blob: f549be20f19f474acbc6c609bd99dbe543df48de [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Fair Queue
*
* Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdbool.h>
#include "utils.h"
#include "tc_util.h"
static void explain(void)
{
fprintf(stderr,
"Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]\n"
" [ quantum BYTES ] [ initial_quantum BYTES ]\n"
" [ maxrate RATE ] [ buckets NUMBER ]\n"
" [ [no]pacing ] [ refill_delay TIME ]\n"
" [ bands 3 priomap P0 P1 ... P14 P15 ]\n"
" [ weights W1 W2 W3 ]\n"
" [ low_rate_threshold RATE ]\n"
" [ orphan_mask MASK]\n"
" [ timer_slack TIME]\n"
" [ ce_threshold TIME ]\n"
" [ horizon TIME ]\n"
" [ horizon_{cap|drop} ]\n");
}
static unsigned int ilog2(unsigned int val)
{
unsigned int res = 0;
val--;
while (val) {
res++;
val >>= 1;
}
return res;
}
static int fq_parse_opt(const struct qdisc_util *qu, int argc, char **argv,
struct nlmsghdr *n, const char *dev)
{
struct tc_prio_qopt prio2band;
unsigned int plimit;
unsigned int flow_plimit;
unsigned int quantum;
unsigned int initial_quantum;
unsigned int buckets = 0;
unsigned int maxrate;
unsigned int low_rate_threshold;
unsigned int defrate;
unsigned int refill_delay;
unsigned int orphan_mask;
unsigned int ce_threshold;
unsigned int timer_slack;
unsigned int horizon;
__u8 horizon_drop = 255;
bool set_plimit = false;
bool set_flow_plimit = false;
bool set_quantum = false;
bool set_initial_quantum = false;
bool set_maxrate = false;
bool set_defrate = false;
bool set_refill_delay = false;
bool set_orphan_mask = false;
bool set_low_rate_threshold = false;
bool set_ce_threshold = false;
bool set_timer_slack = false;
bool set_horizon = false;
bool set_priomap = false;
bool set_weights = false;
int weights[FQ_BANDS];
int pacing = -1;
struct rtattr *tail;
while (argc > 0) {
if (strcmp(*argv, "limit") == 0) {
NEXT_ARG();
if (get_unsigned(&plimit, *argv, 0)) {
fprintf(stderr, "Illegal \"limit\"\n");
return -1;
}
set_plimit = true;
} else if (strcmp(*argv, "flow_limit") == 0) {
NEXT_ARG();
if (get_unsigned(&flow_plimit, *argv, 0)) {
fprintf(stderr, "Illegal \"flow_limit\"\n");
return -1;
}
set_flow_plimit = true;
} else if (strcmp(*argv, "buckets") == 0) {
NEXT_ARG();
if (get_unsigned(&buckets, *argv, 0)) {
fprintf(stderr, "Illegal \"buckets\"\n");
return -1;
}
} else if (strcmp(*argv, "maxrate") == 0) {
NEXT_ARG();
if (strchr(*argv, '%')) {
if (get_percent_rate(&maxrate, *argv, dev)) {
fprintf(stderr, "Illegal \"maxrate\"\n");
return -1;
}
} else if (get_rate(&maxrate, *argv)) {
fprintf(stderr, "Illegal \"maxrate\"\n");
return -1;
}
set_maxrate = true;
} else if (strcmp(*argv, "low_rate_threshold") == 0) {
NEXT_ARG();
if (get_rate(&low_rate_threshold, *argv)) {
fprintf(stderr, "Illegal \"low_rate_threshold\"\n");
return -1;
}
set_low_rate_threshold = true;
} else if (strcmp(*argv, "ce_threshold") == 0) {
NEXT_ARG();
if (get_time(&ce_threshold, *argv)) {
fprintf(stderr, "Illegal \"ce_threshold\"\n");
return -1;
}
set_ce_threshold = true;
} else if (strcmp(*argv, "timer_slack") == 0) {
__s64 t64;
NEXT_ARG();
if (get_time64(&t64, *argv)) {
fprintf(stderr, "Illegal \"timer_slack\"\n");
return -1;
}
timer_slack = t64;
if (timer_slack != t64) {
fprintf(stderr, "Illegal (out of range) \"timer_slack\"\n");
return -1;
}
set_timer_slack = true;
} else if (strcmp(*argv, "horizon_drop") == 0) {
horizon_drop = 1;
} else if (strcmp(*argv, "horizon_cap") == 0) {
horizon_drop = 0;
} else if (strcmp(*argv, "horizon") == 0) {
NEXT_ARG();
if (get_time(&horizon, *argv)) {
fprintf(stderr, "Illegal \"horizon\"\n");
return -1;
}
set_horizon = true;
} else if (strcmp(*argv, "defrate") == 0) {
NEXT_ARG();
if (strchr(*argv, '%')) {
if (get_percent_rate(&defrate, *argv, dev)) {
fprintf(stderr, "Illegal \"defrate\"\n");
return -1;
}
} else if (get_rate(&defrate, *argv)) {
fprintf(stderr, "Illegal \"defrate\"\n");
return -1;
}
set_defrate = true;
} else if (strcmp(*argv, "quantum") == 0) {
NEXT_ARG();
if (get_unsigned(&quantum, *argv, 0)) {
fprintf(stderr, "Illegal \"quantum\"\n");
return -1;
}
set_quantum = true;
} else if (strcmp(*argv, "initial_quantum") == 0) {
NEXT_ARG();
if (get_unsigned(&initial_quantum, *argv, 0)) {
fprintf(stderr, "Illegal \"initial_quantum\"\n");
return -1;
}
set_initial_quantum = true;
} else if (strcmp(*argv, "orphan_mask") == 0) {
NEXT_ARG();
if (get_unsigned(&orphan_mask, *argv, 0)) {
fprintf(stderr, "Illegal \"initial_quantum\"\n");
return -1;
}
set_orphan_mask = true;
} else if (strcmp(*argv, "refill_delay") == 0) {
NEXT_ARG();
if (get_time(&refill_delay, *argv)) {
fprintf(stderr, "Illegal \"refill_delay\"\n");
return -1;
}
set_refill_delay = true;
} else if (strcmp(*argv, "pacing") == 0) {
pacing = 1;
} else if (strcmp(*argv, "nopacing") == 0) {
pacing = 0;
} else if (strcmp(*argv, "bands") == 0) {
int idx;
if (set_priomap) {
fprintf(stderr, "Duplicate \"bands\"\n");
return -1;
}
memset(&prio2band, 0, sizeof(prio2band));
NEXT_ARG();
if (get_integer(&prio2band.bands, *argv, 10)) {
fprintf(stderr, "Illegal \"bands\"\n");
return -1;
}
if (prio2band.bands != 3) {
fprintf(stderr, "\"bands\" must be 3\n");
return -1;
}
NEXT_ARG();
if (strcmp(*argv, "priomap") != 0) {
fprintf(stderr, "\"priomap\" expected\n");
return -1;
}
for (idx = 0; idx <= TC_PRIO_MAX; ++idx) {
unsigned band;
if (!NEXT_ARG_OK()) {
fprintf(stderr, "Not enough elements in priomap\n");
return -1;
}
NEXT_ARG();
if (get_unsigned(&band, *argv, 10)) {
fprintf(stderr, "Illegal \"priomap\" element, number in [0..%u] expected\n",
prio2band.bands - 1);
return -1;
}
if (band >= prio2band.bands) {
fprintf(stderr, "\"priomap\" element %u too big\n", band);
return -1;
}
prio2band.priomap[idx] = band;
}
set_priomap = true;
} else if (strcmp(*argv, "weights") == 0) {
int idx;
if (set_weights) {
fprintf(stderr, "Duplicate \"weights\"\n");
return -1;
}
NEXT_ARG();
for (idx = 0; idx < FQ_BANDS; ++idx) {
int val;
if (!NEXT_ARG_OK()) {
fprintf(stderr, "Not enough elements in weights\n");
return -1;
}
NEXT_ARG();
if (get_integer(&val, *argv, 10)) {
fprintf(stderr, "Illegal \"weights\" element, positive number expected\n");
return -1;
}
if (val < FQ_MIN_WEIGHT) {
fprintf(stderr, "\"weight\" element %d too small\n", val);
return -1;
}
weights[idx] = val;
}
set_weights = true;
} else if (strcmp(*argv, "help") == 0) {
explain();
return -1;
} else {
fprintf(stderr, "What is \"%s\"?\n", *argv);
explain();
return -1;
}
argc--; argv++;
}
tail = addattr_nest(n, 1024, TCA_OPTIONS);
if (buckets) {
unsigned int log = ilog2(buckets);
addattr_l(n, 1024, TCA_FQ_BUCKETS_LOG,
&log, sizeof(log));
}
if (set_plimit)
addattr_l(n, 1024, TCA_FQ_PLIMIT,
&plimit, sizeof(plimit));
if (set_flow_plimit)
addattr_l(n, 1024, TCA_FQ_FLOW_PLIMIT,
&flow_plimit, sizeof(flow_plimit));
if (set_quantum)
addattr_l(n, 1024, TCA_FQ_QUANTUM, &quantum, sizeof(quantum));
if (set_initial_quantum)
addattr_l(n, 1024, TCA_FQ_INITIAL_QUANTUM,
&initial_quantum, sizeof(initial_quantum));
if (pacing != -1)
addattr_l(n, 1024, TCA_FQ_RATE_ENABLE,
&pacing, sizeof(pacing));
if (set_maxrate)
addattr_l(n, 1024, TCA_FQ_FLOW_MAX_RATE,
&maxrate, sizeof(maxrate));
if (set_low_rate_threshold)
addattr_l(n, 1024, TCA_FQ_LOW_RATE_THRESHOLD,
&low_rate_threshold, sizeof(low_rate_threshold));
if (set_defrate)
addattr_l(n, 1024, TCA_FQ_FLOW_DEFAULT_RATE,
&defrate, sizeof(defrate));
if (set_refill_delay)
addattr_l(n, 1024, TCA_FQ_FLOW_REFILL_DELAY,
&refill_delay, sizeof(refill_delay));
if (set_orphan_mask)
addattr_l(n, 1024, TCA_FQ_ORPHAN_MASK,
&orphan_mask, sizeof(orphan_mask));
if (set_ce_threshold)
addattr_l(n, 1024, TCA_FQ_CE_THRESHOLD,
&ce_threshold, sizeof(ce_threshold));
if (set_timer_slack)
addattr_l(n, 1024, TCA_FQ_TIMER_SLACK,
&timer_slack, sizeof(timer_slack));
if (set_horizon)
addattr_l(n, 1024, TCA_FQ_HORIZON,
&horizon, sizeof(horizon));
if (horizon_drop != 255)
addattr_l(n, 1024, TCA_FQ_HORIZON_DROP,
&horizon_drop, sizeof(horizon_drop));
if (set_priomap)
addattr_l(n, 1024, TCA_FQ_PRIOMAP,
&prio2band, sizeof(prio2band));
if (set_weights)
addattr_l(n, 1024, TCA_FQ_WEIGHTS,
weights, sizeof(weights));
addattr_nest_end(n, tail);
return 0;
}
static int fq_print_opt(const struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
struct rtattr *tb[TCA_FQ_MAX + 1];
unsigned int plimit, flow_plimit;
unsigned int buckets_log;
int pacing;
unsigned int rate, quantum;
unsigned int refill_delay;
unsigned int orphan_mask;
unsigned int ce_threshold;
unsigned int timer_slack;
unsigned int horizon;
__u8 horizon_drop;
SPRINT_BUF(b1);
if (opt == NULL)
return 0;
parse_rtattr_nested(tb, TCA_FQ_MAX, opt);
if (tb[TCA_FQ_PLIMIT] &&
RTA_PAYLOAD(tb[TCA_FQ_PLIMIT]) >= sizeof(__u32)) {
plimit = rta_getattr_u32(tb[TCA_FQ_PLIMIT]);
print_uint(PRINT_ANY, "limit", "limit %up ", plimit);
}
if (tb[TCA_FQ_FLOW_PLIMIT] &&
RTA_PAYLOAD(tb[TCA_FQ_FLOW_PLIMIT]) >= sizeof(__u32)) {
flow_plimit = rta_getattr_u32(tb[TCA_FQ_FLOW_PLIMIT]);
print_uint(PRINT_ANY, "flow_limit", "flow_limit %up ",
flow_plimit);
}
if (tb[TCA_FQ_BUCKETS_LOG] &&
RTA_PAYLOAD(tb[TCA_FQ_BUCKETS_LOG]) >= sizeof(__u32)) {
buckets_log = rta_getattr_u32(tb[TCA_FQ_BUCKETS_LOG]);
print_uint(PRINT_ANY, "buckets", "buckets %u ",
1U << buckets_log);
}
if (tb[TCA_FQ_ORPHAN_MASK] &&
RTA_PAYLOAD(tb[TCA_FQ_ORPHAN_MASK]) >= sizeof(__u32)) {
orphan_mask = rta_getattr_u32(tb[TCA_FQ_ORPHAN_MASK]);
print_uint(PRINT_ANY, "orphan_mask", "orphan_mask %u ",
orphan_mask);
}
if (tb[TCA_FQ_RATE_ENABLE] &&
RTA_PAYLOAD(tb[TCA_FQ_RATE_ENABLE]) >= sizeof(int)) {
pacing = rta_getattr_u32(tb[TCA_FQ_RATE_ENABLE]);
if (pacing == 0)
print_bool(PRINT_ANY, "pacing", "nopacing ", false);
}
if (tb[TCA_FQ_PRIOMAP] &&
RTA_PAYLOAD(tb[TCA_FQ_PRIOMAP]) >= sizeof(struct tc_prio_qopt)) {
struct tc_prio_qopt *prio2band = RTA_DATA(tb[TCA_FQ_PRIOMAP]);
int i;
print_uint(PRINT_ANY, "bands", "bands %u ", prio2band->bands);
open_json_array(PRINT_ANY, "priomap ");
for (i = 0; i <= TC_PRIO_MAX; i++)
print_uint(PRINT_ANY, NULL, "%d ", prio2band->priomap[i]);
close_json_array(PRINT_ANY, "");
}
if (tb[TCA_FQ_WEIGHTS] &&
RTA_PAYLOAD(tb[TCA_FQ_WEIGHTS]) >= FQ_BANDS * sizeof(int)) {
const int *weights = RTA_DATA(tb[TCA_FQ_WEIGHTS]);
int i;
open_json_array(PRINT_ANY, "weights ");
for (i = 0; i < FQ_BANDS; ++i)
print_uint(PRINT_ANY, NULL, "%d ", weights[i]);
close_json_array(PRINT_ANY, "");
}
if (tb[TCA_FQ_QUANTUM] &&
RTA_PAYLOAD(tb[TCA_FQ_QUANTUM]) >= sizeof(__u32)) {
quantum = rta_getattr_u32(tb[TCA_FQ_QUANTUM]);
print_size(PRINT_ANY, "quantum", "quantum %s ", quantum);
}
if (tb[TCA_FQ_INITIAL_QUANTUM] &&
RTA_PAYLOAD(tb[TCA_FQ_INITIAL_QUANTUM]) >= sizeof(__u32)) {
quantum = rta_getattr_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
print_size(PRINT_ANY, "initial_quantum", "initial_quantum %s ",
quantum);
}
if (tb[TCA_FQ_FLOW_MAX_RATE] &&
RTA_PAYLOAD(tb[TCA_FQ_FLOW_MAX_RATE]) >= sizeof(__u32)) {
rate = rta_getattr_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
if (rate != ~0U)
tc_print_rate(PRINT_ANY,
"maxrate", "maxrate %s ", rate);
}
if (tb[TCA_FQ_FLOW_DEFAULT_RATE] &&
RTA_PAYLOAD(tb[TCA_FQ_FLOW_DEFAULT_RATE]) >= sizeof(__u32)) {
rate = rta_getattr_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
if (rate != 0)
tc_print_rate(PRINT_ANY,
"defrate", "defrate %s ", rate);
}
if (tb[TCA_FQ_LOW_RATE_THRESHOLD] &&
RTA_PAYLOAD(tb[TCA_FQ_LOW_RATE_THRESHOLD]) >= sizeof(__u32)) {
rate = rta_getattr_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
if (rate != 0)
tc_print_rate(PRINT_ANY, "low_rate_threshold",
"low_rate_threshold %s ", rate);
}
if (tb[TCA_FQ_FLOW_REFILL_DELAY] &&
RTA_PAYLOAD(tb[TCA_FQ_FLOW_REFILL_DELAY]) >= sizeof(__u32)) {
refill_delay = rta_getattr_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]);
print_uint(PRINT_JSON, "refill_delay", NULL, refill_delay);
print_string(PRINT_FP, NULL, "refill_delay %s ",
sprint_time(refill_delay, b1));
}
if (tb[TCA_FQ_CE_THRESHOLD] &&
RTA_PAYLOAD(tb[TCA_FQ_CE_THRESHOLD]) >= sizeof(__u32)) {
ce_threshold = rta_getattr_u32(tb[TCA_FQ_CE_THRESHOLD]);
if (ce_threshold != ~0U) {
print_uint(PRINT_JSON, "ce_threshold", NULL,
ce_threshold);
print_string(PRINT_FP, NULL, "ce_threshold %s ",
sprint_time(ce_threshold, b1));
}
}
if (tb[TCA_FQ_TIMER_SLACK] &&
RTA_PAYLOAD(tb[TCA_FQ_TIMER_SLACK]) >= sizeof(__u32)) {
timer_slack = rta_getattr_u32(tb[TCA_FQ_TIMER_SLACK]);
print_uint(PRINT_JSON, "timer_slack", NULL, timer_slack);
print_string(PRINT_FP, NULL, "timer_slack %s ",
sprint_time64(timer_slack, b1));
}
if (tb[TCA_FQ_HORIZON] &&
RTA_PAYLOAD(tb[TCA_FQ_HORIZON]) >= sizeof(__u32)) {
horizon = rta_getattr_u32(tb[TCA_FQ_HORIZON]);
print_uint(PRINT_JSON, "horizon", NULL, horizon);
print_string(PRINT_FP, NULL, "horizon %s ",
sprint_time(horizon, b1));
}
if (tb[TCA_FQ_HORIZON_DROP] &&
RTA_PAYLOAD(tb[TCA_FQ_HORIZON_DROP]) >= sizeof(__u8)) {
horizon_drop = rta_getattr_u8(tb[TCA_FQ_HORIZON_DROP]);
if (!horizon_drop)
print_null(PRINT_ANY, "horizon_cap", "horizon_cap ", NULL);
else
print_null(PRINT_ANY, "horizon_drop", "horizon_drop ", NULL);
}
return 0;
}
static int fq_print_xstats(const struct qdisc_util *qu, FILE *f,
struct rtattr *xstats)
{
struct tc_fq_qd_stats *st, _st;
SPRINT_BUF(b1);
if (xstats == NULL)
return 0;
memset(&_st, 0, sizeof(_st));
memcpy(&_st, RTA_DATA(xstats), min(RTA_PAYLOAD(xstats), sizeof(*st)));
st = &_st;
print_uint(PRINT_ANY, "flows", " flows %u", st->flows);
print_uint(PRINT_ANY, "inactive", " (inactive %u", st->inactive_flows);
print_uint(PRINT_ANY, "throttled", " throttled %u)",
st->throttled_flows);
print_uint(PRINT_ANY, "band0_pkts", " band0_pkts %u", st->band_pkt_count[0]);
print_uint(PRINT_ANY, "band1_pkts", " band1_pkts %u", st->band_pkt_count[1]);
print_uint(PRINT_ANY, "band2_pkts", " band2_pkts %u", st->band_pkt_count[2]);
if (st->time_next_delayed_flow > 0) {
print_lluint(PRINT_JSON, "next_packet_delay", NULL,
st->time_next_delayed_flow);
print_string(PRINT_FP, NULL, " next_packet_delay %s",
sprint_time64(st->time_next_delayed_flow, b1));
}
print_nl();
print_lluint(PRINT_ANY, "gc", " gc %llu", st->gc_flows);
print_lluint(PRINT_ANY, "highprio", " highprio %llu",
st->highprio_packets);
if (st->fastpath_packets)
print_lluint(PRINT_ANY, "fastpath", " fastpath %llu",
st->fastpath_packets);
if (st->tcp_retrans)
print_lluint(PRINT_ANY, "retrans", " retrans %llu",
st->tcp_retrans);
print_lluint(PRINT_ANY, "throttled", " throttled %llu", st->throttled);
if (st->unthrottle_latency_ns) {
print_uint(PRINT_JSON, "latency", NULL,
st->unthrottle_latency_ns);
print_string(PRINT_FP, NULL, " latency %s",
sprint_time64(st->unthrottle_latency_ns, b1));
}
if (st->ce_mark)
print_lluint(PRINT_ANY, "ce_mark", " ce_mark %llu",
st->ce_mark);
if (st->flows_plimit)
print_lluint(PRINT_ANY, "flows_plimit", " flows_plimit %llu",
st->flows_plimit);
if (st->pkts_too_long || st->allocation_errors ||
st->horizon_drops || st->horizon_caps ||
st->band_drops[0] ||
st->band_drops[1] ||
st->band_drops[2]) {
print_nl();
if (st->pkts_too_long)
print_lluint(PRINT_ANY, "pkts_too_long",
" pkts_too_long %llu",
st->pkts_too_long);
if (st->allocation_errors)
print_lluint(PRINT_ANY, "alloc_errors",
" alloc_errors %llu",
st->allocation_errors);
if (st->horizon_drops)
print_lluint(PRINT_ANY, "horizon_drops",
" horizon_drops %llu",
st->horizon_drops);
if (st->horizon_caps)
print_lluint(PRINT_ANY, "horizon_caps",
" horizon_caps %llu",
st->horizon_caps);
if (st->band_drops[0])
print_lluint(PRINT_ANY, "band0_drops",
" band0_drops %llu",
st->band_drops[0]);
if (st->band_drops[1])
print_lluint(PRINT_ANY, "band1_drops",
" band1_drops %llu",
st->band_drops[1]);
if (st->band_drops[2])
print_lluint(PRINT_ANY, "band2_drops",
" band2_drops %llu",
st->band_drops[2]);
}
return 0;
}
struct qdisc_util fq_qdisc_util = {
.id = "fq",
.parse_qopt = fq_parse_opt,
.print_qopt = fq_print_opt,
.print_xstats = fq_print_xstats,
};