blob: b10d01e901d880d85ac20f75d9f1af69136facec [file] [log] [blame]
/*
* Fair Queue
*
* Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the authors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, provided that this notice is retained in full, this
* software may be distributed under the terms of the GNU General
* Public License ("GPL") version 2, in which case the provisions of the
* GPL apply INSTEAD OF those given above.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdbool.h>
#include "utils.h"
#include "tc_util.h"
static void explain(void)
{
fprintf(stderr,
"Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]\n"
" [ quantum BYTES ] [ initial_quantum BYTES ]\n"
" [ maxrate RATE ] [ buckets NUMBER ]\n"
" [ [no]pacing ] [ refill_delay TIME ]\n"
" [ low_rate_threshold RATE ]\n"
" [ orphan_mask MASK]\n"
" [ timer_slack TIME]\n"
" [ ce_threshold TIME ]\n");
}
static unsigned int ilog2(unsigned int val)
{
unsigned int res = 0;
val--;
while (val) {
res++;
val >>= 1;
}
return res;
}
static int fq_parse_opt(struct qdisc_util *qu, int argc, char **argv,
struct nlmsghdr *n, const char *dev)
{
unsigned int plimit;
unsigned int flow_plimit;
unsigned int quantum;
unsigned int initial_quantum;
unsigned int buckets = 0;
unsigned int maxrate;
unsigned int low_rate_threshold;
unsigned int defrate;
unsigned int refill_delay;
unsigned int orphan_mask;
unsigned int ce_threshold;
unsigned int timer_slack;
bool set_plimit = false;
bool set_flow_plimit = false;
bool set_quantum = false;
bool set_initial_quantum = false;
bool set_maxrate = false;
bool set_defrate = false;
bool set_refill_delay = false;
bool set_orphan_mask = false;
bool set_low_rate_threshold = false;
bool set_ce_threshold = false;
bool set_timer_slack = false;
int pacing = -1;
struct rtattr *tail;
while (argc > 0) {
if (strcmp(*argv, "limit") == 0) {
NEXT_ARG();
if (get_unsigned(&plimit, *argv, 0)) {
fprintf(stderr, "Illegal \"limit\"\n");
return -1;
}
set_plimit = true;
} else if (strcmp(*argv, "flow_limit") == 0) {
NEXT_ARG();
if (get_unsigned(&flow_plimit, *argv, 0)) {
fprintf(stderr, "Illegal \"flow_limit\"\n");
return -1;
}
set_flow_plimit = true;
} else if (strcmp(*argv, "buckets") == 0) {
NEXT_ARG();
if (get_unsigned(&buckets, *argv, 0)) {
fprintf(stderr, "Illegal \"buckets\"\n");
return -1;
}
} else if (strcmp(*argv, "maxrate") == 0) {
NEXT_ARG();
if (strchr(*argv, '%')) {
if (get_percent_rate(&maxrate, *argv, dev)) {
fprintf(stderr, "Illegal \"maxrate\"\n");
return -1;
}
} else if (get_rate(&maxrate, *argv)) {
fprintf(stderr, "Illegal \"maxrate\"\n");
return -1;
}
set_maxrate = true;
} else if (strcmp(*argv, "low_rate_threshold") == 0) {
NEXT_ARG();
if (get_rate(&low_rate_threshold, *argv)) {
fprintf(stderr, "Illegal \"low_rate_threshold\"\n");
return -1;
}
set_low_rate_threshold = true;
} else if (strcmp(*argv, "ce_threshold") == 0) {
NEXT_ARG();
if (get_time(&ce_threshold, *argv)) {
fprintf(stderr, "Illegal \"ce_threshold\"\n");
return -1;
}
set_ce_threshold = true;
} else if (strcmp(*argv, "timer_slack") == 0) {
__s64 t64;
NEXT_ARG();
if (get_time64(&t64, *argv)) {
fprintf(stderr, "Illegal \"timer_slack\"\n");
return -1;
}
timer_slack = t64;
if (timer_slack != t64) {
fprintf(stderr, "Illegal (out of range) \"timer_slack\"\n");
return -1;
}
set_timer_slack = true;
} else if (strcmp(*argv, "defrate") == 0) {
NEXT_ARG();
if (strchr(*argv, '%')) {
if (get_percent_rate(&defrate, *argv, dev)) {
fprintf(stderr, "Illegal \"defrate\"\n");
return -1;
}
} else if (get_rate(&defrate, *argv)) {
fprintf(stderr, "Illegal \"defrate\"\n");
return -1;
}
set_defrate = true;
} else if (strcmp(*argv, "quantum") == 0) {
NEXT_ARG();
if (get_unsigned(&quantum, *argv, 0)) {
fprintf(stderr, "Illegal \"quantum\"\n");
return -1;
}
set_quantum = true;
} else if (strcmp(*argv, "initial_quantum") == 0) {
NEXT_ARG();
if (get_unsigned(&initial_quantum, *argv, 0)) {
fprintf(stderr, "Illegal \"initial_quantum\"\n");
return -1;
}
set_initial_quantum = true;
} else if (strcmp(*argv, "orphan_mask") == 0) {
NEXT_ARG();
if (get_unsigned(&orphan_mask, *argv, 0)) {
fprintf(stderr, "Illegal \"initial_quantum\"\n");
return -1;
}
set_orphan_mask = true;
} else if (strcmp(*argv, "refill_delay") == 0) {
NEXT_ARG();
if (get_time(&refill_delay, *argv)) {
fprintf(stderr, "Illegal \"refill_delay\"\n");
return -1;
}
set_refill_delay = true;
} else if (strcmp(*argv, "pacing") == 0) {
pacing = 1;
} else if (strcmp(*argv, "nopacing") == 0) {
pacing = 0;
} else if (strcmp(*argv, "help") == 0) {
explain();
return -1;
} else {
fprintf(stderr, "What is \"%s\"?\n", *argv);
explain();
return -1;
}
argc--; argv++;
}
tail = addattr_nest(n, 1024, TCA_OPTIONS);
if (buckets) {
unsigned int log = ilog2(buckets);
addattr_l(n, 1024, TCA_FQ_BUCKETS_LOG,
&log, sizeof(log));
}
if (set_plimit)
addattr_l(n, 1024, TCA_FQ_PLIMIT,
&plimit, sizeof(plimit));
if (set_flow_plimit)
addattr_l(n, 1024, TCA_FQ_FLOW_PLIMIT,
&flow_plimit, sizeof(flow_plimit));
if (set_quantum)
addattr_l(n, 1024, TCA_FQ_QUANTUM, &quantum, sizeof(quantum));
if (set_initial_quantum)
addattr_l(n, 1024, TCA_FQ_INITIAL_QUANTUM,
&initial_quantum, sizeof(initial_quantum));
if (pacing != -1)
addattr_l(n, 1024, TCA_FQ_RATE_ENABLE,
&pacing, sizeof(pacing));
if (set_maxrate)
addattr_l(n, 1024, TCA_FQ_FLOW_MAX_RATE,
&maxrate, sizeof(maxrate));
if (set_low_rate_threshold)
addattr_l(n, 1024, TCA_FQ_LOW_RATE_THRESHOLD,
&low_rate_threshold, sizeof(low_rate_threshold));
if (set_defrate)
addattr_l(n, 1024, TCA_FQ_FLOW_DEFAULT_RATE,
&defrate, sizeof(defrate));
if (set_refill_delay)
addattr_l(n, 1024, TCA_FQ_FLOW_REFILL_DELAY,
&refill_delay, sizeof(refill_delay));
if (set_orphan_mask)
addattr_l(n, 1024, TCA_FQ_ORPHAN_MASK,
&orphan_mask, sizeof(orphan_mask));
if (set_ce_threshold)
addattr_l(n, 1024, TCA_FQ_CE_THRESHOLD,
&ce_threshold, sizeof(ce_threshold));
if (set_timer_slack)
addattr_l(n, 1024, TCA_FQ_TIMER_SLACK,
&timer_slack, sizeof(timer_slack));
addattr_nest_end(n, tail);
return 0;
}
static int fq_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
struct rtattr *tb[TCA_FQ_MAX + 1];
unsigned int plimit, flow_plimit;
unsigned int buckets_log;
int pacing;
unsigned int rate, quantum;
unsigned int refill_delay;
unsigned int orphan_mask;
unsigned int ce_threshold;
unsigned int timer_slack;
SPRINT_BUF(b1);
if (opt == NULL)
return 0;
parse_rtattr_nested(tb, TCA_FQ_MAX, opt);
if (tb[TCA_FQ_PLIMIT] &&
RTA_PAYLOAD(tb[TCA_FQ_PLIMIT]) >= sizeof(__u32)) {
plimit = rta_getattr_u32(tb[TCA_FQ_PLIMIT]);
print_uint(PRINT_ANY, "limit", "limit %up ", plimit);
}
if (tb[TCA_FQ_FLOW_PLIMIT] &&
RTA_PAYLOAD(tb[TCA_FQ_FLOW_PLIMIT]) >= sizeof(__u32)) {
flow_plimit = rta_getattr_u32(tb[TCA_FQ_FLOW_PLIMIT]);
print_uint(PRINT_ANY, "flow_limit", "flow_limit %up ",
flow_plimit);
}
if (tb[TCA_FQ_BUCKETS_LOG] &&
RTA_PAYLOAD(tb[TCA_FQ_BUCKETS_LOG]) >= sizeof(__u32)) {
buckets_log = rta_getattr_u32(tb[TCA_FQ_BUCKETS_LOG]);
print_uint(PRINT_ANY, "buckets", "buckets %u ",
1U << buckets_log);
}
if (tb[TCA_FQ_ORPHAN_MASK] &&
RTA_PAYLOAD(tb[TCA_FQ_ORPHAN_MASK]) >= sizeof(__u32)) {
orphan_mask = rta_getattr_u32(tb[TCA_FQ_ORPHAN_MASK]);
print_uint(PRINT_ANY, "orphan_mask", "orphan_mask %u ",
orphan_mask);
}
if (tb[TCA_FQ_RATE_ENABLE] &&
RTA_PAYLOAD(tb[TCA_FQ_RATE_ENABLE]) >= sizeof(int)) {
pacing = rta_getattr_u32(tb[TCA_FQ_RATE_ENABLE]);
if (pacing == 0)
print_bool(PRINT_ANY, "pacing", "nopacing ", false);
}
if (tb[TCA_FQ_QUANTUM] &&
RTA_PAYLOAD(tb[TCA_FQ_QUANTUM]) >= sizeof(__u32)) {
quantum = rta_getattr_u32(tb[TCA_FQ_QUANTUM]);
print_uint(PRINT_JSON, "quantum", NULL, quantum);
print_string(PRINT_FP, NULL, "quantum %s ",
sprint_size(quantum, b1));
}
if (tb[TCA_FQ_INITIAL_QUANTUM] &&
RTA_PAYLOAD(tb[TCA_FQ_INITIAL_QUANTUM]) >= sizeof(__u32)) {
quantum = rta_getattr_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
print_uint(PRINT_JSON, "initial_quantum", NULL, quantum);
print_string(PRINT_FP, NULL, "initial_quantum %s ",
sprint_size(quantum, b1));
}
if (tb[TCA_FQ_FLOW_MAX_RATE] &&
RTA_PAYLOAD(tb[TCA_FQ_FLOW_MAX_RATE]) >= sizeof(__u32)) {
rate = rta_getattr_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
if (rate != ~0U) {
print_uint(PRINT_JSON, "maxrate", NULL, rate);
print_string(PRINT_FP, NULL, "maxrate %s ",
sprint_rate(rate, b1));
}
}
if (tb[TCA_FQ_FLOW_DEFAULT_RATE] &&
RTA_PAYLOAD(tb[TCA_FQ_FLOW_DEFAULT_RATE]) >= sizeof(__u32)) {
rate = rta_getattr_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
if (rate != 0) {
print_uint(PRINT_JSON, "defrate", NULL, rate);
print_string(PRINT_FP, NULL, "defrate %s ",
sprint_rate(rate, b1));
}
}
if (tb[TCA_FQ_LOW_RATE_THRESHOLD] &&
RTA_PAYLOAD(tb[TCA_FQ_LOW_RATE_THRESHOLD]) >= sizeof(__u32)) {
rate = rta_getattr_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
if (rate != 0) {
print_uint(PRINT_JSON, "low_rate_threshold", NULL,
rate);
print_string(PRINT_FP, NULL, "low_rate_threshold %s ",
sprint_rate(rate, b1));
}
}
if (tb[TCA_FQ_FLOW_REFILL_DELAY] &&
RTA_PAYLOAD(tb[TCA_FQ_FLOW_REFILL_DELAY]) >= sizeof(__u32)) {
refill_delay = rta_getattr_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]);
print_uint(PRINT_JSON, "refill_delay", NULL, refill_delay);
print_string(PRINT_FP, NULL, "refill_delay %s ",
sprint_time(refill_delay, b1));
}
if (tb[TCA_FQ_CE_THRESHOLD] &&
RTA_PAYLOAD(tb[TCA_FQ_CE_THRESHOLD]) >= sizeof(__u32)) {
ce_threshold = rta_getattr_u32(tb[TCA_FQ_CE_THRESHOLD]);
if (ce_threshold != ~0U) {
print_uint(PRINT_JSON, "ce_threshold", NULL,
ce_threshold);
print_string(PRINT_FP, NULL, "ce_threshold %s ",
sprint_time(ce_threshold, b1));
}
}
if (tb[TCA_FQ_TIMER_SLACK] &&
RTA_PAYLOAD(tb[TCA_FQ_TIMER_SLACK]) >= sizeof(__u32)) {
timer_slack = rta_getattr_u32(tb[TCA_FQ_TIMER_SLACK]);
print_uint(PRINT_JSON, "timer_slack", NULL, timer_slack);
print_string(PRINT_FP, NULL, "timer_slack %s ",
sprint_time64(timer_slack, b1));
}
return 0;
}
static int fq_print_xstats(struct qdisc_util *qu, FILE *f,
struct rtattr *xstats)
{
struct tc_fq_qd_stats *st, _st;
SPRINT_BUF(b1);
if (xstats == NULL)
return 0;
memset(&_st, 0, sizeof(_st));
memcpy(&_st, RTA_DATA(xstats), min(RTA_PAYLOAD(xstats), sizeof(*st)));
st = &_st;
print_uint(PRINT_ANY, "flows", " flows %u", st->flows);
print_uint(PRINT_ANY, "inactive", " (inactive %u", st->inactive_flows);
print_uint(PRINT_ANY, "throttled", " throttled %u)",
st->throttled_flows);
if (st->time_next_delayed_flow > 0) {
print_lluint(PRINT_JSON, "next_packet_delay", NULL,
st->time_next_delayed_flow);
print_string(PRINT_FP, NULL, " next_packet_delay %s",
sprint_time64(st->time_next_delayed_flow, b1));
}
print_nl();
print_lluint(PRINT_ANY, "gc", " gc %llu", st->gc_flows);
print_lluint(PRINT_ANY, "highprio", " highprio %llu",
st->highprio_packets);
if (st->tcp_retrans)
print_lluint(PRINT_ANY, "retrans", " retrans %llu",
st->tcp_retrans);
print_lluint(PRINT_ANY, "throttled", " throttled %llu", st->throttled);
if (st->unthrottle_latency_ns) {
print_uint(PRINT_JSON, "latency", NULL,
st->unthrottle_latency_ns);
print_string(PRINT_FP, NULL, " latency %s",
sprint_time64(st->unthrottle_latency_ns, b1));
}
if (st->ce_mark)
print_lluint(PRINT_ANY, "ce_mark", " ce_mark %llu",
st->ce_mark);
if (st->flows_plimit)
print_lluint(PRINT_ANY, "flows_plimit", " flows_plimit %llu",
st->flows_plimit);
if (st->pkts_too_long || st->allocation_errors) {
print_nl();
print_lluint(PRINT_ANY, "pkts_too_long",
" pkts_too_long %llu", st->pkts_too_long);
print_lluint(PRINT_ANY, "alloc_errors", " alloc_errors %llu",
st->allocation_errors);
}
return 0;
}
struct qdisc_util fq_qdisc_util = {
.id = "fq",
.parse_qopt = fq_parse_opt,
.print_qopt = fq_print_opt,
.print_xstats = fq_print_xstats,
};