blob: c29325e147bd31b9ecb91a2b6c5128b00dbf1ebc [file] [log] [blame]
/*
* ipneigh.c "ip neigh".
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include "rt_names.h"
#include "utils.h"
#include "ip_common.h"
#include "json_print.h"
#define NUD_VALID (NUD_PERMANENT|NUD_NOARP|NUD_REACHABLE|NUD_PROBE|NUD_STALE|NUD_DELAY)
#define MAX_ROUNDS 10
static struct
{
int family;
int index;
int state;
int unused_only;
inet_prefix pfx;
int flushed;
char *flushb;
int flushp;
int flushe;
int master;
int protocol;
__u8 ndm_flags;
} filter;
static void usage(void) __attribute__((noreturn));
static void usage(void)
{
fprintf(stderr,
"Usage: ip neigh { add | del | change | replace }\n"
" { ADDR [ lladdr LLADDR ] [ nud STATE ] proxy ADDR }\n"
" [ dev DEV ] [ router ] [ extern_learn ] [ protocol PROTO ]\n"
"\n"
" ip neigh { show | flush } [ proxy ] [ to PREFIX ] [ dev DEV ] [ nud STATE ]\n"
" [ vrf NAME ] [ nomaster ]\n"
" ip neigh get { ADDR | proxy ADDR } dev DEV\n"
"\n"
"STATE := { delay | failed | incomplete | noarp | none |\n"
" permanent | probe | reachable | stale }\n");
exit(-1);
}
static int nud_state_a2n(unsigned int *state, const char *arg)
{
if (matches(arg, "permanent") == 0)
*state = NUD_PERMANENT;
else if (matches(arg, "reachable") == 0)
*state = NUD_REACHABLE;
else if (strcmp(arg, "noarp") == 0)
*state = NUD_NOARP;
else if (strcmp(arg, "none") == 0)
*state = NUD_NONE;
else if (strcmp(arg, "stale") == 0)
*state = NUD_STALE;
else if (strcmp(arg, "incomplete") == 0)
*state = NUD_INCOMPLETE;
else if (strcmp(arg, "delay") == 0)
*state = NUD_DELAY;
else if (strcmp(arg, "probe") == 0)
*state = NUD_PROBE;
else if (matches(arg, "failed") == 0)
*state = NUD_FAILED;
else {
if (get_unsigned(state, arg, 0))
return -1;
if (*state >= 0x100 || (*state&((*state)-1)))
return -1;
}
return 0;
}
static int flush_update(void)
{
if (rtnl_send_check(&rth, filter.flushb, filter.flushp) < 0) {
perror("Failed to send flush request");
return -1;
}
filter.flushp = 0;
return 0;
}
static int ipneigh_modify(int cmd, int flags, int argc, char **argv)
{
struct {
struct nlmsghdr n;
struct ndmsg ndm;
char buf[256];
} req = {
.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg)),
.n.nlmsg_flags = NLM_F_REQUEST | flags,
.n.nlmsg_type = cmd,
.ndm.ndm_family = preferred_family,
.ndm.ndm_state = NUD_PERMANENT,
};
char *dev = NULL;
int dst_ok = 0;
int dev_ok = 0;
int lladdr_ok = 0;
char *lla = NULL;
inet_prefix dst;
while (argc > 0) {
if (matches(*argv, "lladdr") == 0) {
NEXT_ARG();
if (lladdr_ok)
duparg("lladdr", *argv);
lla = *argv;
lladdr_ok = 1;
} else if (strcmp(*argv, "nud") == 0) {
unsigned int state;
NEXT_ARG();
if (nud_state_a2n(&state, *argv))
invarg("nud state is bad", *argv);
req.ndm.ndm_state = state;
} else if (matches(*argv, "proxy") == 0) {
NEXT_ARG();
if (matches(*argv, "help") == 0)
usage();
if (dst_ok)
duparg("address", *argv);
get_addr(&dst, *argv, preferred_family);
dst_ok = 1;
dev_ok = 1;
req.ndm.ndm_flags |= NTF_PROXY;
} else if (strcmp(*argv, "router") == 0) {
req.ndm.ndm_flags |= NTF_ROUTER;
} else if (matches(*argv, "extern_learn") == 0) {
req.ndm.ndm_flags |= NTF_EXT_LEARNED;
} else if (strcmp(*argv, "dev") == 0) {
NEXT_ARG();
dev = *argv;
dev_ok = 1;
} else if (matches(*argv, "protocol") == 0) {
__u32 proto;
NEXT_ARG();
if (rtnl_rtprot_a2n(&proto, *argv))
invarg("\"protocol\" value is invalid\n", *argv);
if (addattr8(&req.n, sizeof(req), NDA_PROTOCOL, proto))
return -1;
} else {
if (strcmp(*argv, "to") == 0) {
NEXT_ARG();
}
if (matches(*argv, "help") == 0) {
NEXT_ARG();
}
if (dst_ok)
duparg2("to", *argv);
get_addr(&dst, *argv, preferred_family);
dst_ok = 1;
}
argc--; argv++;
}
if (!dev_ok || !dst_ok || dst.family == AF_UNSPEC) {
fprintf(stderr, "Device and destination are required arguments.\n");
exit(-1);
}
req.ndm.ndm_family = dst.family;
if (addattr_l(&req.n, sizeof(req), NDA_DST, &dst.data, dst.bytelen) < 0)
return -1;
if (lla && strcmp(lla, "null")) {
char llabuf[20];
int l;
l = ll_addr_a2n(llabuf, sizeof(llabuf), lla);
if (l < 0)
return -1;
if (addattr_l(&req.n, sizeof(req), NDA_LLADDR, llabuf, l) < 0)
return -1;
}
ll_init_map(&rth);
if (dev) {
req.ndm.ndm_ifindex = ll_name_to_index(dev);
if (!req.ndm.ndm_ifindex)
return nodev(dev);
}
if (rtnl_talk(&rth, &req.n, NULL) < 0)
exit(2);
return 0;
}
static void print_cacheinfo(const struct nda_cacheinfo *ci)
{
static int hz;
if (!hz)
hz = get_user_hz();
if (ci->ndm_refcnt)
print_uint(PRINT_ANY, "refcnt",
" ref %u", ci->ndm_refcnt);
print_uint(PRINT_ANY, "used", " used %u", ci->ndm_used / hz);
print_uint(PRINT_ANY, "confirmed", "/%u", ci->ndm_confirmed / hz);
print_uint(PRINT_ANY, "updated", "/%u", ci->ndm_updated / hz);
}
static void print_neigh_state(unsigned int nud)
{
open_json_array(PRINT_JSON,
is_json_context() ? "state" : "");
#define PRINT_FLAG(f) \
if (nud & NUD_##f) { \
nud &= ~NUD_##f; \
print_string(PRINT_ANY, NULL, " %s", #f); \
}
PRINT_FLAG(INCOMPLETE);
PRINT_FLAG(REACHABLE);
PRINT_FLAG(STALE);
PRINT_FLAG(DELAY);
PRINT_FLAG(PROBE);
PRINT_FLAG(FAILED);
PRINT_FLAG(NOARP);
PRINT_FLAG(PERMANENT);
#undef PRINT_FLAG
close_json_array(PRINT_JSON, NULL);
}
static int print_neigh_brief(FILE *fp, struct ndmsg *r, struct rtattr *tb[])
{
if (tb[NDA_DST]) {
const char *dst;
int family = r->ndm_family;
if (family == AF_BRIDGE) {
if (RTA_PAYLOAD(tb[NDA_DST]) == sizeof(struct in6_addr))
family = AF_INET6;
else
family = AF_INET;
}
dst = format_host_rta(family, tb[NDA_DST]);
print_color_string(PRINT_ANY, ifa_family_color(family),
"dst", "%-39s ", dst);
}
if (!filter.index && r->ndm_ifindex) {
print_color_string(PRINT_ANY, COLOR_IFNAME,
"dev", "%-16s ",
ll_index_to_name(r->ndm_ifindex));
}
if (tb[NDA_LLADDR]) {
const char *lladdr;
SPRINT_BUF(b1);
lladdr = ll_addr_n2a(RTA_DATA(tb[NDA_LLADDR]),
RTA_PAYLOAD(tb[NDA_LLADDR]),
ll_index_to_type(r->ndm_ifindex),
b1, sizeof(b1));
print_color_string(PRINT_ANY, COLOR_MAC,
"lladdr", "%s", lladdr);
}
print_string(PRINT_FP, NULL, "%s", "\n");
close_json_object();
fflush(fp);
return 0;
}
int print_neigh(struct nlmsghdr *n, void *arg)
{
FILE *fp = (FILE *)arg;
struct ndmsg *r = NLMSG_DATA(n);
int len = n->nlmsg_len;
struct rtattr *tb[NDA_MAX+1];
static int logit = 1;
__u8 protocol = 0;
if (n->nlmsg_type != RTM_NEWNEIGH && n->nlmsg_type != RTM_DELNEIGH &&
n->nlmsg_type != RTM_GETNEIGH) {
fprintf(stderr, "Not RTM_NEWNEIGH: %08x %08x %08x\n",
n->nlmsg_len, n->nlmsg_type, n->nlmsg_flags);
return 0;
}
len -= NLMSG_LENGTH(sizeof(*r));
if (len < 0) {
fprintf(stderr, "BUG: wrong nlmsg len %d\n", len);
return -1;
}
if (filter.flushb && n->nlmsg_type != RTM_NEWNEIGH)
return 0;
if (filter.family && filter.family != r->ndm_family)
return 0;
if (filter.index && filter.index != r->ndm_ifindex)
return 0;
if (!(filter.state&r->ndm_state) &&
!(r->ndm_flags & NTF_PROXY) &&
!(r->ndm_flags & NTF_EXT_LEARNED) &&
(r->ndm_state || !(filter.state&0x100)))
return 0;
if (filter.master && !(n->nlmsg_flags & NLM_F_DUMP_FILTERED)) {
if (logit) {
logit = 0;
fprintf(fp,
"\nWARNING: Kernel does not support filtering by master device\n\n");
}
}
parse_rtattr(tb, NDA_MAX, NDA_RTA(r), n->nlmsg_len - NLMSG_LENGTH(sizeof(*r)));
if (inet_addr_match_rta(&filter.pfx, tb[NDA_DST]))
return 0;
if (tb[NDA_PROTOCOL])
protocol = rta_getattr_u8(tb[NDA_PROTOCOL]);
if (filter.protocol && filter.protocol != protocol)
return 0;
if (filter.unused_only && tb[NDA_CACHEINFO]) {
struct nda_cacheinfo *ci = RTA_DATA(tb[NDA_CACHEINFO]);
if (ci->ndm_refcnt)
return 0;
}
if (filter.flushb) {
struct nlmsghdr *fn;
if (NLMSG_ALIGN(filter.flushp) + n->nlmsg_len > filter.flushe) {
if (flush_update())
return -1;
}
fn = (struct nlmsghdr *)(filter.flushb + NLMSG_ALIGN(filter.flushp));
memcpy(fn, n, n->nlmsg_len);
fn->nlmsg_type = RTM_DELNEIGH;
fn->nlmsg_flags = NLM_F_REQUEST;
fn->nlmsg_seq = ++rth.seq;
filter.flushp = (((char *)fn) + n->nlmsg_len) - filter.flushb;
filter.flushed++;
if (show_stats < 2)
return 0;
}
open_json_object(NULL);
if (n->nlmsg_type == RTM_DELNEIGH)
print_bool(PRINT_ANY, "deleted", "Deleted ", true);
else if (n->nlmsg_type == RTM_GETNEIGH)
print_null(PRINT_ANY, "miss", "%s ", "miss");
if (brief)
return print_neigh_brief(fp, r, tb);
if (tb[NDA_DST]) {
const char *dst;
int family = r->ndm_family;
if (family == AF_BRIDGE) {
if (RTA_PAYLOAD(tb[NDA_DST]) == sizeof(struct in6_addr))
family = AF_INET6;
else
family = AF_INET;
}
dst = format_host_rta(family, tb[NDA_DST]);
print_color_string(PRINT_ANY,
ifa_family_color(family),
"dst", "%s ", dst);
}
if (!filter.index && r->ndm_ifindex) {
if (!is_json_context())
fprintf(fp, "dev ");
print_color_string(PRINT_ANY, COLOR_IFNAME,
"dev", "%s ",
ll_index_to_name(r->ndm_ifindex));
}
if (tb[NDA_LLADDR]) {
const char *lladdr;
SPRINT_BUF(b1);
lladdr = ll_addr_n2a(RTA_DATA(tb[NDA_LLADDR]),
RTA_PAYLOAD(tb[NDA_LLADDR]),
ll_index_to_type(r->ndm_ifindex),
b1, sizeof(b1));
if (!is_json_context())
fprintf(fp, "lladdr ");
print_color_string(PRINT_ANY, COLOR_MAC,
"lladdr", "%s", lladdr);
}
if (r->ndm_flags & NTF_ROUTER)
print_null(PRINT_ANY, "router", " %s", "router");
if (r->ndm_flags & NTF_PROXY)
print_null(PRINT_ANY, "proxy", " %s", "proxy");
if (r->ndm_flags & NTF_EXT_LEARNED)
print_null(PRINT_ANY, "extern_learn", " %s ", "extern_learn");
if (r->ndm_flags & NTF_OFFLOADED)
print_null(PRINT_ANY, "offload", " %s", "offload");
if (show_stats) {
if (tb[NDA_CACHEINFO])
print_cacheinfo(RTA_DATA(tb[NDA_CACHEINFO]));
if (tb[NDA_PROBES])
print_uint(PRINT_ANY, "probes", " probes %u",
rta_getattr_u32(tb[NDA_PROBES]));
}
if (r->ndm_state)
print_neigh_state(r->ndm_state);
if (protocol) {
SPRINT_BUF(b1);
print_string(PRINT_ANY, "protocol", " proto %s ",
rtnl_rtprot_n2a(protocol, b1, sizeof(b1)));
}
print_string(PRINT_FP, NULL, "\n", "");
close_json_object();
fflush(fp);
return 0;
}
void ipneigh_reset_filter(int ifindex)
{
memset(&filter, 0, sizeof(filter));
filter.state = ~0;
filter.index = ifindex;
}
static int ipneigh_dump_filter(struct nlmsghdr *nlh, int reqlen)
{
struct ndmsg *ndm = NLMSG_DATA(nlh);
int err;
ndm->ndm_flags = filter.ndm_flags;
if (filter.index) {
err = addattr32(nlh, reqlen, NDA_IFINDEX, filter.index);
if (err)
return err;
}
if (filter.master) {
err = addattr32(nlh, reqlen, NDA_MASTER, filter.master);
if (err)
return err;
}
return 0;
}
static int do_show_or_flush(int argc, char **argv, int flush)
{
char *filter_dev = NULL;
int state_given = 0;
ipneigh_reset_filter(0);
if (!filter.family)
filter.family = preferred_family;
if (flush) {
if (argc <= 0) {
fprintf(stderr, "Flush requires arguments.\n");
return -1;
}
filter.state = ~(NUD_PERMANENT|NUD_NOARP);
} else
filter.state = 0xFF & ~NUD_NOARP;
while (argc > 0) {
if (strcmp(*argv, "dev") == 0) {
NEXT_ARG();
if (filter_dev)
duparg("dev", *argv);
filter_dev = *argv;
} else if (strcmp(*argv, "master") == 0) {
int ifindex;
NEXT_ARG();
ifindex = ll_name_to_index(*argv);
if (!ifindex)
invarg("Device does not exist\n", *argv);
filter.master = ifindex;
} else if (strcmp(*argv, "vrf") == 0) {
int ifindex;
NEXT_ARG();
ifindex = ll_name_to_index(*argv);
if (!ifindex)
invarg("Not a valid VRF name\n", *argv);
if (!name_is_vrf(*argv))
invarg("Not a valid VRF name\n", *argv);
filter.master = ifindex;
} else if (strcmp(*argv, "nomaster") == 0) {
filter.master = -1;
} else if (strcmp(*argv, "unused") == 0) {
filter.unused_only = 1;
} else if (strcmp(*argv, "nud") == 0) {
unsigned int state;
NEXT_ARG();
if (!state_given) {
state_given = 1;
filter.state = 0;
}
if (nud_state_a2n(&state, *argv)) {
if (strcmp(*argv, "all") != 0)
invarg("nud state is bad", *argv);
state = ~0;
if (flush)
state &= ~NUD_NOARP;
}
if (state == 0)
state = 0x100;
filter.state |= state;
} else if (strcmp(*argv, "proxy") == 0) {
filter.ndm_flags = NTF_PROXY;
} else if (matches(*argv, "protocol") == 0) {
__u32 prot;
NEXT_ARG();
if (rtnl_rtprot_a2n(&prot, *argv)) {
if (strcmp(*argv, "all"))
invarg("invalid \"protocol\"\n", *argv);
prot = 0;
}
filter.protocol = prot;
} else {
if (strcmp(*argv, "to") == 0) {
NEXT_ARG();
}
if (matches(*argv, "help") == 0)
usage();
if (get_prefix(&filter.pfx, *argv, filter.family))
invarg("to value is invalid\n", *argv);
if (filter.family == AF_UNSPEC)
filter.family = filter.pfx.family;
}
argc--; argv++;
}
ll_init_map(&rth);
if (filter_dev) {
filter.index = ll_name_to_index(filter_dev);
if (!filter.index)
return nodev(filter_dev);
}
if (flush) {
int round = 0;
char flushb[4096-512];
filter.flushb = flushb;
filter.flushp = 0;
filter.flushe = sizeof(flushb);
while (round < MAX_ROUNDS) {
if (rtnl_neighdump_req(&rth, filter.family,
ipneigh_dump_filter) < 0) {
perror("Cannot send dump request");
exit(1);
}
filter.flushed = 0;
if (rtnl_dump_filter(&rth, print_neigh, stdout) < 0) {
fprintf(stderr, "Flush terminated\n");
exit(1);
}
if (filter.flushed == 0) {
if (show_stats) {
if (round == 0)
printf("Nothing to flush.\n");
else
printf("*** Flush is complete after %d round%s ***\n", round, round > 1?"s":"");
}
fflush(stdout);
return 0;
}
round++;
if (flush_update() < 0)
exit(1);
if (show_stats) {
printf("\n*** Round %d, deleting %d entries ***\n", round, filter.flushed);
fflush(stdout);
}
filter.state &= ~NUD_FAILED;
}
printf("*** Flush not complete bailing out after %d rounds\n",
MAX_ROUNDS);
return 1;
}
if (rtnl_neighdump_req(&rth, filter.family, ipneigh_dump_filter) < 0) {
perror("Cannot send dump request");
exit(1);
}
new_json_obj(json);
if (rtnl_dump_filter(&rth, print_neigh, stdout) < 0) {
fprintf(stderr, "Dump terminated\n");
exit(1);
}
delete_json_obj();
return 0;
}
static int ipneigh_get(int argc, char **argv)
{
struct {
struct nlmsghdr n;
struct ndmsg ndm;
char buf[1024];
} req = {
.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg)),
.n.nlmsg_flags = NLM_F_REQUEST,
.n.nlmsg_type = RTM_GETNEIGH,
.ndm.ndm_family = preferred_family,
};
struct nlmsghdr *answer;
char *d = NULL;
int dst_ok = 0;
int dev_ok = 0;
inet_prefix dst;
while (argc > 0) {
if (strcmp(*argv, "dev") == 0) {
NEXT_ARG();
d = *argv;
dev_ok = 1;
} else if (matches(*argv, "proxy") == 0) {
NEXT_ARG();
if (matches(*argv, "help") == 0)
usage();
if (dst_ok)
duparg("address", *argv);
get_addr(&dst, *argv, preferred_family);
dst_ok = 1;
dev_ok = 1;
req.ndm.ndm_flags |= NTF_PROXY;
} else {
if (strcmp(*argv, "to") == 0)
NEXT_ARG();
if (matches(*argv, "help") == 0)
usage();
if (dst_ok)
duparg2("to", *argv);
get_addr(&dst, *argv, preferred_family);
dst_ok = 1;
}
argc--; argv++;
}
if (!dev_ok || !dst_ok || dst.family == AF_UNSPEC) {
fprintf(stderr, "Device and address are required arguments.\n");
return -1;
}
req.ndm.ndm_family = dst.family;
if (addattr_l(&req.n, sizeof(req), NDA_DST, &dst.data, dst.bytelen) < 0)
return -1;
if (d) {
req.ndm.ndm_ifindex = ll_name_to_index(d);
if (!req.ndm.ndm_ifindex) {
fprintf(stderr, "Cannot find device \"%s\"\n", d);
return -1;
}
}
if (rtnl_talk(&rth, &req.n, &answer) < 0)
return -2;
ipneigh_reset_filter(0);
if (print_neigh(answer, stdout) < 0) {
fprintf(stderr, "An error :-)\n");
return -1;
}
return 0;
}
int do_ipneigh(int argc, char **argv)
{
if (argc > 0) {
if (matches(*argv, "add") == 0)
return ipneigh_modify(RTM_NEWNEIGH, NLM_F_CREATE|NLM_F_EXCL, argc-1, argv+1);
if (matches(*argv, "change") == 0 ||
strcmp(*argv, "chg") == 0)
return ipneigh_modify(RTM_NEWNEIGH, NLM_F_REPLACE, argc-1, argv+1);
if (matches(*argv, "replace") == 0)
return ipneigh_modify(RTM_NEWNEIGH, NLM_F_CREATE|NLM_F_REPLACE, argc-1, argv+1);
if (matches(*argv, "delete") == 0)
return ipneigh_modify(RTM_DELNEIGH, 0, argc-1, argv+1);
if (matches(*argv, "get") == 0)
return ipneigh_get(argc-1, argv+1);
if (matches(*argv, "show") == 0 ||
matches(*argv, "lst") == 0 ||
matches(*argv, "list") == 0)
return do_show_or_flush(argc-1, argv+1, 0);
if (matches(*argv, "flush") == 0)
return do_show_or_flush(argc-1, argv+1, 1);
if (matches(*argv, "help") == 0)
usage();
} else
return do_show_or_flush(0, NULL, 0);
fprintf(stderr, "Command \"%s\" is unknown, try \"ip neigh help\".\n", *argv);
exit(-1);
}