blob: cfb24f5c1e341f3d35cf511be39c2ab14d9f1e5f [file] [log] [blame]
/*
* ipaddress.c "ip address".
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <inttypes.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/param.h>
#include <errno.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <fnmatch.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/if_infiniband.h>
#include <linux/sockios.h>
#include <linux/net_namespace.h>
#include "rt_names.h"
#include "utils.h"
#include "ll_map.h"
#include "ip_common.h"
#include "color.h"
enum {
IPADD_LIST,
IPADD_FLUSH,
IPADD_SAVE,
};
static struct link_filter filter;
static int do_link;
static void usage(void) __attribute__((noreturn));
static void usage(void)
{
if (do_link)
iplink_usage();
fprintf(stderr,
"Usage: ip address {add|change|replace} IFADDR dev IFNAME [ LIFETIME ]\n"
" [ CONFFLAG-LIST ]\n"
" ip address del IFADDR dev IFNAME [mngtmpaddr]\n"
" ip address {save|flush} [ dev IFNAME ] [ scope SCOPE-ID ]\n"
" [ to PREFIX ] [ FLAG-LIST ] [ label LABEL ] [up]\n"
" ip address [ show [ dev IFNAME ] [ scope SCOPE-ID ] [ master DEVICE ]\n"
" [ type TYPE ] [ to PREFIX ] [ FLAG-LIST ]\n"
" [ label LABEL ] [up] [ vrf NAME ] ]\n"
" ip address {showdump|restore}\n"
"IFADDR := PREFIX | ADDR peer PREFIX\n"
" [ broadcast ADDR ] [ anycast ADDR ]\n"
" [ label IFNAME ] [ scope SCOPE-ID ] [ metric METRIC ]\n"
"SCOPE-ID := [ host | link | global | NUMBER ]\n"
"FLAG-LIST := [ FLAG-LIST ] FLAG\n"
"FLAG := [ permanent | dynamic | secondary | primary |\n"
" [-]tentative | [-]deprecated | [-]dadfailed | temporary |\n"
" CONFFLAG-LIST ]\n"
"CONFFLAG-LIST := [ CONFFLAG-LIST ] CONFFLAG\n"
"CONFFLAG := [ home | nodad | mngtmpaddr | noprefixroute | autojoin ]\n"
"LIFETIME := [ valid_lft LFT ] [ preferred_lft LFT ]\n"
"LFT := forever | SECONDS\n");
iplink_types_usage();
exit(-1);
}
static void print_link_flags(FILE *fp, unsigned int flags, unsigned int mdown)
{
open_json_array(PRINT_ANY, is_json_context() ? "flags" : "<");
if (flags & IFF_UP && !(flags & IFF_RUNNING))
print_string(PRINT_ANY, NULL,
flags ? "%s," : "%s", "NO-CARRIER");
flags &= ~IFF_RUNNING;
#define _PF(f) if (flags&IFF_##f) { \
flags &= ~IFF_##f ; \
print_string(PRINT_ANY, NULL, flags ? "%s," : "%s", #f); }
_PF(LOOPBACK);
_PF(BROADCAST);
_PF(POINTOPOINT);
_PF(MULTICAST);
_PF(NOARP);
_PF(ALLMULTI);
_PF(PROMISC);
_PF(MASTER);
_PF(SLAVE);
_PF(DEBUG);
_PF(DYNAMIC);
_PF(AUTOMEDIA);
_PF(PORTSEL);
_PF(NOTRAILERS);
_PF(UP);
_PF(LOWER_UP);
_PF(DORMANT);
_PF(ECHO);
#undef _PF
if (flags)
print_hex(PRINT_ANY, NULL, "%x", flags);
if (mdown)
print_string(PRINT_ANY, NULL, ",%s", "M-DOWN");
close_json_array(PRINT_ANY, "> ");
}
static const char *oper_states[] = {
"UNKNOWN", "NOTPRESENT", "DOWN", "LOWERLAYERDOWN",
"TESTING", "DORMANT", "UP"
};
static void print_operstate(FILE *f, __u8 state)
{
if (state >= ARRAY_SIZE(oper_states)) {
if (is_json_context())
print_uint(PRINT_JSON, "operstate_index", NULL, state);
else
print_0xhex(PRINT_FP, NULL, "state %#llx", state);
} else if (brief) {
print_color_string(PRINT_ANY,
oper_state_color(state),
"operstate",
"%-14s ",
oper_states[state]);
} else {
if (is_json_context())
print_string(PRINT_JSON,
"operstate",
NULL, oper_states[state]);
else {
fprintf(f, "state ");
color_fprintf(f, oper_state_color(state),
"%s ", oper_states[state]);
}
}
}
int get_operstate(const char *name)
{
int i;
for (i = 0; i < ARRAY_SIZE(oper_states); i++)
if (strcasecmp(name, oper_states[i]) == 0)
return i;
return -1;
}
static void print_queuelen(FILE *f, struct rtattr *tb[IFLA_MAX + 1])
{
int qlen;
if (tb[IFLA_TXQLEN])
qlen = rta_getattr_u32(tb[IFLA_TXQLEN]);
else {
struct ifreq ifr = {};
int s = socket(AF_INET, SOCK_STREAM, 0);
if (s < 0)
return;
strcpy(ifr.ifr_name, rta_getattr_str(tb[IFLA_IFNAME]));
if (ioctl(s, SIOCGIFTXQLEN, &ifr) < 0) {
fprintf(stderr,
"ioctl(SIOCGIFTXQLEN) failed: %s\n",
strerror(errno));
close(s);
return;
}
close(s);
qlen = ifr.ifr_qlen;
}
if (qlen)
print_int(PRINT_ANY, "txqlen", "qlen %d", qlen);
}
static const char *link_modes[] = {
"DEFAULT", "DORMANT"
};
static void print_linkmode(FILE *f, struct rtattr *tb)
{
unsigned int mode = rta_getattr_u8(tb);
if (mode >= ARRAY_SIZE(link_modes))
print_int(PRINT_ANY,
"linkmode_index",
"mode %d ",
mode);
else
print_string(PRINT_ANY,
"linkmode",
"mode %s "
, link_modes[mode]);
}
static char *parse_link_kind(struct rtattr *tb, bool slave)
{
struct rtattr *linkinfo[IFLA_INFO_MAX+1];
int attr = slave ? IFLA_INFO_SLAVE_KIND : IFLA_INFO_KIND;
parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb);
if (linkinfo[attr])
return RTA_DATA(linkinfo[attr]);
return "";
}
static int match_link_kind(struct rtattr **tb, const char *kind, bool slave)
{
if (!tb[IFLA_LINKINFO])
return -1;
return strcmp(parse_link_kind(tb[IFLA_LINKINFO], slave), kind);
}
static void print_linktype(FILE *fp, struct rtattr *tb)
{
struct rtattr *linkinfo[IFLA_INFO_MAX+1];
struct link_util *lu;
struct link_util *slave_lu;
char slave[32];
parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb);
open_json_object("linkinfo");
if (linkinfo[IFLA_INFO_KIND]) {
const char *kind
= rta_getattr_str(linkinfo[IFLA_INFO_KIND]);
print_nl();
print_string(PRINT_ANY, "info_kind", " %s ", kind);
lu = get_link_kind(kind);
if (lu && lu->print_opt) {
struct rtattr *attr[lu->maxattr+1], **data = NULL;
if (linkinfo[IFLA_INFO_DATA]) {
parse_rtattr_nested(attr, lu->maxattr,
linkinfo[IFLA_INFO_DATA]);
data = attr;
}
open_json_object("info_data");
lu->print_opt(lu, fp, data);
close_json_object();
if (linkinfo[IFLA_INFO_XSTATS] && show_stats &&
lu->print_xstats) {
open_json_object("info_xstats");
lu->print_xstats(lu, fp, linkinfo[IFLA_INFO_XSTATS]);
close_json_object();
}
}
}
if (linkinfo[IFLA_INFO_SLAVE_KIND]) {
const char *slave_kind
= rta_getattr_str(linkinfo[IFLA_INFO_SLAVE_KIND]);
print_nl();
print_string(PRINT_ANY,
"info_slave_kind",
" %s_slave ",
slave_kind);
snprintf(slave, sizeof(slave), "%s_slave", slave_kind);
slave_lu = get_link_kind(slave);
if (slave_lu && slave_lu->print_opt) {
struct rtattr *attr[slave_lu->maxattr+1], **data = NULL;
if (linkinfo[IFLA_INFO_SLAVE_DATA]) {
parse_rtattr_nested(attr, slave_lu->maxattr,
linkinfo[IFLA_INFO_SLAVE_DATA]);
data = attr;
}
open_json_object("info_slave_data");
slave_lu->print_opt(slave_lu, fp, data);
close_json_object();
}
}
close_json_object();
}
static void print_af_spec(FILE *fp, struct rtattr *af_spec_attr)
{
struct rtattr *inet6_attr;
struct rtattr *tb[IFLA_INET6_MAX + 1];
inet6_attr = parse_rtattr_one_nested(AF_INET6, af_spec_attr);
if (!inet6_attr)
return;
parse_rtattr_nested(tb, IFLA_INET6_MAX, inet6_attr);
if (tb[IFLA_INET6_ADDR_GEN_MODE]) {
__u8 mode = rta_getattr_u8(tb[IFLA_INET6_ADDR_GEN_MODE]);
SPRINT_BUF(b1);
switch (mode) {
case IN6_ADDR_GEN_MODE_EUI64:
print_string(PRINT_ANY,
"inet6_addr_gen_mode",
"addrgenmode %s ",
"eui64");
break;
case IN6_ADDR_GEN_MODE_NONE:
print_string(PRINT_ANY,
"inet6_addr_gen_mode",
"addrgenmode %s ",
"none");
break;
case IN6_ADDR_GEN_MODE_STABLE_PRIVACY:
print_string(PRINT_ANY,
"inet6_addr_gen_mode",
"addrgenmode %s ",
"stable_secret");
break;
case IN6_ADDR_GEN_MODE_RANDOM:
print_string(PRINT_ANY,
"inet6_addr_gen_mode",
"addrgenmode %s ",
"random");
break;
default:
snprintf(b1, sizeof(b1), "%#.2hhx", mode);
print_string(PRINT_ANY,
"inet6_addr_gen_mode",
"addrgenmode %s ",
b1);
break;
}
}
}
static void print_vf_stats64(FILE *fp, struct rtattr *vfstats);
static void print_vfinfo(FILE *fp, struct ifinfomsg *ifi, struct rtattr *vfinfo)
{
struct ifla_vf_mac *vf_mac;
struct ifla_vf_broadcast *vf_broadcast;
struct ifla_vf_tx_rate *vf_tx_rate;
struct rtattr *vf[IFLA_VF_MAX + 1] = {};
SPRINT_BUF(b1);
if (vfinfo->rta_type != IFLA_VF_INFO) {
fprintf(stderr, "BUG: rta type is %d\n", vfinfo->rta_type);
return;
}
parse_rtattr_nested(vf, IFLA_VF_MAX, vfinfo);
vf_mac = RTA_DATA(vf[IFLA_VF_MAC]);
vf_broadcast = RTA_DATA(vf[IFLA_VF_BROADCAST]);
vf_tx_rate = RTA_DATA(vf[IFLA_VF_TX_RATE]);
print_string(PRINT_FP, NULL, "%s ", _SL_);
print_int(PRINT_ANY, "vf", "vf %d ", vf_mac->vf);
print_string(PRINT_ANY,
"link_type",
" link/%s ",
ll_type_n2a(ifi->ifi_type, b1, sizeof(b1)));
print_color_string(PRINT_ANY, COLOR_MAC,
"address", "%s",
ll_addr_n2a((unsigned char *) &vf_mac->mac,
ifi->ifi_type == ARPHRD_ETHER ?
ETH_ALEN : INFINIBAND_ALEN,
ifi->ifi_type,
b1, sizeof(b1)));
if (vf[IFLA_VF_BROADCAST]) {
if (ifi->ifi_flags&IFF_POINTOPOINT) {
print_string(PRINT_FP, NULL, " peer ", NULL);
print_bool(PRINT_JSON,
"link_pointtopoint", NULL, true);
} else
print_string(PRINT_FP, NULL, " brd ", NULL);
print_color_string(PRINT_ANY, COLOR_MAC,
"broadcast", "%s",
ll_addr_n2a((unsigned char *) &vf_broadcast->broadcast,
ifi->ifi_type == ARPHRD_ETHER ?
ETH_ALEN : INFINIBAND_ALEN,
ifi->ifi_type,
b1, sizeof(b1)));
}
if (vf[IFLA_VF_VLAN_LIST]) {
struct rtattr *i, *vfvlanlist = vf[IFLA_VF_VLAN_LIST];
int rem = RTA_PAYLOAD(vfvlanlist);
open_json_array(PRINT_JSON, "vlan_list");
for (i = RTA_DATA(vfvlanlist);
RTA_OK(i, rem); i = RTA_NEXT(i, rem)) {
struct ifla_vf_vlan_info *vf_vlan_info = RTA_DATA(i);
SPRINT_BUF(b2);
open_json_object(NULL);
if (vf_vlan_info->vlan)
print_int(PRINT_ANY,
"vlan",
", vlan %d",
vf_vlan_info->vlan);
if (vf_vlan_info->qos)
print_int(PRINT_ANY,
"qos",
", qos %d",
vf_vlan_info->qos);
if (vf_vlan_info->vlan_proto &&
vf_vlan_info->vlan_proto != htons(ETH_P_8021Q))
print_string(PRINT_ANY,
"protocol",
", vlan protocol %s",
ll_proto_n2a(
vf_vlan_info->vlan_proto,
b2, sizeof(b2)));
close_json_object();
}
close_json_array(PRINT_JSON, NULL);
} else {
struct ifla_vf_vlan *vf_vlan = RTA_DATA(vf[IFLA_VF_VLAN]);
if (vf_vlan->vlan)
print_int(PRINT_ANY,
"vlan",
", vlan %d",
vf_vlan->vlan);
if (vf_vlan->qos)
print_int(PRINT_ANY, "qos", ", qos %d", vf_vlan->qos);
}
if (vf_tx_rate->rate)
print_uint(PRINT_ANY,
"tx_rate",
", tx rate %u (Mbps)",
vf_tx_rate->rate);
if (vf[IFLA_VF_RATE]) {
struct ifla_vf_rate *vf_rate = RTA_DATA(vf[IFLA_VF_RATE]);
int max_tx = vf_rate->max_tx_rate;
int min_tx = vf_rate->min_tx_rate;
if (is_json_context()) {
open_json_object("rate");
print_uint(PRINT_JSON, "max_tx", NULL, max_tx);
print_uint(PRINT_ANY, "min_tx", NULL, min_tx);
close_json_object();
} else {
if (max_tx)
fprintf(fp, ", max_tx_rate %uMbps", max_tx);
if (min_tx)
fprintf(fp, ", min_tx_rate %uMbps", min_tx);
}
}
if (vf[IFLA_VF_SPOOFCHK]) {
struct ifla_vf_spoofchk *vf_spoofchk =
RTA_DATA(vf[IFLA_VF_SPOOFCHK]);
if (vf_spoofchk->setting != -1)
print_bool(PRINT_ANY,
"spoofchk",
vf_spoofchk->setting ?
", spoof checking on" : ", spoof checking off",
vf_spoofchk->setting);
}
if (vf[IFLA_VF_IB_NODE_GUID]) {
struct ifla_vf_guid *guid = RTA_DATA(vf[IFLA_VF_IB_NODE_GUID]);
uint64_t node_guid = ntohll(guid->guid);
print_string(PRINT_ANY, "node guid", ", NODE_GUID %s",
ll_addr_n2a((const unsigned char *)&node_guid,
sizeof(node_guid), ARPHRD_INFINIBAND,
b1, sizeof(b1)));
}
if (vf[IFLA_VF_IB_PORT_GUID]) {
struct ifla_vf_guid *guid = RTA_DATA(vf[IFLA_VF_IB_PORT_GUID]);
uint64_t port_guid = ntohll(guid->guid);
print_string(PRINT_ANY, "port guid", ", PORT_GUID %s",
ll_addr_n2a((const unsigned char *)&port_guid,
sizeof(port_guid), ARPHRD_INFINIBAND,
b1, sizeof(b1)));
}
if (vf[IFLA_VF_LINK_STATE]) {
struct ifla_vf_link_state *vf_linkstate =
RTA_DATA(vf[IFLA_VF_LINK_STATE]);
if (vf_linkstate->link_state == IFLA_VF_LINK_STATE_AUTO)
print_string(PRINT_ANY,
"link_state",
", link-state %s",
"auto");
else if (vf_linkstate->link_state == IFLA_VF_LINK_STATE_ENABLE)
print_string(PRINT_ANY,
"link_state",
", link-state %s",
"enable");
else
print_string(PRINT_ANY,
"link_state",
", link-state %s",
"disable");
}
if (vf[IFLA_VF_TRUST]) {
struct ifla_vf_trust *vf_trust = RTA_DATA(vf[IFLA_VF_TRUST]);
if (vf_trust->setting != -1)
print_bool(PRINT_ANY,
"trust",
vf_trust->setting ? ", trust on" : ", trust off",
vf_trust->setting);
}
if (vf[IFLA_VF_RSS_QUERY_EN]) {
struct ifla_vf_rss_query_en *rss_query =
RTA_DATA(vf[IFLA_VF_RSS_QUERY_EN]);
if (rss_query->setting != -1)
print_bool(PRINT_ANY,
"query_rss_en",
rss_query->setting ? ", query_rss on"
: ", query_rss off",
rss_query->setting);
}
if (vf[IFLA_VF_STATS] && show_stats)
print_vf_stats64(fp, vf[IFLA_VF_STATS]);
}
void print_num(FILE *fp, unsigned int width, uint64_t count)
{
const char *prefix = "kMGTPE";
const unsigned int base = use_iec ? 1024 : 1000;
uint64_t powi = 1;
uint16_t powj = 1;
uint8_t precision = 2;
char buf[64];
if (!human_readable || count < base) {
fprintf(fp, "%-*"PRIu64" ", width, count);
return;
}
/* increase value by a factor of 1000/1024 and print
* if result is something a human can read
*/
for (;;) {
powi *= base;
if (count / base < powi)
break;
if (!prefix[1])
break;
++prefix;
}
/* try to guess a good number of digits for precision */
for (; precision > 0; precision--) {
powj *= 10;
if (count / powi < powj)
break;
}
snprintf(buf, sizeof(buf), "%.*f%c%s", precision,
(double) count / powi, *prefix, use_iec ? "i" : "");
fprintf(fp, "%-*s ", width, buf);
}
static void print_vf_stats64(FILE *fp, struct rtattr *vfstats)
{
struct rtattr *vf[IFLA_VF_STATS_MAX + 1];
if (vfstats->rta_type != IFLA_VF_STATS) {
fprintf(stderr, "BUG: rta type is %d\n", vfstats->rta_type);
return;
}
parse_rtattr_nested(vf, IFLA_VF_STATS_MAX, vfstats);
if (is_json_context()) {
open_json_object("stats");
/* RX stats */
open_json_object("rx");
print_u64(PRINT_JSON, "bytes", NULL,
rta_getattr_u64(vf[IFLA_VF_STATS_RX_BYTES]));
print_u64(PRINT_JSON, "packets", NULL,
rta_getattr_u64(vf[IFLA_VF_STATS_RX_PACKETS]));
print_u64(PRINT_JSON, "multicast", NULL,
rta_getattr_u64(vf[IFLA_VF_STATS_MULTICAST]));
print_u64(PRINT_JSON, "broadcast", NULL,
rta_getattr_u64(vf[IFLA_VF_STATS_BROADCAST]));
if (vf[IFLA_VF_STATS_RX_DROPPED])
print_u64(PRINT_JSON, "dropped", NULL,
rta_getattr_u64(vf[IFLA_VF_STATS_RX_DROPPED]));
close_json_object();
/* TX stats */
open_json_object("tx");
print_u64(PRINT_JSON, "tx_bytes", NULL,
rta_getattr_u64(vf[IFLA_VF_STATS_TX_BYTES]));
print_u64(PRINT_JSON, "tx_packets", NULL,
rta_getattr_u64(vf[IFLA_VF_STATS_TX_PACKETS]));
if (vf[IFLA_VF_STATS_TX_DROPPED])
print_u64(PRINT_JSON, "dropped", NULL,
rta_getattr_u64(vf[IFLA_VF_STATS_TX_DROPPED]));
close_json_object();
close_json_object();
} else {
/* RX stats */
fprintf(fp, "%s", _SL_);
fprintf(fp, " RX: bytes packets mcast bcast ");
if (vf[IFLA_VF_STATS_RX_DROPPED])
fprintf(fp, " dropped ");
fprintf(fp, "%s", _SL_);
fprintf(fp, " ");
print_num(fp, 10, rta_getattr_u64(vf[IFLA_VF_STATS_RX_BYTES]));
print_num(fp, 8, rta_getattr_u64(vf[IFLA_VF_STATS_RX_PACKETS]));
print_num(fp, 7, rta_getattr_u64(vf[IFLA_VF_STATS_MULTICAST]));
print_num(fp, 7, rta_getattr_u64(vf[IFLA_VF_STATS_BROADCAST]));
if (vf[IFLA_VF_STATS_RX_DROPPED])
print_num(fp, 8, rta_getattr_u64(vf[IFLA_VF_STATS_RX_DROPPED]));
/* TX stats */
fprintf(fp, "%s", _SL_);
fprintf(fp, " TX: bytes packets ");
if (vf[IFLA_VF_STATS_TX_DROPPED])
fprintf(fp, " dropped ");
fprintf(fp, "%s", _SL_);
fprintf(fp, " ");
print_num(fp, 10, rta_getattr_u64(vf[IFLA_VF_STATS_TX_BYTES]));
print_num(fp, 8, rta_getattr_u64(vf[IFLA_VF_STATS_TX_PACKETS]));
if (vf[IFLA_VF_STATS_TX_DROPPED])
print_num(fp, 8, rta_getattr_u64(vf[IFLA_VF_STATS_TX_DROPPED]));
}
}
static void __print_link_stats(FILE *fp, struct rtattr *tb[])
{
const struct rtattr *carrier_changes = tb[IFLA_CARRIER_CHANGES];
struct rtnl_link_stats64 _s, *s = &_s;
int ret;
ret = get_rtnl_link_stats_rta(s, tb);
if (ret < 0)
return;
if (is_json_context()) {
open_json_object((ret == sizeof(*s)) ? "stats64" : "stats");
/* RX stats */
open_json_object("rx");
print_u64(PRINT_JSON, "bytes", NULL, s->rx_bytes);
print_u64(PRINT_JSON, "packets", NULL, s->rx_packets);
print_u64(PRINT_JSON, "errors", NULL, s->rx_errors);
print_u64(PRINT_JSON, "dropped", NULL, s->rx_dropped);
print_u64(PRINT_JSON, "over_errors", NULL, s->rx_over_errors);
print_u64(PRINT_JSON, "multicast", NULL, s->multicast);
if (s->rx_compressed)
print_u64(PRINT_JSON,
"compressed", NULL, s->rx_compressed);
/* RX error stats */
if (show_stats > 1) {
print_u64(PRINT_JSON,
"length_errors",
NULL, s->rx_length_errors);
print_u64(PRINT_JSON,
"crc_errors",
NULL, s->rx_crc_errors);
print_u64(PRINT_JSON,
"frame_errors",
NULL, s->rx_frame_errors);
print_u64(PRINT_JSON,
"fifo_errors",
NULL, s->rx_fifo_errors);
print_u64(PRINT_JSON,
"missed_errors",
NULL, s->rx_missed_errors);
if (s->rx_nohandler)
print_u64(PRINT_JSON,
"nohandler", NULL, s->rx_nohandler);
}
close_json_object();
/* TX stats */
open_json_object("tx");
print_u64(PRINT_JSON, "bytes", NULL, s->tx_bytes);
print_u64(PRINT_JSON, "packets", NULL, s->tx_packets);
print_u64(PRINT_JSON, "errors", NULL, s->tx_errors);
print_u64(PRINT_JSON, "dropped", NULL, s->tx_dropped);
print_u64(PRINT_JSON,
"carrier_errors",
NULL, s->tx_carrier_errors);
print_u64(PRINT_JSON, "collisions", NULL, s->collisions);
if (s->tx_compressed)
print_u64(PRINT_JSON,
"compressed", NULL, s->tx_compressed);
/* TX error stats */
if (show_stats > 1) {
print_u64(PRINT_JSON,
"aborted_errors",
NULL, s->tx_aborted_errors);
print_u64(PRINT_JSON,
"fifo_errors",
NULL, s->tx_fifo_errors);
print_u64(PRINT_JSON,
"window_errors",
NULL, s->tx_window_errors);
print_u64(PRINT_JSON,
"heartbeat_errors",
NULL, s->tx_heartbeat_errors);
if (carrier_changes)
print_u64(PRINT_JSON, "carrier_changes", NULL,
rta_getattr_u32(carrier_changes));
}
close_json_object();
close_json_object();
} else {
/* RX stats */
fprintf(fp, " RX: bytes packets errors dropped missed mcast %s%s",
s->rx_compressed ? "compressed" : "", _SL_);
fprintf(fp, " ");
print_num(fp, 10, s->rx_bytes);
print_num(fp, 8, s->rx_packets);
print_num(fp, 7, s->rx_errors);
print_num(fp, 7, s->rx_dropped);
print_num(fp, 7, s->rx_missed_errors);
print_num(fp, 7, s->multicast);
if (s->rx_compressed)
print_num(fp, 7, s->rx_compressed);
/* RX error stats */
if (show_stats > 1) {
fprintf(fp, "%s", _SL_);
fprintf(fp, " RX errors: length crc frame fifo overrun%s%s",
s->rx_nohandler ? " nohandler" : "", _SL_);
fprintf(fp, " ");
print_num(fp, 8, s->rx_length_errors);
print_num(fp, 7, s->rx_crc_errors);
print_num(fp, 7, s->rx_frame_errors);
print_num(fp, 7, s->rx_fifo_errors);
print_num(fp, 7, s->rx_over_errors);
if (s->rx_nohandler)
print_num(fp, 7, s->rx_nohandler);
}
fprintf(fp, "%s", _SL_);
/* TX stats */
fprintf(fp, " TX: bytes packets errors dropped carrier collsns %s%s",
s->tx_compressed ? "compressed" : "", _SL_);
fprintf(fp, " ");
print_num(fp, 10, s->tx_bytes);
print_num(fp, 8, s->tx_packets);
print_num(fp, 7, s->tx_errors);
print_num(fp, 7, s->tx_dropped);
print_num(fp, 7, s->tx_carrier_errors);
print_num(fp, 7, s->collisions);
if (s->tx_compressed)
print_num(fp, 7, s->tx_compressed);
/* TX error stats */
if (show_stats > 1) {
fprintf(fp, "%s", _SL_);
fprintf(fp, " TX errors: aborted fifo window heartbeat");
if (carrier_changes)
fprintf(fp, " transns");
fprintf(fp, "%s", _SL_);
fprintf(fp, " ");
print_num(fp, 8, s->tx_aborted_errors);
print_num(fp, 7, s->tx_fifo_errors);
print_num(fp, 7, s->tx_window_errors);
print_num(fp, 7, s->tx_heartbeat_errors);
if (carrier_changes)
print_num(fp, 7,
rta_getattr_u32(carrier_changes));
}
}
}
static void print_link_stats(FILE *fp, struct nlmsghdr *n)
{
struct ifinfomsg *ifi = NLMSG_DATA(n);
struct rtattr *tb[IFLA_MAX+1];
parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi),
n->nlmsg_len - NLMSG_LENGTH(sizeof(*ifi)));
__print_link_stats(fp, tb);
print_nl();
}
static int print_linkinfo_brief(FILE *fp, const char *name,
const struct ifinfomsg *ifi,
struct rtattr *tb[])
{
unsigned int m_flag = 0;
m_flag = print_name_and_link("%-16s ", name, tb);
if (tb[IFLA_OPERSTATE])
print_operstate(fp, rta_getattr_u8(tb[IFLA_OPERSTATE]));
if (filter.family == AF_PACKET) {
SPRINT_BUF(b1);
if (tb[IFLA_ADDRESS]) {
print_color_string(PRINT_ANY, COLOR_MAC,
"address", "%s ",
ll_addr_n2a(
RTA_DATA(tb[IFLA_ADDRESS]),
RTA_PAYLOAD(tb[IFLA_ADDRESS]),
ifi->ifi_type,
b1, sizeof(b1)));
}
}
if (filter.family == AF_PACKET) {
print_link_flags(fp, ifi->ifi_flags, m_flag);
print_string(PRINT_FP, NULL, "%s", "\n");
}
fflush(fp);
return 0;
}
static const char *link_events[] = {
[IFLA_EVENT_NONE] = "NONE",
[IFLA_EVENT_REBOOT] = "REBOOT",
[IFLA_EVENT_FEATURES] = "FEATURE CHANGE",
[IFLA_EVENT_BONDING_FAILOVER] = "BONDING FAILOVER",
[IFLA_EVENT_NOTIFY_PEERS] = "NOTIFY PEERS",
[IFLA_EVENT_IGMP_RESEND] = "RESEND IGMP",
[IFLA_EVENT_BONDING_OPTIONS] = "BONDING OPTION"
};
static void print_link_event(FILE *f, __u32 event)
{
if (event >= ARRAY_SIZE(link_events))
print_int(PRINT_ANY, "event", "event %d ", event);
else {
if (event)
print_string(PRINT_ANY,
"event", "event %s ",
link_events[event]);
}
}
static void print_proto_down(FILE *f, struct rtattr *tb[])
{
struct rtattr *preason[IFLA_PROTO_DOWN_REASON_MAX+1];
if (tb[IFLA_PROTO_DOWN]) {
if (rta_getattr_u8(tb[IFLA_PROTO_DOWN]))
print_bool(PRINT_ANY,
"proto_down", " protodown on ", true);
}
if (tb[IFLA_PROTO_DOWN_REASON]) {
char buf[255];
__u32 reason;
int i, start = 1;
parse_rtattr_nested(preason, IFLA_PROTO_DOWN_REASON_MAX,
tb[IFLA_PROTO_DOWN_REASON]);
if (!tb[IFLA_PROTO_DOWN_REASON_VALUE])
return;
reason = rta_getattr_u8(preason[IFLA_PROTO_DOWN_REASON_VALUE]);
if (!reason)
return;
open_json_array(PRINT_ANY,
is_json_context() ? "proto_down_reason" : "protodown_reason <");
for (i = 0; reason; i++, reason >>= 1) {
if (reason & 0x1) {
if (protodown_reason_n2a(i, buf, sizeof(buf)))
break;
print_string(PRINT_ANY, NULL,
start ? "%s" : ",%s", buf);
start = 0;
}
}
close_json_array(PRINT_ANY, ">");
}
}
int print_linkinfo(struct nlmsghdr *n, void *arg)
{
FILE *fp = (FILE *)arg;
struct ifinfomsg *ifi = NLMSG_DATA(n);
struct rtattr *tb[IFLA_MAX+1];
int len = n->nlmsg_len;
const char *name;
unsigned int m_flag = 0;
SPRINT_BUF(b1);
bool truncated_vfs = false;
if (n->nlmsg_type != RTM_NEWLINK && n->nlmsg_type != RTM_DELLINK)
return 0;
len -= NLMSG_LENGTH(sizeof(*ifi));
if (len < 0)
return -1;
if (filter.ifindex && ifi->ifi_index != filter.ifindex)
return -1;
if (filter.up && !(ifi->ifi_flags&IFF_UP))
return -1;
parse_rtattr_flags(tb, IFLA_MAX, IFLA_RTA(ifi), len, NLA_F_NESTED);
name = get_ifname_rta(ifi->ifi_index, tb[IFLA_IFNAME]);
if (!name)
return -1;
if (filter.label)
return 0;
if (tb[IFLA_GROUP]) {
int group = rta_getattr_u32(tb[IFLA_GROUP]);
if (filter.group != -1 && group != filter.group)
return -1;
}
if (tb[IFLA_MASTER]) {
int master = rta_getattr_u32(tb[IFLA_MASTER]);
if (filter.master > 0 && master != filter.master)
return -1;
} else if (filter.master > 0)
return -1;
if (filter.kind && match_link_kind(tb, filter.kind, 0))
return -1;
if (filter.slave_kind && match_link_kind(tb, filter.slave_kind, 1))
return -1;
if (n->nlmsg_type == RTM_DELLINK)
print_bool(PRINT_ANY, "deleted", "Deleted ", true);
if (brief)
return print_linkinfo_brief(fp, name, ifi, tb);
print_int(PRINT_ANY, "ifindex", "%d: ", ifi->ifi_index);
m_flag = print_name_and_link("%s: ", name, tb);
print_link_flags(fp, ifi->ifi_flags, m_flag);
if (tb[IFLA_MTU])
print_int(PRINT_ANY,
"mtu", "mtu %u ",
rta_getattr_u32(tb[IFLA_MTU]));
if (tb[IFLA_XDP])
xdp_dump(fp, tb[IFLA_XDP], do_link, false);
if (tb[IFLA_QDISC])
print_string(PRINT_ANY,
"qdisc",
"qdisc %s ",
rta_getattr_str(tb[IFLA_QDISC]));
if (tb[IFLA_MASTER]) {
int master = rta_getattr_u32(tb[IFLA_MASTER]);
print_string(PRINT_ANY,
"master", "master %s ",
ll_index_to_name(master));
}
if (tb[IFLA_OPERSTATE])
print_operstate(fp, rta_getattr_u8(tb[IFLA_OPERSTATE]));
if (do_link && tb[IFLA_LINKMODE])
print_linkmode(fp, tb[IFLA_LINKMODE]);
if (tb[IFLA_GROUP]) {
int group = rta_getattr_u32(tb[IFLA_GROUP]);
print_string(PRINT_ANY,
"group",
"group %s ",
rtnl_group_n2a(group, b1, sizeof(b1)));
}
if (filter.showqueue)
print_queuelen(fp, tb);
if (tb[IFLA_EVENT])
print_link_event(fp, rta_getattr_u32(tb[IFLA_EVENT]));
if (!filter.family || filter.family == AF_PACKET || show_details) {
print_nl();
print_string(PRINT_ANY,
"link_type",
" link/%s ",
ll_type_n2a(ifi->ifi_type, b1, sizeof(b1)));
if (tb[IFLA_ADDRESS]) {
print_color_string(PRINT_ANY,
COLOR_MAC,
"address",
"%s",
ll_addr_n2a(RTA_DATA(tb[IFLA_ADDRESS]),
RTA_PAYLOAD(tb[IFLA_ADDRESS]),
ifi->ifi_type,
b1, sizeof(b1)));
}
if (tb[IFLA_BROADCAST]) {
if (ifi->ifi_flags&IFF_POINTOPOINT) {
print_string(PRINT_FP, NULL, " peer ", NULL);
print_bool(PRINT_JSON,
"link_pointtopoint", NULL, true);
} else {
print_string(PRINT_FP, NULL, " brd ", NULL);
}
print_color_string(PRINT_ANY,
COLOR_MAC,
"broadcast",
"%s",
ll_addr_n2a(RTA_DATA(tb[IFLA_BROADCAST]),
RTA_PAYLOAD(tb[IFLA_BROADCAST]),
ifi->ifi_type,
b1, sizeof(b1)));
}
if (tb[IFLA_PERM_ADDRESS]) {
unsigned int len = RTA_PAYLOAD(tb[IFLA_PERM_ADDRESS]);
if (!tb[IFLA_ADDRESS] ||
RTA_PAYLOAD(tb[IFLA_ADDRESS]) != len ||
memcmp(RTA_DATA(tb[IFLA_PERM_ADDRESS]),
RTA_DATA(tb[IFLA_ADDRESS]), len)) {
print_string(PRINT_FP, NULL, " permaddr ", NULL);
print_color_string(PRINT_ANY,
COLOR_MAC,
"permaddr",
"%s",
ll_addr_n2a(RTA_DATA(tb[IFLA_PERM_ADDRESS]),
RTA_PAYLOAD(tb[IFLA_PERM_ADDRESS]),
ifi->ifi_type,
b1, sizeof(b1)));
}
}
}
if (tb[IFLA_LINK_NETNSID]) {
int id = rta_getattr_u32(tb[IFLA_LINK_NETNSID]);
if (is_json_context()) {
print_int(PRINT_JSON, "link_netnsid", NULL, id);
} else {
if (id >= 0) {
char *name = get_name_from_nsid(id);
if (name)
print_string(PRINT_FP, NULL,
" link-netns %s", name);
else
print_int(PRINT_FP, NULL,
" link-netnsid %d", id);
} else
print_string(PRINT_FP, NULL,
" link-netnsid %s", "unknown");
}
}
if (tb[IFLA_NEW_NETNSID]) {
int id = rta_getattr_u32(tb[IFLA_NEW_NETNSID]);
char *name = get_name_from_nsid(id);
if (name)
print_string(PRINT_FP, NULL, " new-netns %s", name);
else
print_int(PRINT_FP, NULL, " new-netnsid %d", id);
}
if (tb[IFLA_NEW_IFINDEX]) {
int id = rta_getattr_u32(tb[IFLA_NEW_IFINDEX]);
print_int(PRINT_FP, NULL, " new-ifindex %d", id);
}
if (tb[IFLA_PROTO_DOWN])
print_proto_down(fp, tb);
if (show_details) {
if (tb[IFLA_PROMISCUITY])
print_uint(PRINT_ANY,
"promiscuity",
" promiscuity %u ",
rta_getattr_u32(tb[IFLA_PROMISCUITY]));
if (tb[IFLA_MIN_MTU])
print_uint(PRINT_ANY,
"min_mtu", "minmtu %u ",
rta_getattr_u32(tb[IFLA_MIN_MTU]));
if (tb[IFLA_MAX_MTU])
print_uint(PRINT_ANY,
"max_mtu", "maxmtu %u ",
rta_getattr_u32(tb[IFLA_MAX_MTU]));
if (tb[IFLA_LINKINFO])
print_linktype(fp, tb[IFLA_LINKINFO]);
if (do_link && tb[IFLA_AF_SPEC])
print_af_spec(fp, tb[IFLA_AF_SPEC]);
if (tb[IFLA_NUM_TX_QUEUES])
print_uint(PRINT_ANY,
"num_tx_queues",
"numtxqueues %u ",
rta_getattr_u32(tb[IFLA_NUM_TX_QUEUES]));
if (tb[IFLA_NUM_RX_QUEUES])
print_uint(PRINT_ANY,
"num_rx_queues",
"numrxqueues %u ",
rta_getattr_u32(tb[IFLA_NUM_RX_QUEUES]));
if (tb[IFLA_GSO_MAX_SIZE])
print_uint(PRINT_ANY,
"gso_max_size",
"gso_max_size %u ",
rta_getattr_u32(tb[IFLA_GSO_MAX_SIZE]));
if (tb[IFLA_GSO_MAX_SEGS])
print_uint(PRINT_ANY,
"gso_max_segs",
"gso_max_segs %u ",
rta_getattr_u32(tb[IFLA_GSO_MAX_SEGS]));
if (tb[IFLA_PHYS_PORT_NAME])
print_string(PRINT_ANY,
"phys_port_name",
"portname %s ",
rta_getattr_str(tb[IFLA_PHYS_PORT_NAME]));
if (tb[IFLA_PHYS_PORT_ID]) {
print_string(PRINT_ANY,
"phys_port_id",
"portid %s ",
hexstring_n2a(
RTA_DATA(tb[IFLA_PHYS_PORT_ID]),
RTA_PAYLOAD(tb[IFLA_PHYS_PORT_ID]),
b1, sizeof(b1)));
}
if (tb[IFLA_PHYS_SWITCH_ID]) {
print_string(PRINT_ANY,
"phys_switch_id",
"switchid %s ",
hexstring_n2a(RTA_DATA(tb[IFLA_PHYS_SWITCH_ID]),
RTA_PAYLOAD(tb[IFLA_PHYS_SWITCH_ID]),
b1, sizeof(b1)));
}
}
if ((do_link || show_details) && tb[IFLA_IFALIAS]) {
print_string(PRINT_FP, NULL, "%s ", _SL_);
print_string(PRINT_ANY,
"ifalias",
"alias %s",
rta_getattr_str(tb[IFLA_IFALIAS]));
}
if ((do_link || show_details) && tb[IFLA_XDP])
xdp_dump(fp, tb[IFLA_XDP], true, true);
if (do_link && show_stats) {
print_nl();
__print_link_stats(fp, tb);
}
if ((do_link || show_details) && tb[IFLA_VFINFO_LIST] && tb[IFLA_NUM_VF]) {
struct rtattr *i, *vflist = tb[IFLA_VFINFO_LIST];
int rem = RTA_PAYLOAD(vflist), count = 0;
open_json_array(PRINT_JSON, "vfinfo_list");
for (i = RTA_DATA(vflist); RTA_OK(i, rem); i = RTA_NEXT(i, rem)) {
open_json_object(NULL);
print_vfinfo(fp, ifi, i);
close_json_object();
count++;
}
close_json_array(PRINT_JSON, NULL);
if (count != rta_getattr_u32(tb[IFLA_NUM_VF]))
truncated_vfs = true;
}
if (tb[IFLA_PROP_LIST]) {
struct rtattr *i, *proplist = tb[IFLA_PROP_LIST];
int rem = RTA_PAYLOAD(proplist);
open_json_array(PRINT_JSON, "altnames");
for (i = RTA_DATA(proplist); RTA_OK(i, rem);
i = RTA_NEXT(i, rem)) {
if (i->rta_type != IFLA_ALT_IFNAME)
continue;
print_string(PRINT_FP, NULL, "%s altname ", _SL_);
print_string(PRINT_ANY, NULL,
"%s", rta_getattr_str(i));
}
close_json_array(PRINT_JSON, NULL);
}
print_string(PRINT_FP, NULL, "%s", "\n");
fflush(fp);
/* prettier here if stderr and stdout go to the same place */
if (truncated_vfs)
fprintf(stderr, "Truncated VF list: %s\n", name);
return 1;
}
static int flush_update(void)
{
/*
* Note that the kernel may delete multiple addresses for one
* delete request (e.g. if ipv4 address promotion is disabled).
* Since a flush operation is really a series of delete requests
* its possible that we may request an address delete that has
* already been done by the kernel. Therefore, ignore EADDRNOTAVAIL
* errors returned from a flush request
*/
if ((rtnl_send_check(&rth, filter.flushb, filter.flushp) < 0) &&
(errno != EADDRNOTAVAIL)) {
perror("Failed to send flush request");
return -1;
}
filter.flushp = 0;
return 0;
}
static int set_lifetime(unsigned int *lifetime, char *argv)
{
if (strcmp(argv, "forever") == 0)
*lifetime = INFINITY_LIFE_TIME;
else if (get_u32(lifetime, argv, 0))
return -1;
return 0;
}
static unsigned int get_ifa_flags(struct ifaddrmsg *ifa,
struct rtattr *ifa_flags_attr)
{
return ifa_flags_attr ? rta_getattr_u32(ifa_flags_attr) :
ifa->ifa_flags;
}
/* Mapping from argument to address flag mask and attributes */
static const struct ifa_flag_data_t {
const char *name;
unsigned long mask;
bool readonly;
bool v6only;
} ifa_flag_data[] = {
{ .name = "secondary", .mask = IFA_F_SECONDARY, .readonly = true, .v6only = false},
{ .name = "temporary", .mask = IFA_F_SECONDARY, .readonly = true, .v6only = false},
{ .name = "nodad", .mask = IFA_F_NODAD, .readonly = false, .v6only = true},
{ .name = "optimistic", .mask = IFA_F_OPTIMISTIC, .readonly = false, .v6only = true},
{ .name = "dadfailed", .mask = IFA_F_DADFAILED, .readonly = true, .v6only = true},
{ .name = "home", .mask = IFA_F_HOMEADDRESS, .readonly = false, .v6only = true},
{ .name = "deprecated", .mask = IFA_F_DEPRECATED, .readonly = true, .v6only = true},
{ .name = "tentative", .mask = IFA_F_TENTATIVE, .readonly = true, .v6only = true},
{ .name = "permanent", .mask = IFA_F_PERMANENT, .readonly = true, .v6only = true},
{ .name = "mngtmpaddr", .mask = IFA_F_MANAGETEMPADDR, .readonly = false, .v6only = true},
{ .name = "noprefixroute", .mask = IFA_F_NOPREFIXROUTE, .readonly = false, .v6only = false},
{ .name = "autojoin", .mask = IFA_F_MCAUTOJOIN, .readonly = false, .v6only = false},
{ .name = "stable-privacy", .mask = IFA_F_STABLE_PRIVACY, .readonly = true, .v6only = true},
};
/* Returns a pointer to the data structure for a particular interface flag, or null if no flag could be found */
static const struct ifa_flag_data_t* lookup_flag_data_by_name(const char* flag_name) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ifa_flag_data); ++i) {
if (strcmp(flag_name, ifa_flag_data[i].name) == 0)
return &ifa_flag_data[i];
}
return NULL;
}
static void print_ifa_flags(FILE *fp, const struct ifaddrmsg *ifa,
unsigned int flags)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ifa_flag_data); i++) {
const struct ifa_flag_data_t* flag_data = &ifa_flag_data[i];
if (flag_data->mask == IFA_F_PERMANENT) {
if (!(flags & flag_data->mask))
print_bool(PRINT_ANY,
"dynamic", "dynamic ", true);
} else if (flags & flag_data->mask) {
if (flag_data->mask == IFA_F_SECONDARY &&
ifa->ifa_family == AF_INET6) {
print_bool(PRINT_ANY,
"temporary", "temporary ", true);
} else {
print_string(PRINT_FP, NULL,
"%s ", flag_data->name);
print_bool(PRINT_JSON,
flag_data->name, NULL, true);
}
}
flags &= ~flag_data->mask;
}
if (flags) {
if (is_json_context()) {
SPRINT_BUF(b1);
snprintf(b1, sizeof(b1), "%02x", flags);
print_string(PRINT_JSON, "ifa_flags", NULL, b1);
} else {
fprintf(fp, "flags %02x ", flags);
}
}
}
static int get_filter(const char *arg)
{
bool inv = false;
if (arg[0] == '-') {
inv = true;
arg++;
}
/* Special cases */
if (strcmp(arg, "dynamic") == 0) {
inv = !inv;
arg = "permanent";
} else if (strcmp(arg, "primary") == 0) {
inv = !inv;
arg = "secondary";
}
const struct ifa_flag_data_t* flag_data = lookup_flag_data_by_name(arg);
if (flag_data == NULL)
return -1;
if (inv)
filter.flags &= ~flag_data->mask;
else
filter.flags |= flag_data->mask;
filter.flagmask |= flag_data->mask;
return 0;
}
static int ifa_label_match_rta(int ifindex, const struct rtattr *rta)
{
const char *label;
if (!filter.label)
return 0;
if (rta)
label = RTA_DATA(rta);
else
label = ll_index_to_name(ifindex);
return fnmatch(filter.label, label, 0);
}
int print_addrinfo(struct nlmsghdr *n, void *arg)
{
FILE *fp = arg;
struct ifaddrmsg *ifa = NLMSG_DATA(n);
int len = n->nlmsg_len;
unsigned int ifa_flags;
struct rtattr *rta_tb[IFA_MAX+1];
SPRINT_BUF(b1);
if (n->nlmsg_type != RTM_NEWADDR && n->nlmsg_type != RTM_DELADDR)
return 0;
len -= NLMSG_LENGTH(sizeof(*ifa));
if (len < 0) {
fprintf(stderr, "BUG: wrong nlmsg len %d\n", len);
return -1;
}
if (filter.flushb && n->nlmsg_type != RTM_NEWADDR)
return 0;
parse_rtattr(rta_tb, IFA_MAX, IFA_RTA(ifa),
n->nlmsg_len - NLMSG_LENGTH(sizeof(*ifa)));
ifa_flags = get_ifa_flags(ifa, rta_tb[IFA_FLAGS]);
if (!rta_tb[IFA_LOCAL])
rta_tb[IFA_LOCAL] = rta_tb[IFA_ADDRESS];
if (!rta_tb[IFA_ADDRESS])
rta_tb[IFA_ADDRESS] = rta_tb[IFA_LOCAL];
if (filter.ifindex && filter.ifindex != ifa->ifa_index)
return 0;
if ((filter.scope^ifa->ifa_scope)&filter.scopemask)
return 0;
if ((filter.flags ^ ifa_flags) & filter.flagmask)
return 0;
if (filter.family && filter.family != ifa->ifa_family)
return 0;
if (ifa_label_match_rta(ifa->ifa_index, rta_tb[IFA_LABEL]))
return 0;
if (inet_addr_match_rta(&filter.pfx, rta_tb[IFA_LOCAL]))
return 0;
if (filter.flushb) {
struct nlmsghdr *fn;
if (NLMSG_ALIGN(filter.flushp) + n->nlmsg_len > filter.flushe) {
if (flush_update())
return -1;
}
fn = (struct nlmsghdr *)(filter.flushb + NLMSG_ALIGN(filter.flushp));
memcpy(fn, n, n->nlmsg_len);
fn->nlmsg_type = RTM_DELADDR;
fn->nlmsg_flags = NLM_F_REQUEST;
fn->nlmsg_seq = ++rth.seq;
filter.flushp = (((char *)fn) + n->nlmsg_len) - filter.flushb;
filter.flushed++;
if (show_stats < 2)
return 0;
}
if (n->nlmsg_type == RTM_DELADDR)
print_bool(PRINT_ANY, "deleted", "Deleted ", true);
if (!brief) {
const char *name;
if (filter.oneline || filter.flushb) {
const char *dev = ll_index_to_name(ifa->ifa_index);
if (is_json_context()) {
print_int(PRINT_JSON,
"index", NULL, ifa->ifa_index);
print_string(PRINT_JSON, "dev", NULL, dev);
} else {
fprintf(fp, "%u: %s", ifa->ifa_index, dev);
}
}
name = family_name(ifa->ifa_family);
if (*name != '?') {
print_string(PRINT_ANY, "family", " %s ", name);
} else {
print_int(PRINT_ANY, "family_index", " family %d ",
ifa->ifa_family);
}
}
if (rta_tb[IFA_LOCAL]) {
print_color_string(PRINT_ANY,
ifa_family_color(ifa->ifa_family),
"local", "%s",
format_host_rta(ifa->ifa_family,
rta_tb[IFA_LOCAL]));
if (rta_tb[IFA_ADDRESS] &&
memcmp(RTA_DATA(rta_tb[IFA_ADDRESS]),
RTA_DATA(rta_tb[IFA_LOCAL]),
ifa->ifa_family == AF_INET ? 4 : 16)) {
print_string(PRINT_FP, NULL, " %s ", "peer");
print_color_string(PRINT_ANY,
ifa_family_color(ifa->ifa_family),
"address",
"%s",
format_host_rta(ifa->ifa_family,
rta_tb[IFA_ADDRESS]));
}
print_int(PRINT_ANY, "prefixlen", "/%d ", ifa->ifa_prefixlen);
if (rta_tb[IFA_RT_PRIORITY])
print_uint(PRINT_ANY, "metric", "metric %u ",
rta_getattr_u32(rta_tb[IFA_RT_PRIORITY]));
}
if (brief)
goto brief_exit;
if (rta_tb[IFA_BROADCAST]) {
print_string(PRINT_FP, NULL, "%s ", "brd");
print_color_string(PRINT_ANY,
ifa_family_color(ifa->ifa_family),
"broadcast",
"%s ",
format_host_rta(ifa->ifa_family,
rta_tb[IFA_BROADCAST]));
}
if (rta_tb[IFA_ANYCAST]) {
print_string(PRINT_FP, NULL, "%s ", "any");
print_color_string(PRINT_ANY,
ifa_family_color(ifa->ifa_family),
"anycast",
"%s ",
format_host_rta(ifa->ifa_family,
rta_tb[IFA_ANYCAST]));
}
print_string(PRINT_ANY,
"scope",
"scope %s ",
rtnl_rtscope_n2a(ifa->ifa_scope, b1, sizeof(b1)));
print_ifa_flags(fp, ifa, ifa_flags);
if (rta_tb[IFA_LABEL])
print_string(PRINT_ANY,
"label",
"%s",
rta_getattr_str(rta_tb[IFA_LABEL]));
if (rta_tb[IFA_CACHEINFO]) {
struct ifa_cacheinfo *ci = RTA_DATA(rta_tb[IFA_CACHEINFO]);
print_nl();
print_string(PRINT_FP, NULL, " valid_lft ", NULL);
if (ci->ifa_valid == INFINITY_LIFE_TIME) {
print_uint(PRINT_JSON,
"valid_life_time",
NULL, INFINITY_LIFE_TIME);
print_string(PRINT_FP, NULL, "%s", "forever");
} else {
print_uint(PRINT_ANY,
"valid_life_time", "%usec", ci->ifa_valid);
}
print_string(PRINT_FP, NULL, " preferred_lft ", NULL);
if (ci->ifa_prefered == INFINITY_LIFE_TIME) {
print_uint(PRINT_JSON,
"preferred_life_time",
NULL, INFINITY_LIFE_TIME);
print_string(PRINT_FP, NULL, "%s", "forever");
} else {
if (ifa_flags & IFA_F_DEPRECATED)
print_int(PRINT_ANY,
"preferred_life_time",
"%dsec",
ci->ifa_prefered);
else
print_uint(PRINT_ANY,
"preferred_life_time",
"%usec",
ci->ifa_prefered);
}
}
print_string(PRINT_FP, NULL, "%s", "\n");
brief_exit:
fflush(fp);
return 0;
}
static int print_selected_addrinfo(struct ifinfomsg *ifi,
struct nlmsg_list *ainfo, FILE *fp)
{
open_json_array(PRINT_JSON, "addr_info");
for ( ; ainfo ; ainfo = ainfo->next) {
struct nlmsghdr *n = &ainfo->h;
struct ifaddrmsg *ifa = NLMSG_DATA(n);
if (n->nlmsg_type != RTM_NEWADDR)
continue;
if (n->nlmsg_len < NLMSG_LENGTH(sizeof(*ifa)))
return -1;
if (ifa->ifa_index != ifi->ifi_index ||
(filter.family && filter.family != ifa->ifa_family))
continue;
if (filter.up && !(ifi->ifi_flags&IFF_UP))
continue;
open_json_object(NULL);
print_addrinfo(n, fp);
close_json_object();
}
close_json_array(PRINT_JSON, NULL);
if (brief) {
print_string(PRINT_FP, NULL, "%s", "\n");
fflush(fp);
}
return 0;
}
static int store_nlmsg(struct nlmsghdr *n, void *arg)
{
struct nlmsg_chain *lchain = (struct nlmsg_chain *)arg;
struct nlmsg_list *h;
h = malloc(n->nlmsg_len+sizeof(void *));
if (h == NULL)
return -1;
memcpy(&h->h, n, n->nlmsg_len);
h->next = NULL;
if (lchain->tail)
lchain->tail->next = h;
else
lchain->head = h;
lchain->tail = h;
ll_remember_index(n, NULL);
return 0;
}
static __u32 ipadd_dump_magic = 0x47361222;
static int ipadd_save_prep(void)
{
int ret;
if (isatty(STDOUT_FILENO)) {
fprintf(stderr, "Not sending a binary stream to stdout\n");
return -1;
}
ret = write(STDOUT_FILENO, &ipadd_dump_magic, sizeof(ipadd_dump_magic));
if (ret != sizeof(ipadd_dump_magic)) {
fprintf(stderr, "Can't write magic to dump file\n");
return -1;
}
return 0;
}
static int ipadd_dump_check_magic(void)
{
int ret;
__u32 magic = 0;
if (isatty(STDIN_FILENO)) {
fprintf(stderr, "Can't restore address dump from a terminal\n");
return -1;
}
ret = fread(&magic, sizeof(magic), 1, stdin);
if (magic != ipadd_dump_magic) {
fprintf(stderr, "Magic mismatch (%d elems, %x magic)\n", ret, magic);
return -1;
}
return 0;
}
static int save_nlmsg(struct nlmsghdr *n, void *arg)
{
int ret;
ret = write(STDOUT_FILENO, n, n->nlmsg_len);
if ((ret > 0) && (ret != n->nlmsg_len)) {
fprintf(stderr, "Short write while saving nlmsg\n");
ret = -EIO;
}
return ret == n->nlmsg_len ? 0 : ret;
}
static int show_handler(struct rtnl_ctrl_data *ctrl,
struct nlmsghdr *n, void *arg)
{
struct ifaddrmsg *ifa = NLMSG_DATA(n);
open_json_object(NULL);
print_int(PRINT_ANY, "index", "if%d:", ifa->ifa_index);
print_nl();
print_addrinfo(n, stdout);
close_json_object();
return 0;
}
static int ipaddr_showdump(void)
{
int err;
if (ipadd_dump_check_magic())
exit(-1);
new_json_obj(json);
open_json_object(NULL);
open_json_array(PRINT_JSON, "addr_info");
err = rtnl_from_file(stdin, &show_handler, NULL);
close_json_array(PRINT_JSON, NULL);
close_json_object();
delete_json_obj();
exit(err);
}
static int restore_handler(struct rtnl_ctrl_data *ctrl,
struct nlmsghdr *n, void *arg)
{
int ret;
n->nlmsg_flags |= NLM_F_REQUEST | NLM_F_CREATE | NLM_F_ACK;
ll_init_map(&rth);
ret = rtnl_talk(&rth, n, NULL);
if ((ret < 0) && (errno == EEXIST))
ret = 0;
return ret;
}
static int ipaddr_restore(void)
{
if (ipadd_dump_check_magic())
exit(-1);
exit(rtnl_from_file(stdin, &restore_handler, NULL));
}
void free_nlmsg_chain(struct nlmsg_chain *info)
{
struct nlmsg_list *l, *n;
for (l = info->head; l; l = n) {
n = l->next;
free(l);
}
}
static void ipaddr_filter(struct nlmsg_chain *linfo, struct nlmsg_chain *ainfo)
{
struct nlmsg_list *l, **lp;
lp = &linfo->head;
while ((l = *lp) != NULL) {
int ok = 0;
int missing_net_address = 1;
struct ifinfomsg *ifi = NLMSG_DATA(&l->h);
struct nlmsg_list *a;
for (a = ainfo->head; a; a = a->next) {
struct nlmsghdr *n = &a->h;
struct ifaddrmsg *ifa = NLMSG_DATA(n);
struct rtattr *tb[IFA_MAX + 1];
unsigned int ifa_flags;
if (ifa->ifa_index != ifi->ifi_index)
continue;
missing_net_address = 0;
if (filter.family && filter.family != ifa->ifa_family)
continue;
if ((filter.scope^ifa->ifa_scope)&filter.scopemask)
continue;
parse_rtattr(tb, IFA_MAX, IFA_RTA(ifa), IFA_PAYLOAD(n));
ifa_flags = get_ifa_flags(ifa, tb[IFA_FLAGS]);
if ((filter.flags ^ ifa_flags) & filter.flagmask)
continue;
if (ifa_label_match_rta(ifa->ifa_index, tb[IFA_LABEL]))
continue;
if (!tb[IFA_LOCAL])
tb[IFA_LOCAL] = tb[IFA_ADDRESS];
if (inet_addr_match_rta(&filter.pfx, tb[IFA_LOCAL]))
continue;
ok = 1;
break;
}
if (missing_net_address &&
(filter.family == AF_UNSPEC || filter.family == AF_PACKET))
ok = 1;
if (!ok) {
*lp = l->next;
free(l);
} else
lp = &l->next;
}
}
static int ipaddr_dump_filter(struct nlmsghdr *nlh, int reqlen)
{
struct ifaddrmsg *ifa = NLMSG_DATA(nlh);
ifa->ifa_index = filter.ifindex;
return 0;
}
static int ipaddr_flush(void)
{
int round = 0;
char flushb[4096-512];
filter.flushb = flushb;
filter.flushp = 0;
filter.flushe = sizeof(flushb);
while ((max_flush_loops == 0) || (round < max_flush_loops)) {
if (rtnl_addrdump_req(&rth, filter.family,
ipaddr_dump_filter) < 0) {
perror("Cannot send dump request");
exit(1);
}
filter.flushed = 0;
if (rtnl_dump_filter_nc(&rth, print_addrinfo,
stdout, NLM_F_DUMP_INTR) < 0) {
fprintf(stderr, "Flush terminated\n");
exit(1);
}
if (filter.flushed == 0) {
flush_done:
if (show_stats) {
if (round == 0)
printf("Nothing to flush.\n");
else
printf("*** Flush is complete after %d round%s ***\n", round, round > 1?"s":"");
}
fflush(stdout);
return 0;
}
round++;
if (flush_update() < 0)
return 1;
if (show_stats) {
printf("\n*** Round %d, deleting %d addresses ***\n", round, filter.flushed);
fflush(stdout);
}
/* If we are flushing, and specifying primary, then we
* want to flush only a single round. Otherwise, we'll
* start flushing secondaries that were promoted to
* primaries.
*/
if (!(filter.flags & IFA_F_SECONDARY) && (filter.flagmask & IFA_F_SECONDARY))
goto flush_done;
}
fprintf(stderr, "*** Flush remains incomplete after %d rounds. ***\n", max_flush_loops);
fflush(stderr);
return 1;
}
static int iplink_filter_req(struct nlmsghdr *nlh, int reqlen)
{
int err;
err = addattr32(nlh, reqlen, IFLA_EXT_MASK, RTEXT_FILTER_VF);
if (err)
return err;
if (filter.master) {
err = addattr32(nlh, reqlen, IFLA_MASTER, filter.master);
if (err)
return err;
}
if (filter.kind) {
struct rtattr *linkinfo;
linkinfo = addattr_nest(nlh, reqlen, IFLA_LINKINFO);
err = addattr_l(nlh, reqlen, IFLA_INFO_KIND, filter.kind,
strlen(filter.kind));
if (err)
return err;
addattr_nest_end(nlh, linkinfo);
}
return 0;
}
static int ipaddr_link_get(int index, struct nlmsg_chain *linfo)
{
struct iplink_req req = {
.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)),
.n.nlmsg_flags = NLM_F_REQUEST,
.n.nlmsg_type = RTM_GETLINK,
.i.ifi_family = filter.family,
.i.ifi_index = index,
};
__u32 filt_mask = RTEXT_FILTER_VF;
struct nlmsghdr *answer;
if (!show_stats)
filt_mask |= RTEXT_FILTER_SKIP_STATS;
addattr32(&req.n, sizeof(req), IFLA_EXT_MASK, filt_mask);
if (rtnl_talk(&rth, &req.n, &answer) < 0) {
perror("Cannot send link request");
return 1;
}
if (store_nlmsg(answer, linfo) < 0) {
fprintf(stderr, "Failed to process link information\n");
return 1;
}
return 0;
}
/* fills in linfo with link data and optionally ainfo with address info
* caller can walk lists as desired and must call free_nlmsg_chain for
* both when done
*/
int ip_link_list(req_filter_fn_t filter_fn, struct nlmsg_chain *linfo)
{
if (rtnl_linkdump_req_filter_fn(&rth, preferred_family,
filter_fn) < 0) {
perror("Cannot send dump request");
return 1;
}
if (rtnl_dump_filter(&rth, store_nlmsg, linfo) < 0) {
fprintf(stderr, "Dump terminated\n");
return 1;
}
return 0;
}
static int ip_addr_list(struct nlmsg_chain *ainfo)
{
if (rtnl_addrdump_req(&rth, filter.family, ipaddr_dump_filter) < 0) {
perror("Cannot send dump request");
return 1;
}
if (rtnl_dump_filter(&rth, store_nlmsg, ainfo) < 0) {
fprintf(stderr, "Dump terminated\n");
return 1;
}
return 0;
}
static int ipaddr_list_flush_or_save(int argc, char **argv, int action)
{
struct nlmsg_chain linfo = { NULL, NULL};
struct nlmsg_chain _ainfo = { NULL, NULL}, *ainfo = &_ainfo;
struct nlmsg_list *l;
char *filter_dev = NULL;
int no_link = 0;
ipaddr_reset_filter(oneline, 0);
filter.showqueue = 1;
filter.family = preferred_family;
if (action == IPADD_FLUSH) {
if (argc <= 0) {
fprintf(stderr, "Flush requires arguments.\n");
return -1;
}
if (filter.family == AF_PACKET) {
fprintf(stderr, "Cannot flush link addresses.\n");
return -1;
}
}
while (argc > 0) {
if (strcmp(*argv, "to") == 0) {
NEXT_ARG();
if (get_prefix(&filter.pfx, *argv, filter.family))
invarg("invalid \"to\"\n", *argv);
if (filter.family == AF_UNSPEC)
filter.family = filter.pfx.family;
} else if (strcmp(*argv, "scope") == 0) {
unsigned int scope = 0;
NEXT_ARG();
filter.scopemask = -1;
if (rtnl_rtscope_a2n(&scope, *argv)) {
if (strcmp(*argv, "all") != 0)
invarg("invalid \"scope\"\n", *argv);
scope = RT_SCOPE_NOWHERE;
filter.scopemask = 0;
}
filter.scope = scope;
} else if (strcmp(*argv, "up") == 0) {
filter.up = 1;
} else if (get_filter(*argv) == 0) {
} else if (strcmp(*argv, "label") == 0) {
NEXT_ARG();
filter.label = *argv;
} else if (strcmp(*argv, "group") == 0) {
NEXT_ARG();
if (rtnl_group_a2n(&filter.group, *argv))
invarg("Invalid \"group\" value\n", *argv);
} else if (strcmp(*argv, "master") == 0) {
int ifindex;
NEXT_ARG();
ifindex = ll_name_to_index(*argv);
if (!ifindex)
invarg("Device does not exist\n", *argv);
filter.master = ifindex;
} else if (strcmp(*argv, "vrf") == 0) {
int ifindex;
NEXT_ARG();
ifindex = ll_name_to_index(*argv);
if (!ifindex)
invarg("Not a valid VRF name\n", *argv);
if (!name_is_vrf(*argv))
invarg("Not a valid VRF name\n", *argv);
filter.master = ifindex;
} else if (strcmp(*argv, "type") == 0) {
int soff;
NEXT_ARG();
soff = strlen(*argv) - strlen("_slave");
if (!strcmp(*argv + soff, "_slave")) {
(*argv)[soff] = '\0';
filter.slave_kind = *argv;
} else {
filter.kind = *argv;
}
} else {
if (strcmp(*argv, "dev") == 0)
NEXT_ARG();
else if (matches(*argv, "help") == 0)
usage();
if (filter_dev)
duparg2("dev", *argv);
filter_dev = *argv;
}
argv++; argc--;
}
if (filter_dev) {
filter.ifindex = ll_name_to_index(filter_dev);
if (filter.ifindex <= 0) {
fprintf(stderr, "Device \"%s\" does not exist.\n", filter_dev);
return -1;
}
}
if (action == IPADD_FLUSH)
return ipaddr_flush();
if (action == IPADD_SAVE) {
if (ipadd_save_prep())
exit(1);
if (rtnl_addrdump_req(&rth, preferred_family,
ipaddr_dump_filter) < 0) {
perror("Cannot send dump request");
exit(1);
}
if (rtnl_dump_filter(&rth, save_nlmsg, stdout) < 0) {
fprintf(stderr, "Save terminated\n");
exit(1);
}
exit(0);
}
/*
* Initialize a json_writer and open an array object
* if -json was specified.
*/
new_json_obj(json);
/*
* If only filter_dev present and none of the other
* link filters are present, use RTM_GETLINK to get
* the link device
*/
if (filter_dev && filter.group == -1 && do_link == 1) {
if (iplink_get(filter_dev, RTEXT_FILTER_VF) < 0) {
perror("Cannot send link get request");
delete_json_obj();
exit(1);
}
delete_json_obj();
goto out;
}
if (filter.ifindex) {
if (ipaddr_link_get(filter.ifindex, &linfo) != 0)
goto out;
} else {
if (ip_link_list(iplink_filter_req, &linfo) != 0)
goto out;
}
if (filter.family != AF_PACKET) {
if (filter.oneline)
no_link = 1;
if (ip_addr_list(ainfo) != 0)
goto out;
ipaddr_filter(&linfo, ainfo);
}
for (l = linfo.head; l; l = l->next) {
struct nlmsghdr *n = &l->h;
struct ifinfomsg *ifi = NLMSG_DATA(n);
int res = 0;
open_json_object(NULL);
if (brief || !no_link)
res = print_linkinfo(n, stdout);
if (res >= 0 && filter.family != AF_PACKET)
print_selected_addrinfo(ifi, ainfo->head, stdout);
if (res > 0 && !do_link && show_stats)
print_link_stats(stdout, n);
close_json_object();
}
fflush(stdout);
out:
free_nlmsg_chain(ainfo);
free_nlmsg_chain(&linfo);
delete_json_obj();
return 0;
}
static void
ipaddr_loop_each_vf(struct rtattr *tb[], int vfnum, int *min, int *max)
{
struct rtattr *vflist = tb[IFLA_VFINFO_LIST];
struct rtattr *i, *vf[IFLA_VF_MAX+1];
struct ifla_vf_rate *vf_rate;
int rem;
rem = RTA_PAYLOAD(vflist);
for (i = RTA_DATA(vflist); RTA_OK(i, rem); i = RTA_NEXT(i, rem)) {
parse_rtattr_nested(vf, IFLA_VF_MAX, i);
if (!vf[IFLA_VF_RATE]) {
fprintf(stderr, "VF min/max rate API not supported\n");
exit(1);
}
vf_rate = RTA_DATA(vf[IFLA_VF_RATE]);
if (vf_rate->vf == vfnum) {
*min = vf_rate->min_tx_rate;
*max = vf_rate->max_tx_rate;
return;
}
}
fprintf(stderr, "Cannot find VF %d\n", vfnum);
exit(1);
}
void ipaddr_get_vf_rate(int vfnum, int *min, int *max, const char *dev)
{
struct nlmsg_chain linfo = { NULL, NULL};
struct rtattr *tb[IFLA_MAX+1];
struct ifinfomsg *ifi;
struct nlmsg_list *l;
struct nlmsghdr *n;
int idx, len;
idx = ll_name_to_index(dev);
if (idx == 0) {
fprintf(stderr, "Device %s does not exist\n", dev);
exit(1);
}
if (rtnl_linkdump_req(&rth, AF_UNSPEC) < 0) {
perror("Cannot send dump request");
exit(1);
}
if (rtnl_dump_filter(&rth, store_nlmsg, &linfo) < 0) {
fprintf(stderr, "Dump terminated\n");
exit(1);
}
for (l = linfo.head; l; l = l->next) {
n = &l->h;
ifi = NLMSG_DATA(n);
len = n->nlmsg_len - NLMSG_LENGTH(sizeof(*ifi));
if (len < 0 || (idx && idx != ifi->ifi_index))
continue;
parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
if ((tb[IFLA_VFINFO_LIST] && tb[IFLA_NUM_VF])) {
ipaddr_loop_each_vf(tb, vfnum, min, max);
return;
}
}
}
int ipaddr_list_link(int argc, char **argv)
{
preferred_family = AF_PACKET;
do_link = 1;
return ipaddr_list_flush_or_save(argc, argv, IPADD_LIST);
}
void ipaddr_reset_filter(int oneline, int ifindex)
{
memset(&filter, 0, sizeof(filter));
filter.oneline = oneline;
filter.ifindex = ifindex;
filter.group = -1;
}
static int default_scope(inet_prefix *lcl)
{
if (lcl->family == AF_INET) {
if (lcl->bytelen >= 1 && *(__u8 *)&lcl->data == 127)
return RT_SCOPE_HOST;
}
return 0;
}
static bool ipaddr_is_multicast(inet_prefix *a)
{
if (a->family == AF_INET)
return IN_MULTICAST(ntohl(a->data[0]));
else if (a->family == AF_INET6)
return IN6_IS_ADDR_MULTICAST(a->data);
else
return false;
}
static bool is_valid_label(const char *dev, const char *label)
{
size_t len = strlen(dev);
if (strncmp(label, dev, len) != 0)
return false;
return label[len] == '\0' || label[len] == ':';
}
static int ipaddr_modify(int cmd, int flags, int argc, char **argv)
{
struct {
struct nlmsghdr n;
struct ifaddrmsg ifa;
char buf[256];
} req = {
.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifaddrmsg)),
.n.nlmsg_flags = NLM_F_REQUEST | flags,
.n.nlmsg_type = cmd,
.ifa.ifa_family = preferred_family,
};
char *d = NULL;
char *l = NULL;
char *lcl_arg = NULL;
char *valid_lftp = NULL;
char *preferred_lftp = NULL;
inet_prefix lcl = {};
inet_prefix peer;
int local_len = 0;
int peer_len = 0;
int brd_len = 0;
int any_len = 0;
int scoped = 0;
__u32 preferred_lft = INFINITY_LIFE_TIME;
__u32 valid_lft = INFINITY_LIFE_TIME;
unsigned int ifa_flags = 0;
while (argc > 0) {
if (strcmp(*argv, "peer") == 0 ||
strcmp(*argv, "remote") == 0) {
NEXT_ARG();
if (peer_len)
duparg("peer", *argv);
get_prefix(&peer, *argv, req.ifa.ifa_family);
peer_len = peer.bytelen;
if (req.ifa.ifa_family == AF_UNSPEC)
req.ifa.ifa_family = peer.family;
addattr_l(&req.n, sizeof(req), IFA_ADDRESS, &peer.data, peer.bytelen);
req.ifa.ifa_prefixlen = peer.bitlen;
} else if (matches(*argv, "broadcast") == 0 ||
strcmp(*argv, "brd") == 0) {
inet_prefix addr;
NEXT_ARG();
if (brd_len)
duparg("broadcast", *argv);
if (strcmp(*argv, "+") == 0)
brd_len = -1;
else if (strcmp(*argv, "-") == 0)
brd_len = -2;
else {
get_addr(&addr, *argv, req.ifa.ifa_family);
if (req.ifa.ifa_family == AF_UNSPEC)
req.ifa.ifa_family = addr.family;
addattr_l(&req.n, sizeof(req), IFA_BROADCAST, &addr.data, addr.bytelen);
brd_len = addr.bytelen;
}
} else if (strcmp(*argv, "anycast") == 0) {
inet_prefix addr;
NEXT_ARG();
if (any_len)
duparg("anycast", *argv);
get_addr(&addr, *argv, req.ifa.ifa_family);
if (req.ifa.ifa_family == AF_UNSPEC)
req.ifa.ifa_family = addr.family;
addattr_l(&req.n, sizeof(req), IFA_ANYCAST, &addr.data, addr.bytelen);
any_len = addr.bytelen;
} else if (strcmp(*argv, "scope") == 0) {
unsigned int scope = 0;
NEXT_ARG();
if (rtnl_rtscope_a2n(&scope, *argv))
invarg("invalid scope value.", *argv);
req.ifa.ifa_scope = scope;
scoped = 1;
} else if (strcmp(*argv, "dev") == 0) {
NEXT_ARG();
d = *argv;
} else if (strcmp(*argv, "label") == 0) {
NEXT_ARG();
l = *argv;
addattr_l(&req.n, sizeof(req), IFA_LABEL, l, strlen(l)+1);
} else if (matches(*argv, "metric") == 0 ||
matches(*argv, "priority") == 0 ||
matches(*argv, "preference") == 0) {
__u32 metric;
NEXT_ARG();
if (get_u32(&metric, *argv, 0))
invarg("\"metric\" value is invalid\n", *argv);
addattr32(&req.n, sizeof(req), IFA_RT_PRIORITY, metric);
} else if (matches(*argv, "valid_lft") == 0) {
if (valid_lftp)
duparg("valid_lft", *argv);
NEXT_ARG();
valid_lftp = *argv;
if (set_lifetime(&valid_lft, *argv))
invarg("valid_lft value", *argv);
} else if (matches(*argv, "preferred_lft") == 0) {
if (preferred_lftp)
duparg("preferred_lft", *argv);
NEXT_ARG();
preferred_lftp = *argv;
if (set_lifetime(&preferred_lft, *argv))
invarg("preferred_lft value", *argv);
} else if (lookup_flag_data_by_name(*argv)) {
const struct ifa_flag_data_t* flag_data = lookup_flag_data_by_name(*argv);
if (flag_data->readonly) {
fprintf(stderr, "Warning: %s option is not mutable from userspace\n", flag_data->name);
} else if (flag_data->v6only && req.ifa.ifa_family != AF_INET6) {
fprintf(stderr, "Warning: %s option can be set only for IPv6 addresses\n", flag_data->name);
} else {
ifa_flags |= flag_data->mask;
}
} else {
if (strcmp(*argv, "local") == 0)
NEXT_ARG();
if (matches(*argv, "help") == 0)
usage();
if (local_len)
duparg2("local", *argv);
lcl_arg = *argv;
get_prefix(&lcl, *argv, req.ifa.ifa_family);
if (req.ifa.ifa_family == AF_UNSPEC)
req.ifa.ifa_family = lcl.family;
addattr_l(&req.n, sizeof(req), IFA_LOCAL, &lcl.data, lcl.bytelen);
local_len = lcl.bytelen;
}
argc--; argv++;
}
if (ifa_flags <= 0xff)
req.ifa.ifa_flags = ifa_flags;
else
addattr32(&req.n, sizeof(req), IFA_FLAGS, ifa_flags);
if (d == NULL) {
fprintf(stderr, "Not enough information: \"dev\" argument is required.\n");
return -1;
}
if (l && !is_valid_label(d, l)) {
fprintf(stderr,
"\"label\" (%s) must match \"dev\" (%s) or be prefixed by \"dev\" with a colon.\n",
l, d);
return -1;
}
if (peer_len == 0 && local_len) {
if (cmd == RTM_DELADDR && lcl.family == AF_INET && !(lcl.flags & PREFIXLEN_SPECIFIED)) {
fprintf(stderr,
"Warning: Executing wildcard deletion to stay compatible with old scripts.\n"
" Explicitly specify the prefix length (%s/%d) to avoid this warning.\n"
" This special behaviour is likely to disappear in further releases,\n"
" fix your scripts!\n", lcl_arg, local_len*8);
} else {
peer = lcl;
addattr_l(&req.n, sizeof(req), IFA_ADDRESS, &lcl.data, lcl.bytelen);
}
}
if (req.ifa.ifa_prefixlen == 0)
req.ifa.ifa_prefixlen = lcl.bitlen;
if (brd_len < 0 && cmd != RTM_DELADDR) {
inet_prefix brd;
int i;
if (req.ifa.ifa_family != AF_INET) {
fprintf(stderr, "Broadcast can be set only for IPv4 addresses\n");
return -1;
}
brd = peer;
if (brd.bitlen <= 30) {
for (i = 31; i >= brd.bitlen; i--) {
if (brd_len == -1)
brd.data[0] |= htonl(1<<(31-i));
else
brd.data[0] &= ~htonl(1<<(31-i));
}
addattr_l(&req.n, sizeof(req), IFA_BROADCAST, &brd.data, brd.bytelen);
brd_len = brd.bytelen;
}
}
if (!scoped && cmd != RTM_DELADDR)
req.ifa.ifa_scope = default_scope(&lcl);
req.ifa.ifa_index = ll_name_to_index(d);
if (!req.ifa.ifa_index)
return nodev(d);
if (valid_lftp || preferred_lftp) {
struct ifa_cacheinfo cinfo = {};
if (!valid_lft) {
fprintf(stderr, "valid_lft is zero\n");
return -1;
}
if (valid_lft < preferred_lft) {
fprintf(stderr, "preferred_lft is greater than valid_lft\n");
return -1;
}
cinfo.ifa_prefered = preferred_lft;
cinfo.ifa_valid = valid_lft;
addattr_l(&req.n, sizeof(req), IFA_CACHEINFO, &cinfo,
sizeof(cinfo));
}
if ((ifa_flags & IFA_F_MCAUTOJOIN) && !ipaddr_is_multicast(&lcl)) {
fprintf(stderr, "autojoin needs multicast address\n");
return -1;
}
if (rtnl_talk(&rth, &req.n, NULL) < 0)
return -2;
return 0;
}
int do_ipaddr(int argc, char **argv)
{
if (argc < 1)
return ipaddr_list_flush_or_save(0, NULL, IPADD_LIST);
if (matches(*argv, "add") == 0)
return ipaddr_modify(RTM_NEWADDR, NLM_F_CREATE|NLM_F_EXCL, argc-1, argv+1);
if (matches(*argv, "change") == 0 ||
strcmp(*argv, "chg") == 0)
return ipaddr_modify(RTM_NEWADDR, NLM_F_REPLACE, argc-1, argv+1);
if (matches(*argv, "replace") == 0)
return ipaddr_modify(RTM_NEWADDR, NLM_F_CREATE|NLM_F_REPLACE, argc-1, argv+1);
if (matches(*argv, "delete") == 0)
return ipaddr_modify(RTM_DELADDR, 0, argc-1, argv+1);
if (matches(*argv, "list") == 0 || matches(*argv, "show") == 0
|| matches(*argv, "lst") == 0)
return ipaddr_list_flush_or_save(argc-1, argv+1, IPADD_LIST);
if (matches(*argv, "flush") == 0)
return ipaddr_list_flush_or_save(argc-1, argv+1, IPADD_FLUSH);
if (matches(*argv, "save") == 0)
return ipaddr_list_flush_or_save(argc-1, argv+1, IPADD_SAVE);
if (matches(*argv, "showdump") == 0)
return ipaddr_showdump();
if (matches(*argv, "restore") == 0)
return ipaddr_restore();
if (matches(*argv, "help") == 0)
usage();
fprintf(stderr, "Command \"%s\" is unknown, try \"ip address help\".\n", *argv);
exit(-1);
}