| /* |
| * Architecture-specific setup. |
| * |
| * Copyright (C) 1998-2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| */ |
| #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */ |
| #include <linux/config.h> |
| |
| #include <linux/pm.h> |
| #include <linux/elf.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/personality.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/smp_lock.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/efi.h> |
| |
| #include <asm/delay.h> |
| #include <asm/perfmon.h> |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/sal.h> |
| #include <asm/uaccess.h> |
| #include <asm/unwind.h> |
| #include <asm/user.h> |
| |
| #ifdef CONFIG_IA64_SGI_SN |
| #include <asm/sn/idle.h> |
| #endif |
| |
| #define print_symbol(fmt, addr) printk(fmt, "(no symbol)"); |
| |
| void |
| ia64_do_show_stack (struct unw_frame_info *info, void *arg) |
| { |
| unsigned long ip, sp, bsp; |
| char buf[128]; /* don't make it so big that it overflows the stack! */ |
| |
| printk("\nCall Trace:\n"); |
| do { |
| unw_get_ip(info, &ip); |
| if (ip == 0) |
| break; |
| |
| unw_get_sp(info, &sp); |
| unw_get_bsp(info, &bsp); |
| snprintf(buf, sizeof(buf), |
| " [<%016lx>] %%s\n" |
| " sp=%016lx bsp=%016lx\n", |
| ip, sp, bsp); |
| print_symbol(buf, ip); |
| } while (unw_unwind(info) >= 0); |
| } |
| |
| void |
| show_stack (struct task_struct *task) |
| { |
| if (!task) |
| unw_init_running(ia64_do_show_stack, 0); |
| else { |
| struct unw_frame_info info; |
| |
| unw_init_from_blocked_task(&info, task); |
| ia64_do_show_stack(&info, 0); |
| } |
| } |
| |
| void |
| show_trace_task (struct task_struct *task) |
| { |
| show_stack(task); |
| } |
| |
| void |
| show_regs (struct pt_regs *regs) |
| { |
| unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; |
| |
| printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm); |
| printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n", |
| regs->cr_ipsr, regs->cr_ifs, ip, print_tainted()); |
| print_symbol("ip is at %s\n", ip); |
| printk("unat: %016lx pfs : %016lx rsc : %016lx\n", |
| regs->ar_unat, regs->ar_pfs, regs->ar_rsc); |
| printk("rnat: %016lx bsps: %016lx pr : %016lx\n", |
| regs->ar_rnat, regs->ar_bspstore, regs->pr); |
| printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", |
| regs->loadrs, regs->ar_ccv, regs->ar_fpsr); |
| printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); |
| printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); |
| printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", |
| regs->f6.u.bits[1], regs->f6.u.bits[0], |
| regs->f7.u.bits[1], regs->f7.u.bits[0]); |
| printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", |
| regs->f8.u.bits[1], regs->f8.u.bits[0], |
| regs->f9.u.bits[1], regs->f9.u.bits[0]); |
| printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", |
| regs->f10.u.bits[1], regs->f10.u.bits[0], |
| regs->f11.u.bits[1], regs->f11.u.bits[0]); |
| |
| printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); |
| printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); |
| printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); |
| printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); |
| printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); |
| printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); |
| printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); |
| printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); |
| printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); |
| |
| if (user_mode(regs)) { |
| /* print the stacked registers */ |
| unsigned long val, sof, *bsp, ndirty; |
| int i, is_nat = 0; |
| |
| sof = regs->cr_ifs & 0x7f; /* size of frame */ |
| ndirty = (regs->loadrs >> 19); |
| bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); |
| for (i = 0; i < sof; ++i) { |
| get_user(val, ia64_rse_skip_regs(bsp, i)); |
| printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, |
| ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); |
| } |
| } |
| if (!user_mode(regs)) |
| show_stack(NULL); |
| } |
| |
| /* |
| * We use this if we don't have any better idle routine.. |
| */ |
| void |
| default_idle (void) |
| { |
| #ifdef CONFIG_IA64_PAL_IDLE |
| if (!current->need_resched) |
| safe_halt(); |
| #endif |
| } |
| |
| void __attribute__((noreturn)) |
| cpu_idle (void *unused) |
| { |
| init_idle(); |
| current->nice = 20; |
| current->counter = -100; |
| |
| |
| /* endless idle loop with no priority at all */ |
| while (1) { |
| void (*idle)(void) = pm_idle; |
| if (!idle) |
| idle = default_idle; |
| |
| #ifdef CONFIG_SMP |
| if (!current->need_resched) |
| min_xtp(); |
| #endif |
| |
| while (!current->need_resched) { |
| #ifdef CONFIG_IA64_SGI_SN |
| snidle(); |
| #endif |
| (*idle)(); |
| } |
| |
| #ifdef CONFIG_IA64_SGI_SN |
| snidleoff(); |
| #endif |
| |
| #ifdef CONFIG_SMP |
| normal_xtp(); |
| #endif |
| schedule(); |
| check_pgt_cache(); |
| } |
| } |
| |
| void |
| ia64_save_extra (struct task_struct *task) |
| { |
| #ifdef CONFIG_PERFMON |
| unsigned long info; |
| #endif |
| |
| if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) |
| ia64_save_debug_regs(&task->thread.dbr[0]); |
| |
| #ifdef CONFIG_PERFMON |
| if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) |
| pfm_save_regs(task); |
| |
| info = local_cpu_data->pfm_syst_info; |
| if (info & PFM_CPUINFO_SYST_WIDE) |
| pfm_syst_wide_update_task(task, info, 0); |
| #endif |
| |
| #ifdef CONFIG_IA32_SUPPORT |
| if (IS_IA32_PROCESS(ia64_task_regs(task))) |
| ia32_save_state(task); |
| #endif |
| } |
| |
| void |
| ia64_load_extra (struct task_struct *task) |
| { |
| #ifdef CONFIG_PERFMON |
| unsigned long info; |
| #endif |
| |
| if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) |
| ia64_load_debug_regs(&task->thread.dbr[0]); |
| |
| #ifdef CONFIG_PERFMON |
| if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) |
| pfm_load_regs(task); |
| |
| info = local_cpu_data->pfm_syst_info; |
| if (info & PFM_CPUINFO_SYST_WIDE) |
| pfm_syst_wide_update_task(task, info, 1); |
| #endif |
| |
| #ifdef CONFIG_IA32_SUPPORT |
| if (IS_IA32_PROCESS(ia64_task_regs(task))) |
| ia32_load_state(task); |
| #endif |
| } |
| |
| /* |
| * Copy the state of an ia-64 thread. |
| * |
| * We get here through the following call chain: |
| * |
| * <clone syscall> |
| * sys_clone |
| * do_fork |
| * copy_thread |
| * |
| * This means that the stack layout is as follows: |
| * |
| * +---------------------+ (highest addr) |
| * | struct pt_regs | |
| * +---------------------+ |
| * | struct switch_stack | |
| * +---------------------+ |
| * | | |
| * | memory stack | |
| * | | <-- sp (lowest addr) |
| * +---------------------+ |
| * |
| * Note: if we get called through arch_kernel_thread() then the memory |
| * above "(highest addr)" is valid kernel stack memory that needs to |
| * be copied as well. |
| * |
| * Observe that we copy the unat values that are in pt_regs and |
| * switch_stack. Spilling an integer to address X causes bit N in |
| * ar.unat to be set to the NaT bit of the register, with N=(X & |
| * 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY |
| * if the pt_regs structure in the parent is congruent to that of the |
| * child, modulo 512. Since the stack is page aligned and the page |
| * size is at least 4KB, this is always the case, so there is nothing |
| * to worry about. |
| */ |
| int |
| copy_thread (int nr, unsigned long clone_flags, |
| unsigned long user_stack_base, unsigned long user_stack_size, |
| struct task_struct *p, struct pt_regs *regs) |
| { |
| unsigned long rbs, child_rbs, rbs_size, stack_offset, stack_top, stack_used; |
| struct switch_stack *child_stack, *stack; |
| extern char ia64_ret_from_clone, ia32_ret_from_clone; |
| struct pt_regs *child_ptregs; |
| int retval = 0; |
| |
| #ifdef CONFIG_SMP |
| /* |
| * For SMP idle threads, fork_by_hand() calls do_fork with |
| * NULL regs. |
| */ |
| if (!regs) |
| return 0; |
| #endif |
| |
| stack_top = (unsigned long) current + IA64_STK_OFFSET; |
| stack = ((struct switch_stack *) regs) - 1; |
| stack_used = stack_top - (unsigned long) stack; |
| stack_offset = IA64_STK_OFFSET - stack_used; |
| |
| child_stack = (struct switch_stack *) ((unsigned long) p + stack_offset); |
| child_ptregs = (struct pt_regs *) (child_stack + 1); |
| |
| /* copy parent's switch_stack & pt_regs to child: */ |
| memcpy(child_stack, stack, stack_used); |
| |
| rbs = (unsigned long) current + IA64_RBS_OFFSET; |
| child_rbs = (unsigned long) p + IA64_RBS_OFFSET; |
| rbs_size = stack->ar_bspstore - rbs; |
| |
| /* copy the parent's register backing store to the child: */ |
| memcpy((void *) child_rbs, (void *) rbs, rbs_size); |
| |
| if (user_mode(child_ptregs)) { |
| if (user_stack_base) { |
| child_ptregs->r12 = user_stack_base + user_stack_size - 16; |
| child_ptregs->ar_bspstore = user_stack_base; |
| child_ptregs->ar_rnat = 0; |
| child_ptregs->loadrs = 0; |
| } |
| } else { |
| /* |
| * Note: we simply preserve the relative position of |
| * the stack pointer here. There is no need to |
| * allocate a scratch area here, since that will have |
| * been taken care of by the caller of sys_clone() |
| * already. |
| */ |
| child_ptregs->r12 = (unsigned long) (child_ptregs + 1); /* kernel sp */ |
| child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */ |
| } |
| if (IS_IA32_PROCESS(regs)) |
| child_stack->b0 = (unsigned long) &ia32_ret_from_clone; |
| else |
| child_stack->b0 = (unsigned long) &ia64_ret_from_clone; |
| child_stack->ar_bspstore = child_rbs + rbs_size; |
| |
| /* copy parts of thread_struct: */ |
| p->thread.ksp = (unsigned long) child_stack - 16; |
| |
| /* stop some PSR bits from being inherited: */ |
| child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) |
| & ~IA64_PSR_BITS_TO_CLEAR); |
| |
| /* |
| * NOTE: The calling convention considers all floating point registers in the high |
| * partition (fph) to be scratch. Since the only way to get to this point is |
| * through a system call, we know that the values in fph are all dead. Hence, |
| * there is no need to inherit the fph state from the parent to the child and all |
| * we have to do is to make sure that IA64_THREAD_FPH_VALID is cleared in the |
| * child. |
| * |
| * XXX We could push this optimization a bit further by clearing |
| * IA64_THREAD_FPH_VALID on ANY system call. However, it's not clear this is |
| * worth doing. Also, it would be a slight deviation from the normal Linux system |
| * call behavior where scratch registers are preserved across system calls (unless |
| * used by the system call itself). |
| */ |
| # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ |
| | IA64_THREAD_PM_VALID) |
| # define THREAD_FLAGS_TO_SET 0 |
| p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) |
| | THREAD_FLAGS_TO_SET); |
| ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ |
| #ifdef CONFIG_IA32_SUPPORT |
| /* |
| * If we're cloning an IA32 task then save the IA32 extra |
| * state from the current task to the new task |
| */ |
| if (IS_IA32_PROCESS(ia64_task_regs(current))) |
| ia32_save_state(p); |
| #endif |
| |
| #ifdef CONFIG_PERFMON |
| /* |
| * reset notifiers and owner check (may not have a perfmon context) |
| */ |
| atomic_set(&p->thread.pfm_notifiers_check, 0); |
| atomic_set(&p->thread.pfm_owners_check, 0); |
| /* clear list of sampling buffer to free for new task */ |
| p->thread.pfm_smpl_buf_list = NULL; |
| |
| if (current->thread.pfm_context) |
| retval = pfm_inherit(p, child_ptregs); |
| #endif |
| return retval; |
| } |
| |
| void |
| do_copy_regs (struct unw_frame_info *info, void *arg) |
| { |
| unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm; |
| elf_greg_t *dst = arg; |
| struct pt_regs *pt; |
| char nat; |
| int i; |
| |
| memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ |
| |
| if (unw_unwind_to_user(info) < 0) |
| return; |
| |
| unw_get_sp(info, &sp); |
| pt = (struct pt_regs *) (sp + 16); |
| |
| urbs_end = ia64_get_user_rbs_end(current, pt, &cfm); |
| |
| if (ia64_sync_user_rbs(current, info->sw, pt->ar_bspstore, urbs_end) < 0) |
| return; |
| |
| ia64_peek(current, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), |
| &ar_rnat); |
| |
| /* |
| * coredump format: |
| * r0-r31 |
| * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) |
| * predicate registers (p0-p63) |
| * b0-b7 |
| * ip cfm user-mask |
| * ar.rsc ar.bsp ar.bspstore ar.rnat |
| * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec |
| */ |
| |
| /* r0 is zero */ |
| for (i = 1, mask = (1UL << i); i < 32; ++i) { |
| unw_get_gr(info, i, &dst[i], &nat); |
| if (nat) |
| nat_bits |= mask; |
| mask <<= 1; |
| } |
| dst[32] = nat_bits; |
| unw_get_pr(info, &dst[33]); |
| |
| for (i = 0; i < 8; ++i) |
| unw_get_br(info, i, &dst[34 + i]); |
| |
| unw_get_rp(info, &ip); |
| dst[42] = ip + ia64_psr(pt)->ri; |
| dst[43] = cfm; |
| dst[44] = pt->cr_ipsr & IA64_PSR_UM; |
| |
| unw_get_ar(info, UNW_AR_RSC, &dst[45]); |
| /* |
| * For bsp and bspstore, unw_get_ar() would return the kernel |
| * addresses, but we need the user-level addresses instead: |
| */ |
| dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ |
| dst[47] = pt->ar_bspstore; |
| dst[48] = ar_rnat; |
| unw_get_ar(info, UNW_AR_CCV, &dst[49]); |
| unw_get_ar(info, UNW_AR_UNAT, &dst[50]); |
| unw_get_ar(info, UNW_AR_FPSR, &dst[51]); |
| dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ |
| unw_get_ar(info, UNW_AR_LC, &dst[53]); |
| unw_get_ar(info, UNW_AR_EC, &dst[54]); |
| unw_get_ar(info, UNW_AR_CSD, &dst[55]); |
| unw_get_ar(info, UNW_AR_SSD, &dst[56]); |
| } |
| |
| void |
| do_dump_fpu (struct unw_frame_info *info, void *arg) |
| { |
| elf_fpreg_t *dst = arg; |
| int i; |
| |
| memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ |
| |
| if (unw_unwind_to_user(info) < 0) |
| return; |
| |
| /* f0 is 0.0, f1 is 1.0 */ |
| |
| for (i = 2; i < 32; ++i) |
| unw_get_fr(info, i, dst + i); |
| |
| ia64_flush_fph(current); |
| if ((current->thread.flags & IA64_THREAD_FPH_VALID) != 0) |
| memcpy(dst + 32, current->thread.fph, 96*16); |
| } |
| |
| void |
| ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) |
| { |
| unw_init_running(do_copy_regs, dst); |
| } |
| |
| int |
| dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) |
| { |
| unw_init_running(do_dump_fpu, dst); |
| return 1; /* f0-f31 are always valid so we always return 1 */ |
| } |
| |
| long |
| sys_execve (char *filename, char **argv, char **envp, struct pt_regs *regs) |
| { |
| int error; |
| |
| filename = getname(filename); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| error = do_execve(filename, argv, envp, regs); |
| putname(filename); |
| out: |
| return error; |
| } |
| |
| void |
| ia64_set_personality (struct elf64_hdr *elf_ex, int ibcs2_interpreter) |
| { |
| set_personality(PER_LINUX); |
| if (elf_ex->e_flags & EF_IA_64_LINUX_EXECUTABLE_STACK) |
| current->thread.flags |= IA64_THREAD_XSTACK; |
| else |
| current->thread.flags &= ~IA64_THREAD_XSTACK; |
| } |
| |
| pid_t |
| arch_kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) |
| { |
| struct task_struct *parent = current; |
| int result, tid; |
| |
| tid = clone(flags | CLONE_VM, 0); |
| if (parent != current) { |
| #ifdef CONFIG_IA32_SUPPORT |
| if (IS_IA32_PROCESS(ia64_task_regs(current))) { |
| /* A kernel thread is always a 64-bit process. */ |
| current->thread.map_base = DEFAULT_MAP_BASE; |
| current->thread.task_size = DEFAULT_TASK_SIZE; |
| ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); |
| ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); |
| } |
| #endif |
| result = (*fn)(arg); |
| _exit(result); |
| } |
| return tid; |
| } |
| |
| /* |
| * Flush thread state. This is called when a thread does an execve(). |
| */ |
| void |
| flush_thread (void) |
| { |
| /* drop floating-point and debug-register state if it exists: */ |
| current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); |
| ia64_drop_fpu(current); |
| } |
| |
| #ifdef CONFIG_PERFMON |
| /* |
| * by the time we get here, the task is detached from the tasklist. This is important |
| * because it means that no other tasks can ever find it as a notified task, therfore there |
| * is no race condition between this code and let's say a pfm_context_create(). |
| * Conversely, the pfm_cleanup_notifiers() cannot try to access a task's pfm context if this |
| * other task is in the middle of its own pfm_context_exit() because it would already be out of |
| * the task list. Note that this case is very unlikely between a direct child and its parents |
| * (if it is the notified process) because of the way the exit is notified via SIGCHLD. |
| */ |
| |
| void |
| release_thread (struct task_struct *task) |
| { |
| if (task->thread.pfm_context) |
| pfm_context_exit(task); |
| |
| if (atomic_read(&task->thread.pfm_notifiers_check) > 0) |
| pfm_cleanup_notifiers(task); |
| |
| if (atomic_read(&task->thread.pfm_owners_check) > 0) |
| pfm_cleanup_owners(task); |
| |
| if (task->thread.pfm_smpl_buf_list) |
| pfm_cleanup_smpl_buf(task); |
| } |
| #endif |
| |
| /* |
| * Clean up state associated with current thread. This is called when |
| * the thread calls exit(). |
| */ |
| void |
| exit_thread (void) |
| { |
| ia64_drop_fpu(current); |
| #ifdef CONFIG_PERFMON |
| /* stop monitoring */ |
| if (current->thread.pfm_context) |
| pfm_flush_regs(current); |
| |
| /* free debug register resources */ |
| if (current->thread.flags & IA64_THREAD_DBG_VALID) |
| pfm_release_debug_registers(current); |
| #endif |
| } |
| |
| unsigned long |
| get_wchan (struct task_struct *p) |
| { |
| struct unw_frame_info info; |
| unsigned long ip; |
| int count = 0; |
| /* |
| * These bracket the sleeping functions.. |
| */ |
| extern void scheduling_functions_start_here(void); |
| extern void scheduling_functions_end_here(void); |
| # define first_sched ((unsigned long) scheduling_functions_start_here) |
| # define last_sched ((unsigned long) scheduling_functions_end_here) |
| |
| /* |
| * Note: p may not be a blocked task (it could be current or |
| * another process running on some other CPU. Rather than |
| * trying to determine if p is really blocked, we just assume |
| * it's blocked and rely on the unwind routines to fail |
| * gracefully if the process wasn't really blocked after all. |
| * --davidm 99/12/15 |
| */ |
| unw_init_from_blocked_task(&info, p); |
| do { |
| if (unw_unwind(&info) < 0) |
| return 0; |
| unw_get_ip(&info, &ip); |
| if (ip < first_sched || ip >= last_sched) |
| return ip; |
| } while (count++ < 16); |
| return 0; |
| # undef first_sched |
| # undef last_sched |
| } |
| |
| void |
| cpu_halt (void) |
| { |
| pal_power_mgmt_info_u_t power_info[8]; |
| unsigned long min_power; |
| int i, min_power_state; |
| |
| if (ia64_pal_halt_info(power_info) != 0) |
| return; |
| |
| min_power_state = 0; |
| min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; |
| for (i = 1; i < 8; ++i) |
| if (power_info[i].pal_power_mgmt_info_s.im |
| && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { |
| min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; |
| min_power_state = i; |
| } |
| |
| while (1) |
| ia64_pal_halt(min_power_state); |
| } |
| |
| void |
| machine_restart (char *restart_cmd) |
| { |
| (*efi.reset_system)(EFI_RESET_WARM, 0, 0, 0); |
| } |
| |
| void |
| machine_halt (void) |
| { |
| cpu_halt(); |
| } |
| |
| void |
| machine_power_off (void) |
| { |
| if (pm_power_off) |
| pm_power_off(); |
| machine_halt(); |
| } |