blob: 8149f60dc12f6bf8fd71cb595eba61f2af513fba [file] [log] [blame]
/*
* File: mca.c
* Purpose: Generic MCA handling layer
*
* Updated for latest kernel
* Copyright (C) 2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* Copyright (C) 2002 Dell Inc.
* Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
*
* Copyright (C) 2002 Intel
* Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
*
* Copyright (C) 2001 Intel
* Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
*
* Copyright (C) 2000 Intel
* Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
*
* Copyright (C) 1999, 2004 Silicon Graphics, Inc.
* Copyright (C) Vijay Chander(vijay@engr.sgi.com)
*
* 03/04/15 D. Mosberger Added INIT backtrace support.
* 02/03/25 M. Domsch GUID cleanups
*
* 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
* error flag, set SAL default return values, changed
* error record structure to linked list, added init call
* to sal_get_state_info_size().
*
* 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
* platform errors, completed code for logging of
* corrected & uncorrected machine check errors, and
* updated for conformance with Nov. 2000 revision of the
* SAL 3.0 spec.
* 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
* added min save state dump, added INIT handler.
*
* 2003-12-08 Keith Owens <kaos@sgi.com>
* smp_call_function() must not be called from interrupt context (can
* deadlock on tasklist_lock). Use keventd to call smp_call_function().
*
* 2004-02-01 Keith Owens <kaos@sgi.com>
* Avoid deadlock when using printk() for MCA and INIT records.
* Delete all record printing code, moved to salinfo_decode in user space.
* Mark variables and functions static where possible.
* Delete dead variables and functions.
* Reorder to remove the need for forward declarations and to consolidate
* related code.
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/smp_lock.h>
#include <linux/bootmem.h>
#include <linux/acpi.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/tqueue.h>
#include <asm/delay.h>
#include <asm/machvec.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/sal.h>
#include <asm/mca.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
#if defined(IA64_MCA_DEBUG_INFO)
# define IA64_MCA_DEBUG(fmt...) printk(fmt)
#else
# define IA64_MCA_DEBUG(fmt...)
#endif
extern void show_stack(struct task_struct *);
typedef struct ia64_fptr {
unsigned long fp;
unsigned long gp;
} ia64_fptr_t;
/* Used by mca_asm.S */
ia64_mca_sal_to_os_state_t ia64_sal_to_os_handoff_state;
ia64_mca_os_to_sal_state_t ia64_os_to_sal_handoff_state;
u64 ia64_mca_proc_state_dump[512];
u64 ia64_mca_stack[1024] __attribute__((aligned(16)));
u64 ia64_mca_stackframe[32];
u64 ia64_mca_bspstore[1024];
u64 ia64_init_stack[INIT_TASK_SIZE/8] __attribute__((aligned(16)));
u64 ia64_mca_serialize;
/* In mca_asm.S */
extern void ia64_monarch_init_handler (void);
extern void ia64_slave_init_handler (void);
static ia64_mc_info_t ia64_mc_info;
extern struct hw_interrupt_type irq_type_iosapic_level;
struct ia64_mca_tlb_info ia64_mca_tlb_list[NR_CPUS];
#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
#define CMC_HISTORY_LENGTH 5
static struct timer_list cpe_poll_timer;
static struct timer_list cmc_poll_timer;
/*
* This variable tells whether we are currently in polling mode.
* Start with this in the wrong state so we won't play w/ timers
* before the system is ready.
*/
static int cmc_polling_enabled = 1;
/*
* Clearing this variable prevents CPE polling from getting activated
* in mca_late_init. Use it if your system doesn't provide a CPEI,
* but encounters problems retrieving CPE logs. This should only be
* necessary for debugging.
*/
static int cpe_poll_enabled = 1;
extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
static struct tq_struct cmc_disable_tq, cmc_enable_tq;
/*
* IA64_MCA log support
*/
#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
typedef struct ia64_state_log_s
{
spinlock_t isl_lock;
int isl_index;
unsigned long isl_count;
ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
} ia64_state_log_t;
static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
#define IA64_LOG_ALLOCATE(it, size) \
{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
(ia64_err_rec_t *)alloc_bootmem(size); \
ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
(ia64_err_rec_t *)alloc_bootmem(size);}
#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
#define IA64_LOG_INDEX_INC(it) \
{ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
ia64_state_log[it].isl_count++;}
#define IA64_LOG_INDEX_DEC(it) \
ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
/*
* ia64_log_init
* Reset the OS ia64 log buffer
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
* Outputs : None
*/
static void
ia64_log_init(int sal_info_type)
{
u64 max_size = 0;
IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
IA64_LOG_LOCK_INIT(sal_info_type);
// SAL will tell us the maximum size of any error record of this type
max_size = ia64_sal_get_state_info_size(sal_info_type);
if (!max_size)
/* alloc_bootmem() doesn't like zero-sized allocations! */
return;
// set up OS data structures to hold error info
IA64_LOG_ALLOCATE(sal_info_type, max_size);
memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
}
/*
* ia64_log_get
*
* Get the current MCA log from SAL and copy it into the OS log buffer.
*
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
* irq_safe whether you can use printk at this point
* Outputs : size (total record length)
* *buffer (ptr to error record)
*
*/
static u64
ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
{
sal_log_record_header_t *log_buffer;
u64 total_len = 0;
int s;
IA64_LOG_LOCK(sal_info_type);
/* Get the process state information */
log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
if (total_len) {
IA64_LOG_INDEX_INC(sal_info_type);
IA64_LOG_UNLOCK(sal_info_type);
if (irq_safe) {
IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
"Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
}
*buffer = (u8 *) log_buffer;
return total_len;
} else {
IA64_LOG_UNLOCK(sal_info_type);
return 0;
}
}
/*
* ia64_mca_log_sal_error_record
*
* This function retrieves a specified error record type from SAL
* and wakes up any processes waiting for error records.
*
* Inputs : sal_info_type (Type of error record MCA/CMC/CPE/INIT)
*/
static void
ia64_mca_log_sal_error_record(int sal_info_type)
{
u8 *buffer;
u64 size;
int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT;
static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
size = ia64_log_get(sal_info_type, &buffer, irq_safe);
if (!size)
return;
salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
if (irq_safe)
printk(KERN_INFO "CPU %d: SAL log contains %s error record\n",
smp_processor_id(),
sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
/* Clear logs from corrected errors in case there's no user-level logger */
if (sal_info_type == SAL_INFO_TYPE_CPE || sal_info_type == SAL_INFO_TYPE_CMC)
ia64_sal_clear_state_info(sal_info_type);
}
/*
* platform dependent error handling
*/
#ifndef PLATFORM_MCA_HANDLERS
static void
ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
{
IA64_MCA_DEBUG("%s: received interrupt. CPU:%d vector = %#x\n",
__FUNCTION__, smp_processor_id(), cpe_irq);
/* SAL spec states this should run w/ interrupts enabled */
local_irq_enable();
/* Get the CMC error record and log it */
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
}
#define print_symbol(fmt, addr) printk(fmt, "(no symbol)");
static void
show_min_state (pal_min_state_area_t *minstate)
{
u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri;
u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri;
printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits);
printk("pr\t\t%016lx\n", minstate->pmsa_pr);
printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0);
printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc);
printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip);
printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr);
printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs);
printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip);
printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr);
printk("xfs\t\t%016lx\n", minstate->pmsa_xfs);
printk("b1\t\t%016lx ", minstate->pmsa_br1);
print_symbol("%s\n", minstate->pmsa_br1);
printk("\nstatic registers r0-r15:\n");
printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]);
printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_gr[3], minstate->pmsa_gr[4],
minstate->pmsa_gr[5], minstate->pmsa_gr[6]);
printk(" r8-11 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_gr[7], minstate->pmsa_gr[8],
minstate->pmsa_gr[9], minstate->pmsa_gr[10]);
printk("r12-15 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_gr[11], minstate->pmsa_gr[12],
minstate->pmsa_gr[13], minstate->pmsa_gr[14]);
printk("\nbank 0:\n");
printk("r16-19 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1],
minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]);
printk("r20-23 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5],
minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]);
printk("r24-27 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9],
minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]);
printk("r28-31 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13],
minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]);
printk("\nbank 1:\n");
printk("r16-19 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1],
minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]);
printk("r20-23 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5],
minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]);
printk("r24-27 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9],
minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]);
printk("r28-31 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13],
minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]);
}
static void
fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw)
{
u64 *dst_banked, *src_banked, bit, shift, nat_bits;
int i;
/*
* First, update the pt-regs and switch-stack structures with the contents stored
* in the min-state area:
*/
if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) {
pt->cr_ipsr = ms->pmsa_xpsr;
pt->cr_iip = ms->pmsa_xip;
pt->cr_ifs = ms->pmsa_xfs;
} else {
pt->cr_ipsr = ms->pmsa_ipsr;
pt->cr_iip = ms->pmsa_iip;
pt->cr_ifs = ms->pmsa_ifs;
}
pt->ar_rsc = ms->pmsa_rsc;
pt->pr = ms->pmsa_pr;
pt->r1 = ms->pmsa_gr[0];
pt->r2 = ms->pmsa_gr[1];
pt->r3 = ms->pmsa_gr[2];
sw->r4 = ms->pmsa_gr[3];
sw->r5 = ms->pmsa_gr[4];
sw->r6 = ms->pmsa_gr[5];
sw->r7 = ms->pmsa_gr[6];
pt->r8 = ms->pmsa_gr[7];
pt->r9 = ms->pmsa_gr[8];
pt->r10 = ms->pmsa_gr[9];
pt->r11 = ms->pmsa_gr[10];
pt->r12 = ms->pmsa_gr[11];
pt->r13 = ms->pmsa_gr[12];
pt->r14 = ms->pmsa_gr[13];
pt->r15 = ms->pmsa_gr[14];
dst_banked = &pt->r16; /* r16-r31 are contiguous in struct pt_regs */
src_banked = ms->pmsa_bank1_gr;
for (i = 0; i < 16; ++i)
dst_banked[i] = src_banked[i];
pt->b0 = ms->pmsa_br0;
sw->b1 = ms->pmsa_br1;
/* construct the NaT bits for the pt-regs structure: */
# define PUT_NAT_BIT(dst, addr) \
do { \
bit = nat_bits & 1; nat_bits >>= 1; \
shift = ((unsigned long) addr >> 3) & 0x3f; \
dst = ((dst) & ~(1UL << shift)) | (bit << shift); \
} while (0)
/* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f;
nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift));
PUT_NAT_BIT(sw->caller_unat, &pt->r1);
PUT_NAT_BIT(sw->caller_unat, &pt->r2);
PUT_NAT_BIT(sw->caller_unat, &pt->r3);
PUT_NAT_BIT(sw->ar_unat, &sw->r4);
PUT_NAT_BIT(sw->ar_unat, &sw->r5);
PUT_NAT_BIT(sw->ar_unat, &sw->r6);
PUT_NAT_BIT(sw->ar_unat, &sw->r7);
PUT_NAT_BIT(sw->caller_unat, &pt->r8); PUT_NAT_BIT(sw->caller_unat, &pt->r9);
PUT_NAT_BIT(sw->caller_unat, &pt->r10); PUT_NAT_BIT(sw->caller_unat, &pt->r11);
PUT_NAT_BIT(sw->caller_unat, &pt->r12); PUT_NAT_BIT(sw->caller_unat, &pt->r13);
PUT_NAT_BIT(sw->caller_unat, &pt->r14); PUT_NAT_BIT(sw->caller_unat, &pt->r15);
nat_bits >>= 16; /* skip over bank0 NaT bits */
PUT_NAT_BIT(sw->caller_unat, &pt->r16); PUT_NAT_BIT(sw->caller_unat, &pt->r17);
PUT_NAT_BIT(sw->caller_unat, &pt->r18); PUT_NAT_BIT(sw->caller_unat, &pt->r19);
PUT_NAT_BIT(sw->caller_unat, &pt->r20); PUT_NAT_BIT(sw->caller_unat, &pt->r21);
PUT_NAT_BIT(sw->caller_unat, &pt->r22); PUT_NAT_BIT(sw->caller_unat, &pt->r23);
PUT_NAT_BIT(sw->caller_unat, &pt->r24); PUT_NAT_BIT(sw->caller_unat, &pt->r25);
PUT_NAT_BIT(sw->caller_unat, &pt->r26); PUT_NAT_BIT(sw->caller_unat, &pt->r27);
PUT_NAT_BIT(sw->caller_unat, &pt->r28); PUT_NAT_BIT(sw->caller_unat, &pt->r29);
PUT_NAT_BIT(sw->caller_unat, &pt->r30); PUT_NAT_BIT(sw->caller_unat, &pt->r31);
}
static void
init_handler_platform (pal_min_state_area_t *ms,
struct pt_regs *pt, struct switch_stack *sw)
{
struct unw_frame_info info;
/* if a kernel debugger is available call it here else just dump the registers */
/*
* Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
* generated via the BMC's command-line interface, but since the console is on the
* same serial line, the user will need some time to switch out of the BMC before
* the dump begins.
*/
printk("Delaying for 5 seconds...\n");
udelay(5*1000000);
show_min_state(ms);
printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm);
fetch_min_state(ms, pt, sw);
unw_init_from_interruption(&info, current, pt, sw);
ia64_do_show_stack(&info, NULL);
#ifdef CONFIG_SMP
/* read_trylock() would be handy... */
if (!tasklist_lock.write_lock)
read_lock(&tasklist_lock);
#endif
{
struct task_struct *t;
for_each_task(t) {
if (t == current)
continue;
printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
show_stack(t);
}
}
#ifdef CONFIG_SMP
if (!tasklist_lock.write_lock)
read_unlock(&tasklist_lock);
#endif
printk("\nINIT dump complete. Please reboot now.\n");
while (1); /* hang city if no debugger */
}
#ifdef CONFIG_ACPI
/*
* ia64_mca_register_cpev
*
* Register the corrected platform error vector with SAL.
*
* Inputs
* cpev Corrected Platform Error Vector number
*
* Outputs
* None
*/
static void
ia64_mca_register_cpev (int cpev)
{
/* Register the CPE interrupt vector with SAL */
struct ia64_sal_retval isrv;
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
if (isrv.status) {
printk(KERN_ERR "Failed to register Corrected Platform "
"Error interrupt vector with SAL (status %ld)\n", isrv.status);
return;
}
IA64_MCA_DEBUG("%s: corrected platform error "
"vector %#x setup and enabled\n", __FUNCTION__, cpev);
}
#endif /* CONFIG_ACPI */
#endif /* PLATFORM_MCA_HANDLERS */
/*
* ia64_mca_cmc_vector_setup
*
* Setup the corrected machine check vector register in the processor and
* unmask interrupt. This function is invoked on a per-processor basis.
*
* Inputs
* None
*
* Outputs
* None
*/
void
ia64_mca_cmc_vector_setup (void)
{
cmcv_reg_t cmcv;
cmcv.cmcv_regval = 0;
cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
cmcv.cmcv_vector = IA64_CMC_VECTOR;
ia64_set_cmcv(cmcv.cmcv_regval);
IA64_MCA_DEBUG("%s: CPU %d corrected "
"machine check vector %#x setup and enabled.\n",
__FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
__FUNCTION__, smp_processor_id(), ia64_get_cmcv());
}
/*
* ia64_mca_cmc_vector_disable
*
* Mask the corrected machine check vector register in the processor.
* This function is invoked on a per-processor basis.
*
* Inputs
* dummy(unused)
*
* Outputs
* None
*/
static void
ia64_mca_cmc_vector_disable (void *dummy)
{
cmcv_reg_t cmcv;
cmcv = (cmcv_reg_t)ia64_get_cmcv();
cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
ia64_set_cmcv(cmcv.cmcv_regval);
IA64_MCA_DEBUG("%s: CPU %d corrected "
"machine check vector %#x disabled.\n",
__FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
}
/*
* ia64_mca_cmc_vector_enable
*
* Unmask the corrected machine check vector register in the processor.
* This function is invoked on a per-processor basis.
*
* Inputs
* dummy(unused)
*
* Outputs
* None
*/
static void
ia64_mca_cmc_vector_enable (void *dummy)
{
cmcv_reg_t cmcv;
cmcv = (cmcv_reg_t)ia64_get_cmcv();
cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
ia64_set_cmcv(cmcv.cmcv_regval);
IA64_MCA_DEBUG("%s: CPU %d corrected "
"machine check vector %#x enabled.\n",
__FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
}
/*
* ia64_mca_cmc_vector_disable_keventd
*
* Called via keventd (smp_call_function() is not safe in interrupt context) to
* disable the cmc interrupt vector.
*
* Note: needs preempt_disable() if you apply the preempt patch to 2.4.
*/
static void
ia64_mca_cmc_vector_disable_keventd(void *unused)
{
ia64_mca_cmc_vector_disable(NULL);
smp_call_function(ia64_mca_cmc_vector_disable, NULL, 1, 0);
}
/*
* ia64_mca_cmc_vector_enable_keventd
*
* Called via keventd (smp_call_function() is not safe in interrupt context) to
* enable the cmc interrupt vector.
*
* Note: needs preempt_disable() if you apply the preempt patch to 2.4.
*/
static void
ia64_mca_cmc_vector_enable_keventd(void *unused)
{
smp_call_function(ia64_mca_cmc_vector_enable, NULL, 1, 0);
ia64_mca_cmc_vector_enable(NULL);
}
/*
* ia64_mca_wakeup_ipi_wait
*
* Wait for the inter-cpu interrupt to be sent by the
* monarch processor once it is done with handling the
* MCA.
*
* Inputs : None
* Outputs : None
*/
static void
ia64_mca_wakeup_ipi_wait(void)
{
int irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6);
int irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f);
u64 irr = 0;
do {
switch(irr_num) {
case 0:
irr = ia64_get_irr0();
break;
case 1:
irr = ia64_get_irr1();
break;
case 2:
irr = ia64_get_irr2();
break;
case 3:
irr = ia64_get_irr3();
break;
}
} while (!(irr & (1UL << irr_bit))) ;
}
/*
* ia64_mca_wakeup
*
* Send an inter-cpu interrupt to wake-up a particular cpu
* and mark that cpu to be out of rendez.
*
* Inputs : cpuid
* Outputs : None
*/
static void
ia64_mca_wakeup(int cpu)
{
platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
}
/*
* ia64_mca_wakeup_all
*
* Wakeup all the cpus which have rendez'ed previously.
*
* Inputs : None
* Outputs : None
*/
static void
ia64_mca_wakeup_all(void)
{
int cpu;
/* Clear the Rendez checkin flag for all cpus */
for(cpu = 0; cpu < NR_CPUS; cpu++) {
if (!cpu_online(cpu))
continue;
if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
ia64_mca_wakeup(cpu);
}
}
/*
* ia64_mca_rendez_interrupt_handler
*
* This is handler used to put slave processors into spinloop
* while the monarch processor does the mca handling and later
* wake each slave up once the monarch is done.
*
* Inputs : None
* Outputs : None
*/
static void
ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
{
unsigned long flags;
int cpu = smp_processor_id();
/* Mask all interrupts */
local_irq_save(flags);
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
/* Register with the SAL monarch that the slave has
* reached SAL
*/
ia64_sal_mc_rendez();
/* Wait for the wakeup IPI from the monarch
* This waiting is done by polling on the wakeup-interrupt
* vector bit in the processor's IRRs
*/
ia64_mca_wakeup_ipi_wait();
/* Enable all interrupts */
local_irq_restore(flags);
}
/*
* ia64_mca_wakeup_int_handler
*
* The interrupt handler for processing the inter-cpu interrupt to the
* slave cpu which was spinning in the rendez loop.
* Since this spinning is done by turning off the interrupts and
* polling on the wakeup-interrupt bit in the IRR, there is
* nothing useful to be done in the handler.
*
* Inputs : wakeup_irq (Wakeup-interrupt bit)
* arg (Interrupt handler specific argument)
* ptregs (Exception frame at the time of the interrupt)
* Outputs : None
*
*/
static void
ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
{
}
/*
* ia64_return_to_sal_check
*
* This is function called before going back from the OS_MCA handler
* to the OS_MCA dispatch code which finally takes the control back
* to the SAL.
* The main purpose of this routine is to setup the OS_MCA to SAL
* return state which can be used by the OS_MCA dispatch code
* just before going back to SAL.
*
* Inputs : None
* Outputs : None
*/
static void
ia64_return_to_sal_check(int recover)
{
/* Copy over some relevant stuff from the sal_to_os_mca_handoff
* so that it can be used at the time of os_mca_to_sal_handoff
*/
ia64_os_to_sal_handoff_state.imots_sal_gp =
ia64_sal_to_os_handoff_state.imsto_sal_gp;
ia64_os_to_sal_handoff_state.imots_sal_check_ra =
ia64_sal_to_os_handoff_state.imsto_sal_check_ra;
if (recover)
ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED;
else
ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT;
/* Default = tell SAL to return to same context */
ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT;
ia64_os_to_sal_handoff_state.imots_new_min_state =
(u64 *)ia64_sal_to_os_handoff_state.pal_min_state;
}
/*
* ia64_mca_ucmc_handler
*
* This is uncorrectable machine check handler called from OS_MCA
* dispatch code which is in turn called from SAL_CHECK().
* This is the place where the core of OS MCA handling is done.
* Right now the logs are extracted and displayed in a well-defined
* format. This handler code is supposed to be run only on the
* monarch processor. Once the monarch is done with MCA handling
* further MCA logging is enabled by clearing logs.
* Monarch also has the duty of sending wakeup-IPIs to pull the
* slave processors out of rendezvous spinloop.
*
* Inputs : None
* Outputs : None
*/
void
ia64_mca_ucmc_handler(void)
{
pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
&ia64_sal_to_os_handoff_state.proc_state_param;
int recover = psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc);
/* Get the MCA error record and log it */
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
/*
* Wakeup all the processors which are spinning in the rendezvous
* loop.
*/
ia64_mca_wakeup_all();
/* Return to SAL */
ia64_return_to_sal_check(recover);
}
/*
* ia64_mca_cmc_int_handler
*
* This is corrected machine check interrupt handler.
* Right now the logs are extracted and displayed in a well-defined
* format.
*
* Inputs
* interrupt number
* client data arg ptr
* saved registers ptr
*
* Outputs
* None
*/
static void
ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
{
static unsigned long cmc_history[CMC_HISTORY_LENGTH];
static int index;
static spinlock_t cmc_history_lock = SPIN_LOCK_UNLOCKED;
IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
__FUNCTION__, cmc_irq, smp_processor_id());
/* SAL spec states this should run w/ interrupts enabled */
local_irq_enable();
/* Get the CMC error record and log it */
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
spin_lock(&cmc_history_lock);
if (!cmc_polling_enabled) {
int i, count = 1; /* we know 1 happened now */
unsigned long now = jiffies;
for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
if (now - cmc_history[i] <= HZ)
count++;
}
IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
if (count >= CMC_HISTORY_LENGTH) {
cmc_polling_enabled = 1;
spin_unlock(&cmc_history_lock);
schedule_task(&cmc_disable_tq);
/*
* Corrected errors will still be corrected, but
* make sure there's a log somewhere that indicates
* something is generating more than we can handle.
*/
printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
/* lock already released, get out now */
return;
} else {
cmc_history[index++] = now;
if (index == CMC_HISTORY_LENGTH)
index = 0;
}
}
spin_unlock(&cmc_history_lock);
}
/*
* ia64_mca_cmc_int_caller
*
* Triggered by sw interrupt from CMC polling routine. Calls
* real interrupt handler and either triggers a sw interrupt
* on the next cpu or does cleanup at the end.
*
* Inputs
* interrupt number
* client data arg ptr
* saved registers ptr
* Outputs
* None
*/
static void
ia64_mca_cmc_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
{
static int start_count = -1;
unsigned int cpuid;
cpuid = smp_processor_id();
/* If first cpu, update count */
if (start_count == -1)
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
ia64_mca_cmc_int_handler(cpe_irq, arg, ptregs);
for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
if (cpuid < NR_CPUS) {
platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
} else {
/* If no log record, switch out of polling mode */
if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
schedule_task(&cmc_enable_tq);
cmc_polling_enabled = 0;
} else {
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
}
start_count = -1;
}
}
/*
* ia64_mca_cmc_poll
*
* Poll for Corrected Machine Checks (CMCs)
*
* Inputs : dummy(unused)
* Outputs : None
*
*/
static void
ia64_mca_cmc_poll (unsigned long dummy)
{
/* Trigger a CMC interrupt cascade */
platform_send_ipi(__ffs(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
}
/*
* ia64_mca_cpe_int_caller
*
* Triggered by sw interrupt from CPE polling routine. Calls
* real interrupt handler and either triggers a sw interrupt
* on the next cpu or does cleanup at the end.
*
* Inputs
* interrupt number
* client data arg ptr
* saved registers ptr
* Outputs
* None
*/
static void
ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
{
static int start_count = -1;
static int poll_time = MAX_CPE_POLL_INTERVAL;
unsigned int cpuid;
cpuid = smp_processor_id();
/* If first cpu, update count */
if (start_count == -1)
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
if (cpuid < NR_CPUS) {
platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
} else {
/*
* If a log was recorded, increase our polling frequency,
* otherwise, backoff.
*/
if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
} else {
poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
}
start_count = -1;
mod_timer(&cpe_poll_timer, jiffies + poll_time);
}
}
/*
* ia64_mca_cpe_poll
*
* Poll for Corrected Platform Errors (CPEs), trigger interrupt
* on first cpu, from there it will trickle through all the cpus.
*
* Inputs : dummy(unused)
* Outputs : None
*
*/
static void
ia64_mca_cpe_poll (unsigned long dummy)
{
/* Trigger a CPE interrupt cascade */
platform_send_ipi(__ffs(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
}
/*
* C portion of the OS INIT handler
*
* Called from ia64_monarch_init_handler
*
* Inputs: pointer to pt_regs where processor info was saved.
*
* Returns:
* 0 if SAL must warm boot the System
* 1 if SAL must return to interrupted context using PAL_MC_RESUME
*
*/
void
ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw)
{
pal_min_state_area_t *ms;
oops_in_progress = 1; /* avoid deadlock in printk, but it makes recovery dodgy */
printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n",
ia64_sal_to_os_handoff_state.proc_state_param);
/*
* Address of minstate area provided by PAL is physical,
* uncacheable (bit 63 set). Convert to Linux virtual
* address in region 6.
*/
ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61));
init_handler_platform(ms, pt, sw); /* call platform specific routines */
}
static int __init
ia64_mca_disable_cpe_polling(char *str)
{
cpe_poll_enabled = 0;
return 1;
}
__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
static struct irqaction cmci_irqaction = {
.handler = ia64_mca_cmc_int_handler,
.flags = SA_INTERRUPT,
.name = "cmc_hndlr"
};
static struct irqaction cmcp_irqaction = {
.handler = ia64_mca_cmc_int_caller,
.flags = SA_INTERRUPT,
.name = "cmc_poll"
};
static struct irqaction mca_rdzv_irqaction = {
.handler = ia64_mca_rendez_int_handler,
.flags = SA_INTERRUPT,
.name = "mca_rdzv"
};
static struct irqaction mca_wkup_irqaction = {
.handler = ia64_mca_wakeup_int_handler,
.flags = SA_INTERRUPT,
.name = "mca_wkup"
};
#ifdef CONFIG_ACPI
static struct irqaction mca_cpe_irqaction = {
.handler = ia64_mca_cpe_int_handler,
.flags = SA_INTERRUPT,
.name = "cpe_hndlr"
};
static struct irqaction mca_cpep_irqaction = {
.handler = ia64_mca_cpe_int_caller,
.flags = SA_INTERRUPT,
.name = "cpe_poll"
};
#endif /* CONFIG_ACPI */
/*
* ia64_mca_init
*
* Do all the system level mca specific initialization.
*
* 1. Register spinloop and wakeup request interrupt vectors
*
* 2. Register OS_MCA handler entry point
*
* 3. Register OS_INIT handler entry point
*
* 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
*
* Note that this initialization is done very early before some kernel
* services are available.
*
* Inputs : None
*
* Outputs : None
*/
void __init
ia64_mca_init(void)
{
ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler;
ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler;
ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
int i;
s64 rc;
struct ia64_sal_retval isrv;
u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
INIT_TQUEUE(&cmc_disable_tq, ia64_mca_cmc_vector_disable_keventd, NULL);
INIT_TQUEUE(&cmc_enable_tq, ia64_mca_cmc_vector_enable_keventd, NULL);
/* Clear the Rendez checkin flag for all cpus */
for(i = 0 ; i < NR_CPUS; i++)
ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
/*
* Register the rendezvous spinloop and wakeup mechanism with SAL
*/
/* Register the rendezvous interrupt vector with SAL */
while (1) {
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
SAL_MC_PARAM_MECHANISM_INT,
IA64_MCA_RENDEZ_VECTOR,
timeout,
SAL_MC_PARAM_RZ_ALWAYS);
rc = isrv.status;
if (rc == 0)
break;
if (rc == -2) {
printk(KERN_INFO "Increasing MCA rendezvous timeout from "
"%ld to %ld milliseconds\n", timeout, isrv.v0);
timeout = isrv.v0;
continue;
}
printk(KERN_ERR "Failed to register rendezvous interrupt "
"with SAL (status %ld)\n", rc);
return;
}
/* Register the wakeup interrupt vector with SAL */
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
SAL_MC_PARAM_MECHANISM_INT,
IA64_MCA_WAKEUP_VECTOR,
0, 0);
rc = isrv.status;
if (rc) {
printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
"(status %ld)\n", rc);
return;
}
IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
/*
* XXX - disable SAL checksum by setting size to 0; should be
* ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
*/
ia64_mc_info.imi_mca_handler_size = 0;
/* Register the os mca handler with SAL */
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
ia64_mc_info.imi_mca_handler,
ia64_tpa(mca_hldlr_ptr->gp),
ia64_mc_info.imi_mca_handler_size,
0, 0, 0)))
{
printk(KERN_ERR "Failed to register OS MCA handler with SAL "
"(status %ld)\n", rc);
return;
}
IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
/*
* XXX - disable SAL checksum by setting size to 0, should be
* size of the actual init handler in mca_asm.S.
*/
ia64_mc_info.imi_monarch_init_handler = ia64_tpa(mon_init_ptr->fp);
ia64_mc_info.imi_monarch_init_handler_size = 0;
ia64_mc_info.imi_slave_init_handler = ia64_tpa(slave_init_ptr->fp);
ia64_mc_info.imi_slave_init_handler_size = 0;
IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
ia64_mc_info.imi_monarch_init_handler);
/* Register the os init handler with SAL */
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
ia64_mc_info.imi_monarch_init_handler,
ia64_tpa(ia64_get_gp()),
ia64_mc_info.imi_monarch_init_handler_size,
ia64_mc_info.imi_slave_init_handler,
ia64_tpa(ia64_get_gp()),
ia64_mc_info.imi_slave_init_handler_size)))
{
printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
"(status %ld)\n", rc);
return;
}
IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
/*
* Configure the CMCI/P vector and handler. Interrupts for CMC are
* per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
*/
register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
ia64_mca_cmc_vector_setup(); /* Setup vector on BSP & enable */
/* Setup the MCA rendezvous interrupt vector */
register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
/* Setup the MCA wakeup interrupt vector */
register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
#ifdef CONFIG_ACPI
/* Setup the CPE interrupt vector */
{
irq_desc_t *desc;
unsigned int irq;
int cpev = acpi_request_vector(ACPI_INTERRUPT_CPEI);
if (cpev >= 0) {
for (irq = 0; irq < NR_IRQS; ++irq)
if (irq_to_vector(irq) == cpev) {
desc = irq_desc(irq);
desc->status |= IRQ_PER_CPU;
desc->handler = &irq_type_iosapic_level;
setup_irq(irq, &mca_cpe_irqaction);
}
ia64_mca_register_cpev(cpev);
}
}
#endif
/* Initialize the areas set aside by the OS to buffer the
* platform/processor error states for MCA/INIT/CMC
* handling.
*/
ia64_log_init(SAL_INFO_TYPE_MCA);
ia64_log_init(SAL_INFO_TYPE_INIT);
ia64_log_init(SAL_INFO_TYPE_CMC);
ia64_log_init(SAL_INFO_TYPE_CPE);
printk(KERN_INFO "MCA related initialization done\n");
}
/*
* ia64_mca_late_init
*
* Opportunity to setup things that require initialization later
* than ia64_mca_init. Setup a timer to poll for CPEs if the
* platform doesn't support an interrupt driven mechanism.
*
* Inputs : None
* Outputs : Status
*/
static int __init
ia64_mca_late_init(void)
{
init_timer(&cmc_poll_timer);
cmc_poll_timer.function = ia64_mca_cmc_poll;
/* Reset to the correct state */
cmc_polling_enabled = 0;
init_timer(&cpe_poll_timer);
cpe_poll_timer.function = ia64_mca_cpe_poll;
#ifdef CONFIG_ACPI
/* If platform doesn't support CPEI, get the timer going. */
if (acpi_request_vector(ACPI_INTERRUPT_CPEI) < 0 && cpe_poll_enabled) {
register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
ia64_mca_cpe_poll(0UL);
}
#endif
return 0;
}
module_init(ia64_mca_late_init);