret6: br.call.sptk.many rp=b6 // do the syscall
strace_check_retval:
cmp.lt p6,p0=r8,r0 // syscall failed?
adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
adds r3=PT(R10)+16,sp // r3 = &pt_regs.r10
mov r10=0
(p6) br.cond.sptk strace_error // syscall failed ->
;; // avoid RAW on r10
strace_save_retval:
.mem.offset 0,0; st8.spill [r2]=r8 // store return value in slot for r8
.mem.offset 8,0; st8.spill [r3]=r10 // clear error indication in slot for r10
ia64_strace_leave_kernel:
br.call.sptk.many rp=invoke_syscall_trace // give parent a chance to catch return value
.rety: br.cond.sptk ia64_leave_syscall
strace_error:
ld8 r3=[r2] // load pt_regs.r8
sub r9=0,r8 // negate return value to get errno value
;;
cmp.ne p6,p0=r3,r0 // is pt_regs.r8!=0?
adds r3=16,r2 // r3=&pt_regs.r10
;;
(p6) mov r10=-1
(p6) mov r8=r9
br.cond.sptk strace_save_retval
END(ia64_trace_syscall)
GLOBAL_ENTRY(ia64_ret_from_clone)
PT_REGS_UNWIND_INFO(0)
{ /*
* Some versions of gas generate bad unwind info if the first instruction of a
* procedure doesn't go into the first slot of a bundle. This is a workaround.
*/
nop.m 0
nop.i 0
/*
* We need to call schedule_tail() to complete the scheduling process.
* Called by ia64_switch_to after do_fork()->copy_thread(). r8 contains the
* address of the previously executing task.
*/
br.call.sptk.many rp=ia64_invoke_schedule_tail
}
.ret8:
adds r2=IA64_TASK_PTRACE_OFFSET,r13
;;
ld8 r2=[r2]
;;
mov r8=0
tbit.nz p6,p0=r2,PT_TRACESYS_BIT
(p6) br.cond.spnt strace_check_retval
;; // added stop bits to prevent r8 dependency
END(ia64_ret_from_clone)
// fall through
GLOBAL_ENTRY(ia64_ret_from_syscall)
PT_REGS_UNWIND_INFO(0)
cmp.ge p6,p7=r8,r0 // syscall executed successfully?
adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
adds r3=PT(R10)+16,sp // r3 = &pt_regs.r10
;;
.mem.offset 0,0
(p6) st8.spill [r2]=r8 // store return value in slot for r8 and set unat bit
.mem.offset 8,0
(p6) st8.spill [r3]=r0 // clear error indication in slot for r10 and set unat bit
(p7) br.cond.spnt handle_syscall_error // handle potential syscall failure
END(ia64_ret_from_syscall)
// fall through
/*
* ia64_leave_syscall(): Same as ia64_leave_kernel, except that it doesn't
* need to switch to bank 0 and doesn't restore the scratch registers.
* To avoid leaking kernel bits, the scratch registers are set to
* the following known-to-be-safe values:
*
* r1: restored (global pointer)
* r2: cleared
* r3: cleared
* r8-r11: restored (syscall return value(s))
* r12: restored (user-level stack pointer)
* r13: restored (user-level thread pointer)
* r14: cleared
* r15: restored (syscall #)
* r16-r19: cleared
* r20: user-level ar.fpsr
* r21: user-level b0
* r22: cleared
* r23: user-level ar.bspstore
* r24: user-level ar.rnat
* r25: user-level ar.unat
* r26: user-level ar.pfs
* r27: user-level ar.rsc
* r28: user-level ip
* r29: user-level psr
* r30: user-level cfm
* r31: user-level pr
* f6-f11: cleared
* pr: restored (user-level pr)
* b0: restored (user-level rp)
* b6: cleared
* b7: cleared
* ar.unat: restored (user-level ar.unat)
* ar.pfs: restored (user-level ar.pfs)
* ar.rsc: restored (user-level ar.rsc)
* ar.rnat: restored (user-level ar.rnat)
* ar.bspstore: restored (user-level ar.bspstore)
* ar.fpsr: restored (user-level ar.fpsr)
* ar.ccv: cleared
* ar.csd: cleared
* ar.ssd: cleared
*/
GLOBAL_ENTRY(ia64_leave_syscall)
PT_REGS_UNWIND_INFO(0)
lfetch.fault [sp]
movl r14=.restart1
;;
mov.ret.sptk rp=r14,.restart1
cmp.eq pLvSys,p0=r0,r0 // pLvSys=1: leave from syscall
.restart1:
// need_resched and signals atomic test
(pUser) rsm psr.i
adds r17=IA64_TASK_NEED_RESCHED_OFFSET,r13
adds r18=IA64_TASK_SIGPENDING_OFFSET,r13
#ifdef CONFIG_PERFMON
adds r19=IA64_TASK_PFM_OVFL_BLOCK_RESET_OFFSET,r13
#endif
;;
#ifdef CONFIG_PERFMON
(pUser) ld8 r19=[r19] // load current->thread.pfm_ovfl_block_reset
#endif
(pUser) ld8 r17=[r17] // load current->need_resched
(pUser) ld4 r18=[r18] // load current->sigpending
;;
#ifdef CONFIG_PERFMON
(pUser) cmp.ne.unc p9,p0=r19,r0 // current->thread.pfm_ovfl_block_reset != 0?
#endif
(pUser) cmp.ne.unc p7,p0=r17,r0 // current->need_resched != 0?
(pUser) cmp.ne.unc p8,p0=r18,r0 // current->sigpending != 0?
;;
#ifdef CONFIG_PERFMON
(p9) br.call.spnt.many b7=pfm_ovfl_block_reset
#endif
#if __GNUC__ < 3
(p7) br.call.spnt.many b7=invoke_schedule
#else
(p7) br.call.spnt.many b7=schedule
#endif
(p8) br.call.spnt.many rp=handle_signal_delivery // check & deliver pending signals (once)
mov ar.csd=r0
mov ar.ssd=r0
adds r16=PT(LOADRS)+16,r12
adds r17=PT(AR_BSPSTORE)+16, r12
mov f6=f0 // clear f6
;;
ld8 r19=[r16],PT(R8)-PT(LOADRS) // load ar.rsc value for "loadrs"
ld8 r23=[r17],PT(R9)-PT(AR_BSPSTORE) // load ar.bspstore (may be garbage)
mov r22=r0 // clear r22
;;
// start restoring the state saved on the kernel stack (struct pt_regs):
ld8.fill r8=[r16],16
ld8.fill r9=[r17],16
mov f7=f0 // clear f7
;;
ld8.fill r10=[r16],16
ld8.fill r11=[r17],16
mov f8=f0 // clear f8
;;
ld8 r29=[r16],16 // load cr.ipsr
ld8 r28=[r17],16 // load cr.iip
mov b7=r0 // clear b7
;;
ld8 r30=[r16],16 // load cr.ifs
ld8 r25=[r17],16 // load ar.unat
cmp.eq p9,p0=r0,r0 // set p9 to indicate that we should restore cr.ifs
;;
rsm psr.i | psr.ic // initiate turning off of interrupt and interruption collection
invala // invalidate ALAT
mov f9=f0 // clear f9
;;
ld8 r26=[r16],16 // load ar.pfs
ld8 r27=[r17],PT(PR)-PT(AR_RSC)// load ar.rsc
mov f10=f0 // clear f10
;;
ld8 r24=[r16],PT(B0)-PT(AR_RNAT)// load ar.rnat (may be garbage)
ld8 r31=[r17],PT(R1)-PT(PR) // load predicates
mov f11=f0 // clear f11
;;
ld8 r21=[r16],PT(R12)-PT(B0)// load b0
ld8.fill r1=[r17],16 // load r1
mov r3=r0 // clear r3
;;
ld8.fill r12=[r16],16
ld8.fill r13=[r17],16
mov r2=r0 // clear r2
;;
ld8 r20=[r16] // ar.fpsr
ld8.fill r15=[r17] // load r15
adds r18=16,r16
;;
mov r16=ar.bsp // get existing backing store pointer
movl r17=PERCPU_ADDR+IA64_CPU_PHYS_STACKED_SIZE_P8_OFFSET
srlz.i // ensure interruption collection is off
mov ar.ccv=r0 // clear ar.ccv
mov b6=r0 // clear b6
;;
ld4 r17=[r17] // r17 = cpu_data->phys_stacked_size_p8
mov r14=r0 // clear r14
(pKern) br.cond.dpnt skip_rbs_switch
/*
* Restore user backing store.
*
* NOTE: alloc, loadrs, and cover can't be predicated.
*/
cover // add current frame into dirty partition
shr.u r18=r19,16 // get byte size of existing "dirty" partition
;;
mov r19=ar.bsp // get new backing store pointer
sub r16=r16,r18 // krbs = old bsp - size of dirty partition
cmp.ne p9,p0=r0,r0 // clear p9 to skip restore of cr.ifs
;;
sub r19=r19,r16 // calculate total byte size of dirty partition
add r18=64,r18 // don't force in0-in7 into memory...
;;
shl r19=r19,16 // shift size of dirty partition into loadrs position
br.few dont_preserve_current_frame
;;
END(ia64_leave_syscall)
GLOBAL_ENTRY(ia64_ret_from_execve_syscall)
PT_REGS_UNWIND_INFO(0)
cmp.ge p6,p7=r8,r0 // syscall executed successfully?
adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
adds r3=PT(R10)+16,sp // r3 = &pt_regs.r10
;;
.mem.offset 0,0
(p6) st8.spill [r2]=r8 // store return value in slot for r8 and set unat bit
.mem.offset 8,0
(p6) st8.spill [r3]=r0 // clear error indication in slot for r10 and set unat bit
(p7) br.cond.spnt handle_syscall_error // handle potential syscall failure
END(ia64_ret_from_execve_syscall)
// fall through
GLOBAL_ENTRY(ia64_leave_kernel)
PT_REGS_UNWIND_INFO(0)
lfetch.fault [sp]
movl r14=.restart
;;
mov.ret.sptk rp=r14,.restart
cmp.eq p0,pLvSys=r0,r0 // pLvSys=0: leave from kernel
.restart:
// need_resched and signals atomic test
(pUser) rsm psr.i
adds r17=IA64_TASK_NEED_RESCHED_OFFSET,r13
adds r18=IA64_TASK_SIGPENDING_OFFSET,r13
#ifdef CONFIG_PERFMON
adds r19=IA64_TASK_PFM_OVFL_BLOCK_RESET_OFFSET,r13
#endif
;;
#ifdef CONFIG_PERFMON
(pUser) ld8 r19=[r19] // load current->thread.pfm_ovfl_block_reset
#endif
(pUser) ld8 r17=[r17] // load current->need_resched
(pUser) ld4 r18=[r18] // load current->sigpending
;;
#ifdef CONFIG_PERFMON
(pUser) cmp.ne.unc p9,p0=r19,r0 // current->thread.pfm_ovfl_block_reset != 0?
#endif
(pUser) cmp.ne.unc p7,p0=r17,r0 // current->need_resched != 0?
(pUser) cmp.ne.unc p8,p0=r18,r0 // current->sigpending != 0?
;;
#ifdef CONFIG_PERFMON
(p9) br.call.spnt.many b7=pfm_ovfl_block_reset
#endif
#if __GNUC__ < 3
(p7) br.call.spnt.many b7=invoke_schedule
#else
(p7) br.call.spnt.many b7=schedule
#endif
(p8) br.call.spnt.many rp=handle_signal_delivery // check & deliver pending signals (once)
adds r20=PT(CR_IPSR)+16,r12
adds r21=PT(PR)+16,r12
;;
lfetch.fault.excl [r20]
lfetch.fault.excl [r21]
adds r2=PT(B6)+16,r12
adds r3=PT(R16)+16,r12
mov r29=PT(R24)-PT(B6)
mov r30=PT(B7)-PT(R24)
;;
// start restoring the state saved on the kernel stack (struct pt_regs):
ld8 r28=[r2],r29 // b6
ld8.fill r16=[r3],128
mov r31=PT(AR_CSD)-PT(AR_CCV)
;;
ld8.fill r24=[r2],r30
ld8 r15=[r3],r31
;;
ld8 r29=[r2],16 // b7
ld8 r30=[r3],16 // ar.csd
;;
ld8 r31=[r2],16 // ar.ssd
ld8.fill r8=[r3],16
;;
ld8.fill r9=[r2],16
ld8.fill r10=[r3],PT(R17)-PT(R10)
;;
ld8.fill r11=[r2],PT(R18)-PT(R11)
ld8.fill r17=[r3],16
;;
ld8.fill r18=[r2],16
ld8.fill r19=[r3],16
;;
ld8.fill r20=[r2],16
ld8.fill r21=[r3],16
mov ar.csd=r30
mov ar.ssd=r31
;;
rsm psr.i | psr.ic // initiate turning off of interrupt and interruption collection
invala // invalidate ALAT
;;
ld8.fill r22=[r2],24
ld8.fill r23=[r3],24
mov b6=r28
;;
ld8.fill r25=[r2],16
ld8.fill r26=[r3],16
mov b7=r29
;;
ld8.fill r27=[r2],16
ld8.fill r28=[r3],16
;;
ld8.fill r29=[r2],16
ld8.fill r30=[r3],24
;;
ld8.fill r31=[r2],32
ldf.fill f6=[r3],32
;;
ldf.fill f7=[r2],32
ldf.fill f8=[r3],32
;;
srlz.i // ensure interruption collection is off
mov ar.ccv=r15
;;
ldf.fill f9=[r2],32
ldf.fill f10=[r3],32
bsw.0 // switch back to bank 0
;;
ldf.fill f11=[r2]
adds r16=PT(CR_IPSR)+16,r12
adds r17=PT(CR_IIP)+16,r12
;;
ld8 r29=[r16],16 // load cr.ipsr
ld8 r28=[r17],16 // load cr.iip
;;
ld8 r30=[r16],16 // load cr.ifs
ld8 r25=[r17],16 // load ar.unat
cmp.eq p9,p0=r0,r0 // set p9 to indicate that we should restore cr.ifs
;;
ld8 r26=[r16],16 // load ar.pfs
ld8 r27=[r17],16 // load ar.rsc
;;
ld8 r24=[r16],16 // load ar.rnat (may be garbage)
ld8 r23=[r17],16 // load ar.bspstore (may be garbage)
;;
ld8 r31=[r16],16 // load predicates
ld8 r21=[r17],16 // load b0
;;
ld8 r19=[r16],16 // load ar.rsc value for "loadrs"
ld8.fill r1=[r17],16 // load r1
;;
ld8.fill r12=[r16],16
ld8.fill r13=[r17],16
;;
ld8 r20=[r16],16
ld8.fill r15=[r17],16
;;
ld8.fill r14=[r16]
ld8.fill r2=[r17],16
adds r18=16,r16
;;
mov r16=ar.bsp // get existing backing store pointer
movl r17=PERCPU_ADDR+IA64_CPU_PHYS_STACKED_SIZE_P8_OFFSET
;;
ld8.fill r3=[r18]
ld4 r17=[r17] // r17 = cpu_data->phys_stacked_size_p8
shr.u r18=r19,16 // get byte size of existing "dirty" partition
(pKern) br.cond.dpnt skip_rbs_switch
/*
* Restore user backing store.
*
* NOTE: alloc, loadrs, and cover can't be predicated.
*/
(pNonSys) br.cond.dpnt dont_preserve_current_frame
cover // add current frame into dirty partition and set cr.ifs
;;
mov r19=ar.bsp // get new backing store pointer
sub r16=r16,r18 // krbs = old bsp - size of dirty partition
cmp.ne p9,p0=r0,r0 // clear p9 to skip restore of cr.ifs
;;
sub r19=r19,r16 // calculate total byte size of dirty partition
add r18=64,r18 // don't force in0-in7 into memory...
;;
shl r19=r19,16 // shift size of dirty partition into loadrs position
;;
dont_preserve_current_frame:
/*
* To prevent leaking bits between the kernel and user-space,
* we must clear the stacked registers in the "invalid" partition here.
* Not pretty, but at least it's fast (3.34 registers/cycle on Itanium,
* 5 registers/cycle on McKinley).
*/
# define pRecurse p6
# define pReturn p7
#ifdef CONFIG_ITANIUM
# define Nregs 10
#else
# define Nregs 14
#endif
alloc loc0=ar.pfs,2,Nregs-2,2,0
shr.u loc1=r18,9 // RNaTslots <= floor(dirtySize / (64*8))
sub r17=r17,r18 // r17 = (physStackedSize + 8) - dirtySize
;;
mov ar.rsc=r19 // load ar.rsc to be used for "loadrs"
shladd in0=loc1,3,r17
mov in1=0
;;
rse_clear_invalid:
#ifdef CONFIG_ITANIUM
// cycle 0
{ .mii
alloc loc0=ar.pfs,2,Nregs-2,2,0
cmp.lt pRecurse,p0=Nregs*8,in0 // if more than Nregs regs left to clear, (re)curse
add out0=-Nregs*8,in0
}{ .mfb
add out1=1,in1 // increment recursion count
nop.f 0
nop.b 0 // can't do br.call here because of alloc (WAW on CFM)
;;
}{ .mfi // cycle 1
mov loc1=0
nop.f 0
mov loc2=0
}{ .mib
mov loc3=0
mov loc4=0
(pRecurse) br.call.sptk.many b0=rse_clear_invalid
}{ .mfi // cycle 2
mov loc5=0
nop.f 0
cmp.ne pReturn,p0=r0,in1 // if recursion count != 0, we need to do a br.ret
}{ .mib
mov loc6=0
mov loc7=0
(pReturn) br.ret.sptk.many b0
}
#else /* !CONFIG_ITANIUM */
alloc loc0=ar.pfs,2,Nregs-2,2,0
cmp.lt pRecurse,p0=Nregs*8,in0 // if more than Nregs regs left to clear, (re)curse
add out0=-Nregs*8,in0
add out1=1,in1 // increment recursion count
mov loc1=0
mov loc2=0
;;
mov loc3=0
mov loc4=0
mov loc5=0
mov loc6=0
mov loc7=0
(pRecurse) br.call.sptk.many b0=rse_clear_invalid
;;
mov loc8=0
mov loc9=0
cmp.ne pReturn,p0=r0,in1 // if recursion count != 0, we need to do a br.ret
mov loc10=0
mov loc11=0
(pReturn) br.ret.sptk.many b0
#endif /* !CONFIG_ITANIUM */
# undef pRecurse
# undef pReturn
;;
alloc r17=ar.pfs,0,0,0,0 // drop current register frame
;;
loadrs
;;
skip_rbs_switch:
(pLvSys)mov r19=r0 // clear r19 for leave_syscall, no-op otherwise
mov b0=r21
mov ar.pfs=r26
(pUser) mov ar.bspstore=r23
(p9) mov cr.ifs=r30
(pLvSys)mov r16=r0 // clear r16 for leave_syscall, no-op otherwise
mov cr.ipsr=r29
mov ar.fpsr=r20
(pLvSys)mov r17=r0 // clear r17 for leave_syscall, no-op otherwise
mov cr.iip=r28
;;
(pUser) mov ar.rnat=r24 // must happen with RSE in lazy mode
(pLvSys)mov r18=r0 // clear r18 for leave_syscall, no-op otherwise
mov ar.rsc=r27
mov ar.unat=r25
mov pr=r31,-1
rfi
END(ia64_leave_kernel)
ENTRY(handle_syscall_error)
/*
* Some system calls (e.g., ptrace, mmap) can return arbitrary
* values which could lead us to mistake a negative return
* value as a failed syscall. Those syscall must deposit
* a non-zero value in pt_regs.r8 to indicate an error.
* If pt_regs.r8 is zero, we assume that the call completed
* successfully.
*/
PT_REGS_UNWIND_INFO(0)
ld8 r3=[r2] // load pt_regs.r8
sub r9=0,r8 // negate return value to get errno
;;
mov r10=-1 // return -1 in pt_regs.r10 to indicate error
cmp.eq p6,p7=r3,r0 // is pt_regs.r8==0?
adds r3=16,r2 // r3=&pt_regs.r10
;;
(p6) mov r9=r8
(p6) mov r10=0
;;
.mem.offset 0,0; st8.spill [r2]=r9 // store errno in pt_regs.r8 and set unat bit
.mem.offset 8,0; st8.spill [r3]=r10 // store error indication in pt_regs.r10 and set unat bit
br.cond.sptk ia64_leave_syscall
END(handle_syscall_error)
/*
* Invoke schedule_tail(task) while preserving in0-in7, which may be needed
* in case a system call gets restarted.
*/
GLOBAL_ENTRY(ia64_invoke_schedule_tail)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,1,0
mov loc0=rp
mov out0=r8 // Address of previous task
;;
br.call.sptk.many rp=schedule_tail
.ret11: mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(ia64_invoke_schedule_tail)
#if __GNUC__ < 3
/*
* Invoke schedule() while preserving in0-in7, which may be needed
* in case a system call gets restarted. Note that declaring schedule()
* with asmlinkage() is NOT enough because that will only preserve as many
* registers as there are formal arguments.
*
* XXX fix me: with gcc 3.0, we won't need this anymore because syscall_linkage
* renders all eight input registers (in0-in7) as "untouchable".
*/
ENTRY(invoke_schedule)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,0,0
mov loc0=rp
;;
.body
br.call.sptk.many rp=schedule
.ret14: mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(invoke_schedule)
#endif /* __GNUC__ < 3 */
/*
* Setup stack and call ia64_do_signal. Note that pSys and pNonSys need to
* be set up by the caller. We declare 8 input registers so the system call
* args get preserved, in case we need to restart a system call.
*/
ENTRY(handle_signal_delivery)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,3,0 // preserve all eight input regs in case of syscall restart!
mov r9=ar.unat
mov loc0=rp // save return address
mov out0=0 // there is no "oldset"
adds out1=8,sp // out1=&sigscratch->ar_pfs
(pSys) mov out2=1 // out2==1 => we're in a syscall
;;
(pNonSys) mov out2=0 // out2==0 => not a syscall
.fframe 16
.spillpsp ar.unat, 16 // (note that offset is relative to psp+0x10!)
st8 [sp]=r9,-16 // allocate space for ar.unat and save it
st8 [out1]=loc1,-8 // save ar.pfs, out1=&sigscratch
.body
br.call.sptk.many rp=ia64_do_signal
.ret15: .restore sp
adds sp=16,sp // pop scratch stack space
;;
ld8 r9=[sp] // load new unat from sw->caller_unat
mov rp=loc0
;;
mov ar.unat=r9
mov ar.pfs=loc1
br.ret.sptk.many rp
END(handle_signal_delivery)
GLOBAL_ENTRY(sys_rt_sigsuspend)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,3,0 // preserve all eight input regs in case of syscall restart!
mov r9=ar.unat
mov loc0=rp // save return address
mov out0=in0 // mask
mov out1=in1 // sigsetsize
adds out2=8,sp // out2=&sigscratch->ar_pfs
;;
.fframe 16
.spillpsp ar.unat, 16 // (note that offset is relative to psp+0x10!)
st8 [sp]=r9,-16 // allocate space for ar.unat and save it
st8 [out2]=loc1,-8 // save ar.pfs, out2=&sigscratch
.body
br.call.sptk.many rp=ia64_rt_sigsuspend
.ret17: .restore sp
adds sp=16,sp // pop scratch stack space
;;
ld8 r9=[sp] // load new unat from sw->caller_unat
mov rp=loc0
;;
mov ar.unat=r9
mov ar.pfs=loc1
br.ret.sptk.many rp
END(sys_rt_sigsuspend)
ENTRY(sys_rt_sigreturn)
PT_REGS_UNWIND_INFO(0)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
alloc r2=ar.pfs,8,0,1,0
.prologue
PT_REGS_SAVES(16)
adds sp=-16,sp
.body
cmp.eq pNonSys,pSys=r0,r0 // sigreturn isn't a normal syscall...
;;
/* After signal handler, live registers f6-f11 are restored to the previous
* executing context values for synchronized signals(from exceptions); or they
* are cleared to 0 for asynchronized signals(from syscalls). These live registers
* will be put into pt_regs to return back to user space.
*/
adds r16=PT(F6)+32,sp
adds r17=PT(F7)+32,sp
;;
stf.spill [r16]=f6,32
stf.spill [r17]=f7,32
;;
stf.spill [r16]=f8,32
stf.spill [r17]=f9,32
;;
stf.spill [r16]=f10
stf.spill [r17]=f11
adds out0=16,sp // out0 = &sigscratch
br.call.sptk.many rp=ia64_rt_sigreturn
.ret19: .restore sp 0
adds sp=16,sp
;;
ld8 r9=[sp] // load new ar.unat
mov.sptk b7=r8,ia64_leave_kernel
;;
mov ar.unat=r9
br.many b7
END(sys_rt_sigreturn)
GLOBAL_ENTRY(ia64_prepare_handle_unaligned)
.prologue
/*
* r16 = fake ar.pfs, we simply need to make sure privilege is still 0
*/
mov r16=r0
DO_SAVE_SWITCH_STACK
br.call.sptk.many rp=ia64_handle_unaligned // stack frame setup in ivt
.ret21: .body
DO_LOAD_SWITCH_STACK
br.cond.sptk.many rp // goes to ia64_leave_kernel
END(ia64_prepare_handle_unaligned)
//
// unw_init_running(void (*callback)(info, arg), void *arg)
//
# define EXTRA_FRAME_SIZE ((UNW_FRAME_INFO_SIZE+15)&~15)
GLOBAL_ENTRY(unw_init_running)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2)
alloc loc1=ar.pfs,2,3,3,0
;;
ld8 loc2=[in0],8
mov loc0=rp
mov r16=loc1
DO_SAVE_SWITCH_STACK
.body
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2)
.fframe IA64_SWITCH_STACK_SIZE+EXTRA_FRAME_SIZE
SWITCH_STACK_SAVES(EXTRA_FRAME_SIZE)
adds sp=-EXTRA_FRAME_SIZE,sp
.body
;;
adds out0=16,sp // &info
mov out1=r13 // current
adds out2=16+EXTRA_FRAME_SIZE,sp // &switch_stack
br.call.sptk.many rp=unw_init_frame_info
1: adds out0=16,sp // &info
mov b6=loc2
mov loc2=gp // save gp across indirect function call
;;
ld8 gp=[in0]
mov out1=in1 // arg
br.call.sptk.many rp=b6 // invoke the callback function
1: mov gp=loc2 // restore gp
// For now, we don't allow changing registers from within
// unw_init_running; if we ever want to allow that, we'd
// have to do a load_switch_stack here:
.restore sp
adds sp=IA64_SWITCH_STACK_SIZE+EXTRA_FRAME_SIZE,sp
mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(unw_init_running)
.rodata
.align 8
.globl sys_call_table
sys_call_table:
data8 sys_ni_syscall // This must be sys_ni_syscall! See ivt.S.
data8 sys_exit // 1025
data8 sys_read
data8 sys_write
data8 sys_open
data8 sys_close
data8 sys_creat // 1030
data8 sys_link
data8 sys_unlink
data8 ia64_execve
data8 sys_chdir
data8 sys_fchdir // 1035
data8 sys_utimes
data8 sys_mknod
data8 sys_chmod
data8 sys_chown
data8 sys_lseek // 1040
data8 sys_getpid
data8 sys_getppid
data8 sys_mount
data8 sys_umount
data8 sys_setuid // 1045
data8 sys_getuid
data8 sys_geteuid
data8 sys_ptrace
data8 sys_access
data8 sys_sync // 1050
data8 sys_fsync
data8 sys_fdatasync
data8 sys_kill
data8 sys_rename
data8 sys_mkdir // 1055
data8 sys_rmdir
data8 sys_dup
data8 sys_pipe
data8 sys_times
data8 ia64_brk // 1060
data8 sys_setgid
data8 sys_getgid
data8 sys_getegid
data8 sys_acct
data8 sys_ioctl // 1065
data8 sys_fcntl
data8 sys_umask
data8 sys_chroot
data8 sys_ustat
data8 sys_dup2 // 1070
data8 sys_setreuid
data8 sys_setregid
data8 sys_getresuid
data8 sys_setresuid
data8 sys_getresgid // 1075
data8 sys_setresgid
data8 sys_getgroups
data8 sys_setgroups
data8 sys_getpgid
data8 sys_setpgid // 1080
data8 sys_setsid
data8 sys_getsid
data8 sys_sethostname
data8 sys_setrlimit
data8 sys_getrlimit // 1085
data8 sys_getrusage
data8 sys_gettimeofday
data8 sys_settimeofday
data8 sys_select
data8 sys_poll // 1090
data8 sys_symlink
data8 sys_readlink
data8 sys_uselib
data8 sys_swapon
data8 sys_swapoff // 1095
data8 sys_reboot
data8 sys_truncate
data8 sys_ftruncate
data8 sys_fchmod
data8 sys_fchown // 1100
data8 ia64_getpriority
data8 sys_setpriority
data8 sys_statfs
data8 sys_fstatfs
data8 sys_gettid // 1105
data8 sys_semget
data8 sys_semop
data8 sys_semctl
data8 sys_msgget
data8 sys_msgsnd // 1110
data8 sys_msgrcv
data8 sys_msgctl
data8 sys_shmget
data8 ia64_shmat
data8 sys_shmdt // 1115
data8 sys_shmctl
data8 sys_syslog
data8 sys_setitimer
data8 sys_getitimer
data8 ia64_oldstat // 1120
data8 ia64_oldlstat
data8 ia64_oldfstat
data8 sys_vhangup
data8 sys_lchown
data8 sys_vm86 // 1125
data8 sys_wait4
data8 sys_sysinfo
data8 sys_clone
data8 sys_setdomainname
data8 sys_newuname // 1130
data8 sys_adjtimex
data8 ia64_create_module
data8 sys_init_module
data8 sys_delete_module
data8 sys_get_kernel_syms // 1135
data8 sys_query_module
data8 sys_quotactl
data8 sys_bdflush
data8 sys_sysfs
data8 sys_personality // 1140
data8 ia64_ni_syscall // sys_afs_syscall
data8 sys_setfsuid
data8 sys_setfsgid
data8 sys_getdents
data8 sys_flock // 1145
data8 sys_readv
data8 sys_writev
data8 sys_pread
data8 sys_pwrite
data8 sys_sysctl // 1150
data8 sys_mmap
data8 sys_munmap
data8 sys_mlock
data8 sys_mlockall
data8 sys_mprotect // 1155
data8 ia64_mremap
data8 sys_msync
data8 sys_munlock
data8 sys_munlockall
data8 sys_sched_getparam // 1160
data8 sys_sched_setparam
data8 sys_sched_getscheduler
data8 sys_sched_setscheduler
data8 sys_sched_yield
data8 sys_sched_get_priority_max // 1165
data8 sys_sched_get_priority_min
data8 sys_sched_rr_get_interval
data8 sys_nanosleep
data8 sys_nfsservctl
data8 sys_prctl // 1170
data8 sys_getpagesize
data8 sys_mmap2
data8 sys_pciconfig_read
data8 sys_pciconfig_write
data8 sys_perfmonctl // 1175
data8 sys_sigaltstack
data8 sys_rt_sigaction
data8 sys_rt_sigpending
data8 sys_rt_sigprocmask
data8 sys_rt_sigqueueinfo // 1180
data8 sys_rt_sigreturn
data8 sys_rt_sigsuspend
data8 sys_rt_sigtimedwait
data8 sys_getcwd
data8 sys_capget // 1185
data8 sys_capset
data8 sys_sendfile
data8 sys_ni_syscall // sys_getpmsg (STREAMS)
data8 sys_ni_syscall // sys_putpmsg (STREAMS)
data8 sys_socket // 1190
data8 sys_bind
data8 sys_connect
data8 sys_listen
data8 sys_accept
data8 sys_getsockname // 1195
data8 sys_getpeername
data8 sys_socketpair
data8 sys_send
data8 sys_sendto
data8 sys_recv // 1200
data8 sys_recvfrom
data8 sys_shutdown
data8 sys_setsockopt
data8 sys_getsockopt
data8 sys_sendmsg // 1205
data8 sys_recvmsg
data8 sys_pivot_root
data8 sys_mincore
data8 sys_madvise
data8 sys_newstat // 1210
data8 sys_newlstat
data8 sys_newfstat
data8 sys_clone2
data8 sys_getdents64
data8 sys_getunwind // 1215
data8 sys_readahead
data8 sys_setxattr
data8 sys_lsetxattr
data8 sys_fsetxattr
data8 sys_getxattr // 1220
data8 sys_lgetxattr
data8 sys_fgetxattr
data8 sys_listxattr
data8 sys_llistxattr
data8 sys_flistxattr // 1225
data8 sys_removexattr
data8 sys_lremovexattr
data8 sys_fremovexattr
data8 sys_tkill
data8 ia64_ni_syscall // 1230
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall // 1235
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall // 1240
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall // 1245
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall // 1250
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall // 1255
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall // 1260
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall // 1265
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall // 1270
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall // 1275
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall
data8 ia64_ni_syscall