blob: 2dad9249fa8604bf2baf2d787ba51264ff397b71 [file] [log] [blame]
/*
** ccio-dma.c:
** DMA management routines for first generation cache-coherent machines.
** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
**
** (c) Copyright 2000 Grant Grundler
** (c) Copyright 2000 Ryan Bradetich
** (c) Copyright 2000 Hewlett-Packard Company
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
**
** "Real Mode" operation refers to U2/Uturn chip operation.
** U2/Uturn were designed to perform coherency checks w/o using
** the I/O MMU - basically what x86 does.
**
** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
**
** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
**
** Drawbacks of using Real Mode are:
** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
** o Ability to do scatter/gather in HW is lost.
** o Doesn't work under PCX-U/U+ machines since they didn't follow
** the coherency design originally worked out. Only PCX-W does.
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/string.h>
#define PCI_DEBUG
#include <linux/pci.h>
#undef PCI_DEBUG
#include <asm/byteorder.h>
#include <asm/cache.h> /* for L1_CACHE_BYTES */
#include <asm/uaccess.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/gsc.h> /* for gsc_writeN()... */
#include <asm/hardware.h> /* for register_module() */
/*
** Choose "ccio" since that's what HP-UX calls it.
** Make it easier for folks to migrate from one to the other :^)
*/
#define MODULE_NAME "ccio"
#undef DEBUG_CCIO_RES
#undef DEBUG_CCIO_RUN
#undef DEBUG_CCIO_INIT
#undef DEBUG_CCIO_RUN_SG
#include <linux/proc_fs.h>
#include <asm/runway.h> /* for proc_runway_root */
#ifdef DEBUG_CCIO_INIT
#define DBG_INIT(x...) printk(x)
#else
#define DBG_INIT(x...)
#endif
#ifdef DEBUG_CCIO_RUN
#define DBG_RUN(x...) printk(x)
#else
#define DBG_RUN(x...)
#endif
#ifdef DEBUG_CCIO_RES
#define DBG_RES(x...) printk(x)
#else
#define DBG_RES(x...)
#endif
#ifdef DEBUG_CCIO_RUN_SG
#define DBG_RUN_SG(x...) printk(x)
#else
#define DBG_RUN_SG(x...)
#endif
#define CCIO_INLINE /* inline */
#define WRITE_U32(value, addr) gsc_writel(value, (u32 *)(addr))
#define READ_U32(addr) gsc_readl((u32 *)(addr))
#define U2_IOA_RUNWAY 0x580
#define U2_BC_GSC 0x501
#define UTURN_IOA_RUNWAY 0x581
#define UTURN_BC_GSC 0x502
#define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
#define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
#define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
struct ioa_registers {
/* Runway Supervisory Set */
volatile int32_t unused1[12];
volatile uint32_t io_command; /* Offset 12 */
volatile uint32_t io_status; /* Offset 13 */
volatile uint32_t io_control; /* Offset 14 */
volatile int32_t unused2[1];
/* Runway Auxiliary Register Set */
volatile uint32_t io_err_resp; /* Offset 0 */
volatile uint32_t io_err_info; /* Offset 1 */
volatile uint32_t io_err_req; /* Offset 2 */
volatile uint32_t io_err_resp_hi; /* Offset 3 */
volatile uint32_t io_tlb_entry_m; /* Offset 4 */
volatile uint32_t io_tlb_entry_l; /* Offset 5 */
volatile uint32_t unused3[1];
volatile uint32_t io_pdir_base; /* Offset 7 */
volatile uint32_t io_io_low_hv; /* Offset 8 */
volatile uint32_t io_io_high_hv; /* Offset 9 */
volatile uint32_t unused4[1];
volatile uint32_t io_chain_id_mask; /* Offset 11 */
volatile uint32_t unused5[2];
volatile uint32_t io_io_low; /* Offset 14 */
volatile uint32_t io_io_high; /* Offset 15 */
};
struct ioc {
struct ioa_registers *ioc_hpa; /* I/O MMU base address */
u8 *res_map; /* resource map, bit == pdir entry */
u64 *pdir_base; /* physical base address */
u32 res_hint; /* next available IOVP -
circular search */
u32 res_size; /* size of resource map in bytes */
spinlock_t res_lock;
#ifdef CONFIG_PROC_FS
#define CCIO_SEARCH_SAMPLE 0x100
unsigned long avg_search[CCIO_SEARCH_SAMPLE];
unsigned long avg_idx; /* current index into avg_search */
unsigned long used_pages;
unsigned long msingle_calls;
unsigned long msingle_pages;
unsigned long msg_calls;
unsigned long msg_pages;
unsigned long usingle_calls;
unsigned long usingle_pages;
unsigned long usg_calls;
unsigned long usg_pages;
unsigned short cujo20_bug;
#endif
/* STUFF We don't need in performance path */
u32 pdir_size; /* in bytes, determined by IOV Space size */
u32 chainid_shift; /* specify bit location of chain_id */
struct ioc *next; /* Linked list of discovered iocs */
const char *name; /* device name from firmware */
unsigned int hw_path; /* the hardware path this ioc is associatd with */
struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
struct resource mmio_region[2]; /* The "routed" MMIO regions */
};
/* Ratio of Host MEM to IOV Space size */
static unsigned long ccio_mem_ratio = 4;
static struct ioc *ioc_list;
static int ioc_count;
/**************************************************************
*
* I/O Pdir Resource Management
*
* Bits set in the resource map are in use.
* Each bit can represent a number of pages.
* LSbs represent lower addresses (IOVA's).
*
* This was was copied from sba_iommu.c. Don't try to unify
* the two resource managers unless a way to have different
* allocation policies is also adjusted. We'd like to avoid
* I/O TLB thrashing by having resource allocation policy
* match the I/O TLB replacement policy.
*
***************************************************************/
#define IOVP_SIZE PAGE_SIZE
#define IOVP_SHIFT PAGE_SHIFT
#define IOVP_MASK PAGE_MASK
/* Convert from IOVP to IOVA and vice versa. */
#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
#define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
#define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
#define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
/*
** Don't worry about the 150% average search length on a miss.
** If the search wraps around, and passes the res_hint, it will
** cause the kernel to panic anyhow.
*/
#define CCIO_SEARCH_LOOP(ioc, res_idx, mask_ptr, size) \
for(; res_ptr < res_end; ++res_ptr) { \
if(0 == (*res_ptr & *mask_ptr)) { \
*res_ptr |= *mask_ptr; \
res_idx = (int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
ioc->res_hint = res_idx + (size >> 3); \
goto resource_found; \
} \
}
#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
u##size *mask_ptr = (u##size *)&mask; \
CCIO_SEARCH_LOOP(ioc, res_idx, mask_ptr, size); \
res_ptr = (u##size *)&(ioc)->res_map[0]; \
CCIO_SEARCH_LOOP(ioa, res_idx, mask_ptr, size);
/*
** Find available bit in this ioa's resource map.
** Use a "circular" search:
** o Most IOVA's are "temporary" - avg search time should be small.
** o keep a history of what happened for debugging
** o KISS.
**
** Perf optimizations:
** o search for log2(size) bits at a time.
** o search for available resource bits using byte/word/whatever.
** o use different search for "large" (eg > 4 pages) or "very large"
** (eg > 16 pages) mappings.
*/
/**
* ccio_alloc_range - Allocate pages in the ioc's resource map.
* @ioc: The I/O Controller.
* @pages_needed: The requested number of pages to be mapped into the
* I/O Pdir...
*
* This function searches the resource map of the ioc to locate a range
* of available pages for the requested size.
*/
static int
ccio_alloc_range(struct ioc *ioc, unsigned long pages_needed)
{
int res_idx;
unsigned long mask;
#ifdef CONFIG_PROC_FS
unsigned long cr_start = mfctl(16);
#endif
ASSERT(pages_needed);
ASSERT((pages_needed * IOVP_SIZE) <= DMA_CHUNK_SIZE);
ASSERT(pages_needed <= BITS_PER_LONG);
mask = ~(~0UL >> pages_needed);
DBG_RES("%s() size: %d pages_needed %d mask 0x%08lx\n",
__FUNCTION__, size, pages_needed, mask);
/*
** "seek and ye shall find"...praying never hurts either...
** ggg sacrifices another 710 to the computer gods.
*/
if(pages_needed <= 8) {
CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
} else if(pages_needed <= 16) {
CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 16);
} else if(pages_needed <= 32) {
CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 32);
#ifdef __LP64__
} else if(pages_needed <= 64) {
CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 64);
#endif
} else {
panic(__FILE__ ": %s() Too many pages to map. pages_needed: %ld\n",
__FUNCTION__, pages_needed);
}
panic(__FILE__ ": %s() I/O MMU is out of mapping resources.\n",
__FUNCTION__);
resource_found:
DBG_RES("%s() res_idx %d mask 0x%08lx res_hint: %d\n",
__FUNCTION__, res_idx, mask, ioc->res_hint);
#ifdef CONFIG_PROC_FS
{
unsigned long cr_end = mfctl(16);
unsigned long tmp = cr_end - cr_start;
/* check for roll over */
cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
}
ioc->avg_search[ioc->avg_idx++] = cr_start;
ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
ioc->used_pages += pages_needed;
#endif
/*
** return the bit address.
*/
return res_idx << 3;
}
#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
u##size *mask_ptr = (u##size *)&mask; \
ASSERT((*res_ptr & *mask_ptr) == *mask_ptr); \
*res_ptr &= ~(*mask_ptr);
/**
* ccio_free_range - Free pages from the ioc's resource map.
* @ioc: The I/O Controller.
* @iova: The I/O Virtual Address.
* @pages_mapped: The requested number of pages to be freed from the
* I/O Pdir.
*
* This function frees the resouces allocated for the iova.
*/
static void
ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
{
unsigned long mask;
unsigned long iovp = CCIO_IOVP(iova);
unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
ASSERT(pages_mapped);
ASSERT((pages_mapped * IOVP_SIZE) <= DMA_CHUNK_SIZE);
ASSERT(pages_mapped <= BITS_PER_LONG);
mask = ~(~0UL >> pages_mapped);
DBG_RES("%s(): res_idx: %d pages_mapped %d mask 0x%08lx\n",
__FUNCTION__, res_idx, pages_mapped, mask);
#ifdef CONFIG_PROC_FS
ioc->used_pages -= pages_mapped;
#endif
if(pages_mapped <= 8) {
CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
} else if(pages_mapped <= 16) {
CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 16);
} else if(pages_mapped <= 32) {
CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 32);
#ifdef __LP64__
} else if(pages_mapped <= 64) {
CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 64);
#endif
} else {
panic(__FILE__ ":%s() Too many pages to unmap.\n",
__FUNCTION__);
}
}
/****************************************************************
**
** CCIO dma_ops support routines
**
*****************************************************************/
typedef unsigned long space_t;
#define KERNEL_SPACE 0
/*
** DMA "Page Type" and Hints
** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
** set for subcacheline DMA transfers since we don't want to damage the
** other part of a cacheline.
** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
** data can avoid this if the mapping covers full cache lines.
** o STOP_MOST is needed for atomicity across cachelines.
** Apperently only "some EISA devices" need this.
** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
** to use this hint iff the EISA devices needs this feature.
** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
** o PREFETCH should *not* be set for cases like Multiple PCI devices
** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
** device can be fetched and multiply DMA streams will thrash the
** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
** and Invalidation of Prefetch Entries".
**
** FIXME: the default hints need to be per GSC device - not global.
**
** HP-UX dorks: linux device driver programming model is totally different
** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
** do special things to work on non-coherent platforms...linux has to
** be much more careful with this.
*/
#define IOPDIR_VALID 0x01UL
#define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
#ifdef CONFIG_ISA /* EISA support really */
#define HINT_STOP_MOST 0x04UL /* LSL support */
#else
#define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
#endif
#define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
#define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
/*
** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
** ccio_alloc_consistent() depends on this to get SAFE_DMA
** when it passes in BIDIRECTIONAL flag.
*/
static u32 hint_lookup[] = {
[PCI_DMA_BIDIRECTIONAL] HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
[PCI_DMA_TODEVICE] HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
[PCI_DMA_FROMDEVICE] HINT_STOP_MOST | IOPDIR_VALID,
[PCI_DMA_NONE] 0, /* not valid */
};
/**
* ccio_io_pdir_entry - Initialize an I/O Pdir.
* @pdir_ptr: A pointer into I/O Pdir.
* @sid: The Space Identifier.
* @vba: The virtual address.
* @hints: The DMA Hint.
*
* Given a virtual address (vba, arg2) and space id, (sid, arg1),
* load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
* entry consists of 8 bytes as shown below (MSB == bit 0):
*
*
* WORD 0:
* +------+----------------+-----------------------------------------------+
* | Phys | Virtual Index | Phys |
* | 0:3 | 0:11 | 4:19 |
* |4 bits| 12 bits | 16 bits |
* +------+----------------+-----------------------------------------------+
* WORD 1:
* +-----------------------+-----------------------------------------------+
* | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
* | 20:39 | | Enable |Enable | |Enable|DMA | |
* | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
* +-----------------------+-----------------------------------------------+
*
* The virtual index field is filled with the results of the LCI
* (Load Coherence Index) instruction. The 8 bits used for the virtual
* index are bits 12:19 of the value returned by LCI.
*/
void CCIO_INLINE
ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, void * vba, unsigned long hints)
{
register unsigned long pa = (volatile unsigned long) vba;
register unsigned long ci; /* coherent index */
/* We currently only support kernel addresses */
ASSERT(sid == KERNEL_SPACE);
mtsp(sid,1);
/*
** WORD 1 - low order word
** "hints" parm includes the VALID bit!
** "dep" clobbers the physical address offset bits as well.
*/
pa = virt_to_phys(vba);
asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
((u32 *)pdir_ptr)[1] = (u32) pa;
/*
** WORD 0 - high order word
*/
#ifdef __LP64__
/*
** get bits 12:15 of physical address
** shift bits 16:31 of physical address
** and deposit them
*/
asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
#else
pa = 0;
#endif
/*
** get CPU coherency index bits
** Grab virtual index [0:11]
** Deposit virt_idx bits into I/O PDIR word
*/
asm volatile ("lci 0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
((u32 *)pdir_ptr)[0] = (u32) pa;
/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
** PCX-U/U+ do. (eg C200/C240)
** PCX-T'? Don't know. (eg C110 or similar K-class)
**
** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
** Hopefully we can patch (NOP) these out at boot time somehow.
**
** "Since PCX-U employs an offset hash that is incompatible with
** the real mode coherence index generation of U2, the PDIR entry
** must be flushed to memory to retain coherence."
*/
asm volatile("fdc 0(%0)" : : "r" (pdir_ptr));
asm volatile("sync");
}
/**
* ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
* @ioc: The I/O Controller.
* @iovp: The I/O Virtual Page.
* @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
*
* Purge invalid I/O PDIR entries from the I/O TLB.
*
* FIXME: Can we change the byte_cnt to pages_mapped?
*/
static CCIO_INLINE void
ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
{
u32 chain_size = 1 << ioc->chainid_shift;
iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
byte_cnt += chain_size;
while(byte_cnt > chain_size) {
WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_hpa->io_command);
iovp += chain_size;
byte_cnt -= chain_size;
}
}
/**
* ccio_mark_invalid - Mark the I/O Pdir entries invalid.
* @ioc: The I/O Controller.
* @iova: The I/O Virtual Address.
* @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
*
* Mark the I/O Pdir entries invalid and blow away the corresponding I/O
* TLB entries.
*
* FIXME: at some threshhold it might be "cheaper" to just blow
* away the entire I/O TLB instead of individual entries.
*
* FIXME: Uturn has 256 TLB entries. We don't need to purge every
* PDIR entry - just once for each possible TLB entry.
* (We do need to maker I/O PDIR entries invalid regardless).
*
* FIXME: Can we change byte_cnt to pages_mapped?
*/
static CCIO_INLINE void
ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
{
u32 iovp = (u32)CCIO_IOVP(iova);
size_t saved_byte_cnt;
/* round up to nearest page size */
saved_byte_cnt = byte_cnt = ROUNDUP(byte_cnt, IOVP_SIZE);
while(byte_cnt > 0) {
/* invalidate one page at a time */
unsigned int idx = PDIR_INDEX(iovp);
char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
ASSERT(idx < (ioc->pdir_size / sizeof(u64)));
pdir_ptr[7] = 0; /* clear only VALID bit */
/*
** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
** PCX-U/U+ do. (eg C200/C240)
** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
**
** Hopefully someone figures out how to patch (NOP) the
** FDC/SYNC out at boot time.
*/
asm volatile("fdc 0(%0)" : : "r" (pdir_ptr[7]));
iovp += IOVP_SIZE;
byte_cnt -= IOVP_SIZE;
}
asm volatile("sync");
ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
}
/****************************************************************
**
** CCIO dma_ops
**
*****************************************************************/
/**
* ccio_dma_supported - Verify the IOMMU supports the DMA address range.
* @dev: The PCI device.
* @mask: A bit mask describing the DMA address range of the device.
*
* This function implements the pci_dma_supported function.
*/
static int
ccio_dma_supported(struct pci_dev *dev, u64 mask)
{
if(dev == NULL) {
printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
BUG();
return 0;
}
/* only support 32-bit devices (ie PCI/GSC) */
return (int)(mask == 0xffffffffUL);
}
/**
* ccio_map_single - Map an address range into the IOMMU.
* @dev: The PCI device.
* @addr: The start address of the DMA region.
* @size: The length of the DMA region.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_map_single function.
*/
static dma_addr_t
ccio_map_single(struct pci_dev *dev, void *addr, size_t size, int direction)
{
int idx;
struct ioc *ioc;
unsigned long flags;
dma_addr_t iovp;
dma_addr_t offset;
u64 *pdir_start;
unsigned long hint = hint_lookup[direction];
ASSERT(dev);
ASSERT(dev->sysdata);
ASSERT(HBA_DATA(dev->sysdata)->iommu);
ioc = GET_IOC(dev);
ASSERT(size > 0);
/* save offset bits */
offset = ((unsigned long) addr) & ~IOVP_MASK;
/* round up to nearest IOVP_SIZE */
size = ROUNDUP(size + offset, IOVP_SIZE);
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef CONFIG_PROC_FS
ioc->msingle_calls++;
ioc->msingle_pages += size >> IOVP_SHIFT;
#endif
idx = ccio_alloc_range(ioc, (size >> IOVP_SHIFT));
iovp = (dma_addr_t)MKIOVP(idx);
pdir_start = &(ioc->pdir_base[idx]);
DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
__FUNCTION__, addr, (long)iovp | offset, size);
/* If not cacheline aligned, force SAFE_DMA on the whole mess */
if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
hint |= HINT_SAFE_DMA;
while(size > 0) {
ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, addr, hint);
DBG_RUN(" pdir %p %08x%08x\n",
pdir_start,
(u32) (((u32 *) pdir_start)[0]),
(u32) (((u32 *) pdir_start)[1]));
++pdir_start;
addr += IOVP_SIZE;
size -= IOVP_SIZE;
}
spin_unlock_irqrestore(&ioc->res_lock, flags);
/* form complete address */
return CCIO_IOVA(iovp, offset);
}
/**
* ccio_unmap_single - Unmap an address range from the IOMMU.
* @dev: The PCI device.
* @addr: The start address of the DMA region.
* @size: The length of the DMA region.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_unmap_single function.
*/
static void
ccio_unmap_single(struct pci_dev *dev, dma_addr_t iova, size_t size,
int direction)
{
struct ioc *ioc;
unsigned long flags;
dma_addr_t offset = iova & ~IOVP_MASK;
ASSERT(dev);
ASSERT(dev->sysdata);
ASSERT(HBA_DATA(dev->sysdata)->iommu);
ioc = GET_IOC(dev);
DBG_RUN("%s() iovp 0x%lx/%x\n",
__FUNCTION__, (long)iova, size);
iova ^= offset; /* clear offset bits */
size += offset;
size = ROUNDUP(size, IOVP_SIZE);
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef CONFIG_PROC_FS
ioc->usingle_calls++;
ioc->usingle_pages += size >> IOVP_SHIFT;
#endif
ccio_mark_invalid(ioc, iova, size);
ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
spin_unlock_irqrestore(&ioc->res_lock, flags);
}
/**
* ccio_alloc_consistent - Allocate a consistent DMA mapping.
* @dev: The PCI device.
* @size: The length of the DMA region.
* @dma_handle: The DMA address handed back to the device (not the cpu).
*
* This function implements the pci_alloc_consistent function.
*/
static void *
ccio_alloc_consistent(struct pci_dev *dev, size_t size, dma_addr_t *dma_handle)
{
void *ret;
#if 0
/* GRANT Need to establish hierarchy for non-PCI devs as well
** and then provide matching gsc_map_xxx() functions for them as well.
*/
if(!hwdev) {
/* only support PCI */
*dma_handle = 0;
return 0;
}
#endif
ret = (void *) __get_free_pages(GFP_ATOMIC, get_order(size));
if (ret) {
memset(ret, 0, size);
*dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
}
return ret;
}
/**
* ccio_free_consistent - Free a consistent DMA mapping.
* @dev: The PCI device.
* @size: The length of the DMA region.
* @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
* @dma_handle: The device address returned from the ccio_alloc_consistent.
*
* This function implements the pci_free_consistent function.
*/
static void
ccio_free_consistent(struct pci_dev *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle)
{
ccio_unmap_single(dev, dma_handle, size, 0);
free_pages((unsigned long)cpu_addr, get_order(size));
}
/*
** Since 0 is a valid pdir_base index value, can't use that
** to determine if a value is valid or not. Use a flag to indicate
** the SG list entry contains a valid pdir index.
*/
#define PIDE_FLAG 0x80000000UL
/**
* ccio_fill_pdir - Insert coalesced scatter/gather chunks into the I/O Pdir.
* @ioc: The I/O Controller.
* @startsg: The scatter/gather list of coalesced chunks.
* @nents: The number of entries in the scatter/gather list.
* @hint: The DMA Hint.
*
* This function inserts the coalesced scatter/gather list chunks into the
* I/O Controller's I/O Pdir.
*/
static CCIO_INLINE int
ccio_fill_pdir(struct ioc *ioc, struct scatterlist *startsg, int nents,
unsigned long hint)
{
struct scatterlist *dma_sg = startsg; /* pointer to current DMA */
int n_mappings = 0;
u64 *pdirp = 0;
unsigned long dma_offset = 0;
dma_sg--;
while (nents-- > 0) {
int cnt = sg_dma_len(startsg);
sg_dma_len(startsg) = 0;
DBG_RUN_SG(" %d : %08lx/%05x %p/%05x\n", nents,
(unsigned long)sg_dma_address(startsg), cnt,
sg_virt_addr(startsg), startsg->length
);
/*
** Look for the start of a new DMA stream
*/
if(sg_dma_address(startsg) & PIDE_FLAG) {
u32 pide = sg_dma_address(startsg) & ~PIDE_FLAG;
dma_offset = (unsigned long) pide & ~IOVP_MASK;
sg_dma_address(startsg) = 0;
dma_sg++;
sg_dma_address(dma_sg) = pide;
pdirp = &(ioc->pdir_base[pide >> IOVP_SHIFT]);
n_mappings++;
}
/*
** Look for a VCONTIG chunk
*/
if (cnt) {
unsigned long vaddr = (unsigned long) sg_virt_addr(startsg);
ASSERT(pdirp);
/* Since multiple Vcontig blocks could make up
** one DMA stream, *add* cnt to dma_len.
*/
sg_dma_len(dma_sg) += cnt;
cnt += dma_offset;
dma_offset=0; /* only want offset on first chunk */
cnt = ROUNDUP(cnt, IOVP_SIZE);
#ifdef CONFIG_PROC_FS
ioc->msg_pages += cnt >> IOVP_SHIFT;
#endif
do {
ccio_io_pdir_entry(pdirp, KERNEL_SPACE,
(void *)vaddr, hint);
vaddr += IOVP_SIZE;
cnt -= IOVP_SIZE;
pdirp++;
} while (cnt > 0);
}
startsg++;
}
return(n_mappings);
}
/*
** First pass is to walk the SG list and determine where the breaks are
** in the DMA stream. Allocates PDIR entries but does not fill them.
** Returns the number of DMA chunks.
**
** Doing the fill seperate from the coalescing/allocation keeps the
** code simpler. Future enhancement could make one pass through
** the sglist do both.
*/
static CCIO_INLINE int
ccio_coalesce_chunks(struct ioc *ioc, struct scatterlist *startsg, int nents)
{
struct scatterlist *vcontig_sg; /* VCONTIG chunk head */
unsigned long vcontig_len; /* len of VCONTIG chunk */
unsigned long vcontig_end;
struct scatterlist *dma_sg; /* next DMA stream head */
unsigned long dma_offset, dma_len; /* start/len of DMA stream */
int n_mappings = 0;
while (nents > 0) {
/*
** Prepare for first/next DMA stream
*/
dma_sg = vcontig_sg = startsg;
dma_len = vcontig_len = vcontig_end = startsg->length;
vcontig_end += (unsigned long) sg_virt_addr(startsg);
dma_offset = (unsigned long) sg_virt_addr(startsg) & ~IOVP_MASK;
/* PARANOID: clear entries */
sg_dma_address(startsg) = 0;
sg_dma_len(startsg) = 0;
/*
** This loop terminates one iteration "early" since
** it's always looking one "ahead".
*/
while(--nents > 0) {
unsigned long startsg_end;
startsg++;
startsg_end = (unsigned long) sg_virt_addr(startsg) +
startsg->length;
/* PARANOID: clear entries */
sg_dma_address(startsg) = 0;
sg_dma_len(startsg) = 0;
/*
** First make sure current dma stream won't
** exceed DMA_CHUNK_SIZE if we coalesce the
** next entry.
*/
if(ROUNDUP(dma_len + dma_offset + startsg->length,
IOVP_SIZE) > DMA_CHUNK_SIZE)
break;
/*
** Append the next transaction?
*/
if(vcontig_end == (unsigned long) sg_virt_addr(startsg)) {
vcontig_len += startsg->length;
vcontig_end += startsg->length;
dma_len += startsg->length;
continue;
}
/*
** Not virtually contigous.
** Terminate prev chunk.
** Start a new chunk.
**
** Once we start a new VCONTIG chunk, dma_offset
** can't change. And we need the offset from the first
** chunk - not the last one. Ergo Successive chunks
** must start on page boundaries and dove tail
** with it's predecessor.
*/
sg_dma_len(vcontig_sg) = vcontig_len;
vcontig_sg = startsg;
vcontig_len = startsg->length;
break;
}
/*
** End of DMA Stream
** Terminate last VCONTIG block.
** Allocate space for DMA stream.
*/
sg_dma_len(vcontig_sg) = vcontig_len;
dma_len = ROUNDUP(dma_len + dma_offset, IOVP_SIZE);
sg_dma_address(dma_sg) =
PIDE_FLAG
| (ccio_alloc_range(ioc, (dma_len >> IOVP_SHIFT)) << IOVP_SHIFT)
| dma_offset;
n_mappings++;
}
return n_mappings;
}
/**
* ccio_map_sg - Map the scatter/gather list into the IOMMU.
* @dev: The PCI device.
* @sglist: The scatter/gather list to be mapped in the IOMMU.
* @nents: The number of entries in the scatter/gather list.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_map_sg function.
*/
static int
ccio_map_sg(struct pci_dev *dev, struct scatterlist *sglist, int nents,
int direction)
{
struct ioc *ioc;
int coalesced, filled = 0;
unsigned long flags;
unsigned long hint = hint_lookup[direction];
ASSERT(dev);
ASSERT(dev->sysdata);
ASSERT(HBA_DATA(dev->sysdata)->iommu);
ioc = GET_IOC(dev);
DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents);
/* Fast path single entry scatterlists. */
if(nents == 1) {
sg_dma_address(sglist)= ccio_map_single(dev,
sg_virt_addr(sglist),
sglist->length,
direction);
sg_dma_len(sglist)= sglist->length;
return 1;
}
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef CONFIG_PROC_FS
ioc->msg_calls++;
#endif
/*
** First coalesce the chunks and allocate I/O pdir space
**
** If this is one DMA stream, we can properly map using the
** correct virtual address associated with each DMA page.
** w/o this association, we wouldn't have coherent DMA!
** Access to the virtual address is what forces a two pass algorithm.
*/
coalesced = ccio_coalesce_chunks(ioc, sglist, nents);
/*
** Program the I/O Pdir
**
** map the virtual addresses to the I/O Pdir
** o dma_address will contain the pdir index
** o dma_len will contain the number of bytes to map
** o address contains the virtual address.
*/
filled = ccio_fill_pdir(ioc, sglist, nents, hint);
spin_unlock_irqrestore(&ioc->res_lock, flags);
ASSERT(coalesced == filled);
DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled);
return filled;
}
/**
* ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
* @dev: The PCI device.
* @sglist: The scatter/gather list to be unmapped from the IOMMU.
* @nents: The number of entries in the scatter/gather list.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_unmap_sg function.
*/
static void
ccio_unmap_sg(struct pci_dev *dev, struct scatterlist *sglist, int nents,
int direction)
{
struct ioc *ioc;
ASSERT(dev);
ASSERT(dev->sysdata);
ASSERT(HBA_DATA(dev->sysdata)->iommu);
ioc = GET_IOC(dev);
DBG_RUN_SG("%s() START %d entries, %p,%x\n",
__FUNCTION__, nents, sg_virt_address(sglist), sglist->length);
#ifdef CONFIG_PROC_FS
ioc->usg_calls++;
#endif
while(sg_dma_len(sglist) && nents--) {
#ifdef CONFIG_PROC_FS
ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
#endif
ccio_unmap_single(dev, sg_dma_address(sglist),
sg_dma_len(sglist), direction);
++sglist;
}
DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__, nents);
}
static struct pci_dma_ops ccio_ops = {
ccio_dma_supported,
ccio_alloc_consistent,
ccio_free_consistent,
ccio_map_single,
ccio_unmap_single,
ccio_map_sg,
ccio_unmap_sg,
NULL, /* dma_sync_single : NOP for U2/Uturn */
NULL, /* dma_sync_sg : ditto */
};
#ifdef CONFIG_PROC_FS
static int proc_append(char *src, int len, char **dst, off_t *offset, int *max)
{
if (len < *offset) {
*offset -= len;
return 0;
}
if (*offset > 0) {
src += *offset;
len -= *offset;
*offset = 0;
}
if (len > *max) {
len = *max;
}
memcpy(*dst, src, len);
*dst += len;
*max -= len;
return (*max == 0);
}
static int ccio_proc_info(char *buf, char **start, off_t offset, int count,
int *eof, void *data)
{
int max = count;
char tmp[80]; /* width of an ANSI-standard terminal */
struct ioc *ioc = ioc_list;
while (ioc != NULL) {
unsigned int total_pages = ioc->res_size << 3;
unsigned long avg = 0, min, max;
int j, len;
len = sprintf(tmp, "%s\n", ioc->name);
if (proc_append(tmp, len, &buf, &offset, &count))
break;
len = sprintf(tmp, "Cujo 2.0 bug : %s\n",
(ioc->cujo20_bug ? "yes" : "no"));
if (proc_append(tmp, len, &buf, &offset, &count))
break;
len = sprintf(tmp, "IO PDIR size : %d bytes (%d entries)\n",
total_pages * 8, total_pages);
if (proc_append(tmp, len, &buf, &offset, &count))
break;
len = sprintf(tmp, "IO PDIR entries : %ld free %ld used (%d%%)\n",
total_pages - ioc->used_pages, ioc->used_pages,
(int)(ioc->used_pages * 100 / total_pages));
if (proc_append(tmp, len, &buf, &offset, &count))
break;
len = sprintf(tmp, "Resource bitmap : %d bytes (%d pages)\n",
ioc->res_size, total_pages);
if (proc_append(tmp, len, &buf, &offset, &count))
break;
min = max = ioc->avg_search[0];
for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
avg += ioc->avg_search[j];
if(ioc->avg_search[j] > max)
max = ioc->avg_search[j];
if(ioc->avg_search[j] < min)
min = ioc->avg_search[j];
}
avg /= CCIO_SEARCH_SAMPLE;
len = sprintf(tmp, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
min, avg, max);
if (proc_append(tmp, len, &buf, &offset, &count))
break;
len = sprintf(tmp, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
ioc->msingle_calls, ioc->msingle_pages,
(int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
if (proc_append(tmp, len, &buf, &offset, &count))
break;
/* KLUGE - unmap_sg calls unmap_single for each mapped page */
min = ioc->usingle_calls - ioc->usg_calls;
max = ioc->usingle_pages - ioc->usg_pages;
len = sprintf(tmp, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
min, max, (int)((max * 1000)/min));
if (proc_append(tmp, len, &buf, &offset, &count))
break;
len = sprintf(tmp, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
ioc->msg_calls, ioc->msg_pages,
(int)((ioc->msg_pages * 1000)/ioc->msg_calls));
if (proc_append(tmp, len, &buf, &offset, &count))
break;
len = sprintf(tmp, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
ioc->usg_calls, ioc->usg_pages,
(int)((ioc->usg_pages * 1000)/ioc->usg_calls));
if (proc_append(tmp, len, &buf, &offset, &count))
break;
ioc = ioc->next;
}
if (count == 0) {
*eof = 1;
}
return (max - count);
}
static int ccio_resource_map(char *buf, char **start, off_t offset, int len,
int *eof, void *data)
{
struct ioc *ioc = ioc_list;
buf[0] = '\0';
while (ioc != NULL) {
u32 *res_ptr = (u32 *)ioc->res_map;
int j;
for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
if ((j & 7) == 0)
strcat(buf,"\n ");
sprintf(buf, "%s %08x", buf, *res_ptr);
res_ptr++;
}
strcat(buf, "\n\n");
ioc = ioc->next;
break; /* XXX - remove me */
}
return strlen(buf);
}
#endif
/**
* ccio_find_ioc - Find the ioc in the ioc_list
* @hw_path: The hardware path of the ioc.
*
* This function searches the ioc_list for an ioc that matches
* the provide hardware path.
*/
static struct ioc * ccio_find_ioc(int hw_path)
{
int i;
struct ioc *ioc;
ioc = ioc_list;
for (i = 0; i < ioc_count; i++) {
if (ioc->hw_path == hw_path)
return ioc;
ioc = ioc->next;
}
return NULL;
}
/**
* ccio_get_iommu - Find the iommu which controls this device
* @dev: The parisc device.
*
* This function searches through the registerd IOMMU's and returns the
* appropriate IOMMU for the device based upon the devices hardware path.
*/
void * ccio_get_iommu(const struct parisc_device *dev)
{
dev = find_pa_parent_type(dev, HPHW_IOA);
if (!dev)
return NULL;
return ccio_find_ioc(dev->hw_path);
}
#define CUJO_20_STEP 0x10000000 /* inc upper nibble */
/* Cujo 2.0 has a bug which will silently corrupt data being transferred
* to/from certain pages. To avoid this happening, we mark these pages
* as `used', and ensure that nothing will try to allocate from them.
*/
void ccio_cujo20_fixup(struct parisc_device *dev, u32 iovp)
{
unsigned int idx;
struct ioc *ioc = ccio_get_iommu(dev);
u8 *res_ptr;
#ifdef CONFIG_PROC_FS
ioc->cujo20_bug = 1;
#endif
res_ptr = ioc->res_map;
idx = PDIR_INDEX(iovp) >> 3;
while (idx < ioc->res_size) {
res_ptr[idx] |= 0xff;
idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
}
}
#if 0
/* GRANT - is this needed for U2 or not? */
/*
** Get the size of the I/O TLB for this I/O MMU.
**
** If spa_shift is non-zero (ie probably U2),
** then calculate the I/O TLB size using spa_shift.
**
** Otherwise we are supposed to get the IODC entry point ENTRY TLB
** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
** I think only Java (K/D/R-class too?) systems don't do this.
*/
static int
ccio_get_iotlb_size(struct parisc_device *dev)
{
if (dev->spa_shift == 0) {
panic("%s() : Can't determine I/O TLB size.\n", __FUNCTION__);
}
return (1 << dev->spa_shift);
}
#else
/* Uturn supports 256 TLB entries */
#define CCIO_CHAINID_SHIFT 8
#define CCIO_CHAINID_MASK 0xff
#endif /* 0 */
/**
* ccio_ioc_init - Initalize the I/O Controller
* @ioc: The I/O Controller.
*
* Initalize the I/O Controller which includes setting up the
* I/O Page Directory, the resource map, and initalizing the
* U2/Uturn chip into virtual mode.
*/
static void
ccio_ioc_init(struct ioc *ioc)
{
int i, iov_order;
u32 iova_space_size;
unsigned long physmem;
/*
** Determine IOVA Space size from memory size.
**
** Ideally, PCI drivers would register the maximum number
** of DMA they can have outstanding for each device they
** own. Next best thing would be to guess how much DMA
** can be outstanding based on PCI Class/sub-class. Both
** methods still require some "extra" to support PCI
** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
*/
/* limit IOVA space size to 1MB-1GB */
physmem = num_physpages << PAGE_SHIFT;
if(physmem < (ccio_mem_ratio * 1024 * 1024)) {
iova_space_size = 1024 * 1024;
#ifdef __LP64__
} else if(physmem > (ccio_mem_ratio * 512 * 1024 * 1024)) {
iova_space_size = 512 * 1024 * 1024;
#endif
} else {
iova_space_size = (u32)(physmem / ccio_mem_ratio);
}
/*
** iova space must be log2() in size.
** thus, pdir/res_map will also be log2().
*/
/* We could use larger page sizes in order to *decrease* the number
** of mappings needed. (ie 8k pages means 1/2 the mappings).
**
** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
** since the pages must also be physically contiguous - typically
** this is the case under linux."
*/
iov_order = get_order(iova_space_size) >> (IOVP_SHIFT - PAGE_SHIFT);
ASSERT(iov_order <= (30 - IOVP_SHIFT)); /* iova_space_size <= 1GB */
ASSERT(iov_order >= (20 - IOVP_SHIFT)); /* iova_space_size >= 1MB */
iova_space_size = 1 << (iov_order + IOVP_SHIFT);
ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
ASSERT(ioc->pdir_size < 4 * 1024 * 1024); /* max pdir size < 4MB */
/* Verify it's a power of two */
ASSERT((1 << get_order(ioc->pdir_size)) == (ioc->pdir_size >> PAGE_SHIFT));
DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits) PDIR size 0x%0x",
__FUNCTION__, ioc->ioc_hpa, physmem>>20, iova_space_size>>20,
iov_order + PAGE_SHIFT, ioc->pdir_size);
ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
get_order(ioc->pdir_size));
if(NULL == ioc->pdir_base) {
panic(__FILE__ ":%s() could not allocate I/O Page Table\n", __FUNCTION__);
}
memset(ioc->pdir_base, 0, ioc->pdir_size);
ASSERT((((unsigned long)ioc->pdir_base) & PAGE_MASK) == (unsigned long)ioc->pdir_base);
DBG_INIT(" base %p", ioc->pdir_base);
/* resource map size dictated by pdir_size */
ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__, ioc->res_size);
ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
get_order(ioc->res_size));
if(NULL == ioc->res_map) {
panic(__FILE__ ":%s() could not allocate resource map\n", __FUNCTION__);
}
memset(ioc->res_map, 0, ioc->res_size);
/* Initialize the res_hint to 16 */
ioc->res_hint = 16;
/* Initialize the spinlock */
spin_lock_init(&ioc->res_lock);
/*
** Chainid is the upper most bits of an IOVP used to determine
** which TLB entry an IOVP will use.
*/
ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
/*
** Initialize IOA hardware
*/
WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
&ioc->ioc_hpa->io_chain_id_mask);
WRITE_U32(virt_to_phys(ioc->pdir_base),
&ioc->ioc_hpa->io_pdir_base);
/*
** Go to "Virtual Mode"
*/
WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_hpa->io_control);
/*
** Initialize all I/O TLB entries to 0 (Valid bit off).
*/
WRITE_U32(0, &ioc->ioc_hpa->io_tlb_entry_m);
WRITE_U32(0, &ioc->ioc_hpa->io_tlb_entry_l);
for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
&ioc->ioc_hpa->io_command);
}
}
static void
ccio_init_resource(struct resource *res, char *name, unsigned long ioaddr)
{
int result;
res->flags = IORESOURCE_MEM;
res->start = (unsigned long)(signed) __raw_readl(ioaddr) << 16;
res->end = (unsigned long)(signed) (__raw_readl(ioaddr + 4) << 16) - 1;
if (res->end + 1 == res->start)
return;
res->name = name;
result = request_resource(&iomem_resource, res);
if (result < 0) {
printk(KERN_ERR
"%s: failed to claim CCIO bus address space (%lx,%lx)\n",
__FILE__, res->start, res->end);
}
}
static void __init ccio_init_resources(struct ioc *ioc)
{
struct resource *res = ioc->mmio_region;
char *name = kmalloc(14, GFP_KERNEL);
sprintf(name, "GSC Bus [%d/]", ioc->hw_path);
ccio_init_resource(res, name, (unsigned long)&ioc->ioc_hpa->io_io_low);
ccio_init_resource(res + 1, name,
(unsigned long)&ioc->ioc_hpa->io_io_low_hv);
}
static void expand_ioc_area(struct ioc *ioc, unsigned long size,
unsigned long min, unsigned long max, unsigned long align)
{
#ifdef NASTY_HACK_FOR_K_CLASS
__raw_writel(0xfffff600, (unsigned long)&(ioc->ioc_hpa->io_io_high));
ioc->mmio_region[0].end = 0xf5ffffff;
#endif
}
static struct resource *ccio_get_resource(struct ioc* ioc,
const struct parisc_device *dev)
{
if (!ioc) {
return &iomem_resource;
} else if ((ioc->mmio_region->start <= dev->hpa) &&
(dev->hpa < ioc->mmio_region->end)) {
return ioc->mmio_region;
} else if (((ioc->mmio_region + 1)->start <= dev->hpa) &&
(dev->hpa < (ioc->mmio_region + 1)->end)) {
return ioc->mmio_region + 1;
} else {
return NULL;
}
}
int ccio_allocate_resource(const struct parisc_device *dev,
struct resource *res, unsigned long size,
unsigned long min, unsigned long max, unsigned long align,
void (*alignf)(void *, struct resource *, unsigned long, unsigned long),
void *alignf_data)
{
struct ioc *ioc = ccio_get_iommu(dev);
struct resource *parent = ccio_get_resource(ioc, dev);
if (!parent)
return -EBUSY;
if (!allocate_resource(parent, res, size, min, max, align, alignf,
alignf_data))
return 0;
expand_ioc_area(ioc, size, min, max, align);
return allocate_resource(parent, res, size, min, max, align, alignf,
alignf_data);
}
int ccio_request_resource(const struct parisc_device *dev,
struct resource *res)
{
struct ioc *ioc = ccio_get_iommu(dev);
struct resource *parent = ccio_get_resource(ioc, dev);
return request_resource(parent, res);
}
/**
* ccio_probe - Determine if ccio should claim this device.
* @dev: The device which has been found
*
* Determine if ccio should claim this chip (return 0) or not (return 1).
* If so, initialize the chip and tell other partners in crime they
* have work to do.
*/
static int ccio_probe(struct parisc_device *dev)
{
int i;
struct ioc *ioc, **ioc_p = &ioc_list;
ioc = kmalloc(sizeof(struct ioc), GFP_KERNEL);
if (ioc == NULL) {
printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
return 1;
}
memset(ioc, 0, sizeof(struct ioc));
ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa);
for (i = 0; i < ioc_count; i++) {
ioc_p = &(*ioc_p)->next;
}
*ioc_p = ioc;
ioc->hw_path = dev->hw_path;
ioc->ioc_hpa = (struct ioa_registers *)dev->hpa;
ccio_ioc_init(ioc);
ccio_init_resources(ioc);
hppa_dma_ops = &ccio_ops;
if (ioc_count == 0) {
/* XXX: Create separate entries for each ioc */
create_proc_read_entry(MODULE_NAME, S_IRWXU, proc_runway_root,
ccio_proc_info, NULL);
create_proc_read_entry(MODULE_NAME"-bitmap", S_IRWXU,
proc_runway_root, ccio_resource_map, NULL);
}
ioc_count++;
return 0;
}
struct pci_dev * ccio_get_fake(const struct parisc_device *dev)
{
struct ioc *ioc;
dev = find_pa_parent_type(dev, HPHW_IOA);
if(!dev)
return NULL;
ioc = ccio_find_ioc(dev->hw_path);
if(!ioc)
return NULL;
if(ioc->fake_pci_dev)
return ioc->fake_pci_dev;
ioc->fake_pci_dev = kmalloc(sizeof(struct pci_dev), GFP_KERNEL);
if(ioc->fake_pci_dev == NULL) {
printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
return NULL;
}
memset(ioc->fake_pci_dev, 0, sizeof(struct pci_dev));
ioc->fake_pci_dev->sysdata = kmalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
if(ioc->fake_pci_dev->sysdata == NULL) {
printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
return NULL;
}
HBA_DATA(ioc->fake_pci_dev->sysdata)->iommu = ioc;
return ioc->fake_pci_dev;
}
/* We *can't* support JAVA (T600). Venture there at your own risk. */
static struct parisc_device_id ccio_tbl[] = {
{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
{ 0, }
};
static struct parisc_driver ccio_driver = {
name: "U2/Uturn",
id_table: ccio_tbl,
probe: ccio_probe,
};
/**
* ccio_init - ccio initalization procedure.
*
* Register this driver.
*/
void __init ccio_init(void)
{
register_parisc_driver(&ccio_driver);
}