blob: 6256420fb9a47d2d7f5ad9ac08c4b3a02da276be [file] [log] [blame]
/*
* q_red.c RED.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <math.h>
#include "utils.h"
#include "tc_util.h"
#include "tc_red.h"
static void explain(void)
{
fprintf(stderr,
"Usage: ... red limit BYTES [min BYTES] [max BYTES] avpkt BYTES [burst PACKETS]\n"
" [adaptive] [probability PROBABILITY] [bandwidth KBPS]\n"
" [ecn] [harddrop]\n");
}
static int red_parse_opt(struct qdisc_util *qu, int argc, char **argv,
struct nlmsghdr *n, const char *dev)
{
struct tc_red_qopt opt = {};
unsigned int burst = 0;
unsigned int avpkt = 0;
double probability = 0.02;
unsigned int rate = 0;
int parm;
__u8 sbuf[256];
__u32 max_P;
struct rtattr *tail;
while (argc > 0) {
if (strcmp(*argv, "limit") == 0) {
NEXT_ARG();
if (get_size(&opt.limit, *argv)) {
fprintf(stderr, "Illegal \"limit\"\n");
return -1;
}
} else if (strcmp(*argv, "min") == 0) {
NEXT_ARG();
if (get_size(&opt.qth_min, *argv)) {
fprintf(stderr, "Illegal \"min\"\n");
return -1;
}
} else if (strcmp(*argv, "max") == 0) {
NEXT_ARG();
if (get_size(&opt.qth_max, *argv)) {
fprintf(stderr, "Illegal \"max\"\n");
return -1;
}
} else if (strcmp(*argv, "burst") == 0) {
NEXT_ARG();
if (get_unsigned(&burst, *argv, 0)) {
fprintf(stderr, "Illegal \"burst\"\n");
return -1;
}
} else if (strcmp(*argv, "avpkt") == 0) {
NEXT_ARG();
if (get_size(&avpkt, *argv)) {
fprintf(stderr, "Illegal \"avpkt\"\n");
return -1;
}
} else if (strcmp(*argv, "probability") == 0) {
NEXT_ARG();
if (sscanf(*argv, "%lg", &probability) != 1) {
fprintf(stderr, "Illegal \"probability\"\n");
return -1;
}
} else if (strcmp(*argv, "bandwidth") == 0) {
NEXT_ARG();
if (strchr(*argv, '%')) {
if (get_percent_rate(&rate, *argv, dev)) {
fprintf(stderr, "Illegal \"bandwidth\"\n");
return -1;
}
} else if (get_rate(&rate, *argv)) {
fprintf(stderr, "Illegal \"bandwidth\"\n");
return -1;
}
} else if (strcmp(*argv, "ecn") == 0) {
opt.flags |= TC_RED_ECN;
} else if (strcmp(*argv, "harddrop") == 0) {
opt.flags |= TC_RED_HARDDROP;
} else if (strcmp(*argv, "adaptative") == 0) {
opt.flags |= TC_RED_ADAPTATIVE;
} else if (strcmp(*argv, "adaptive") == 0) {
opt.flags |= TC_RED_ADAPTATIVE;
} else if (strcmp(*argv, "help") == 0) {
explain();
return -1;
} else {
fprintf(stderr, "What is \"%s\"?\n", *argv);
explain();
return -1;
}
argc--; argv++;
}
if (!opt.limit || !avpkt) {
fprintf(stderr, "RED: Required parameter (limit, avpkt) is missing\n");
return -1;
}
/* Compute default min/max thresholds based on
* Sally Floyd's recommendations:
* http://www.icir.org/floyd/REDparameters.txt
*/
if (!opt.qth_max)
opt.qth_max = opt.qth_min ? opt.qth_min * 3 : opt.limit / 4;
if (!opt.qth_min)
opt.qth_min = opt.qth_max / 3;
if (!burst)
burst = (2 * opt.qth_min + opt.qth_max) / (3 * avpkt);
if (!rate) {
get_rate(&rate, "10Mbit");
fprintf(stderr, "RED: set bandwidth to 10Mbit\n");
}
if ((parm = tc_red_eval_ewma(opt.qth_min, burst, avpkt)) < 0) {
fprintf(stderr, "RED: failed to calculate EWMA constant.\n");
return -1;
}
if (parm >= 10)
fprintf(stderr, "RED: WARNING. Burst %u seems to be too large.\n", burst);
opt.Wlog = parm;
if ((parm = tc_red_eval_P(opt.qth_min, opt.qth_max, probability)) < 0) {
fprintf(stderr, "RED: failed to calculate probability.\n");
return -1;
}
opt.Plog = parm;
if ((parm = tc_red_eval_idle_damping(opt.Wlog, avpkt, rate, sbuf)) < 0) {
fprintf(stderr, "RED: failed to calculate idle damping table.\n");
return -1;
}
opt.Scell_log = parm;
tail = addattr_nest(n, 1024, TCA_OPTIONS);
addattr_l(n, 1024, TCA_RED_PARMS, &opt, sizeof(opt));
addattr_l(n, 1024, TCA_RED_STAB, sbuf, 256);
max_P = probability * pow(2, 32);
addattr_l(n, 1024, TCA_RED_MAX_P, &max_P, sizeof(max_P));
addattr_nest_end(n, tail);
return 0;
}
static int red_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
struct rtattr *tb[TCA_RED_MAX + 1];
struct tc_red_qopt *qopt;
__u32 max_P = 0;
SPRINT_BUF(b1);
SPRINT_BUF(b2);
SPRINT_BUF(b3);
if (opt == NULL)
return 0;
parse_rtattr_nested(tb, TCA_RED_MAX, opt);
if (tb[TCA_RED_PARMS] == NULL)
return -1;
qopt = RTA_DATA(tb[TCA_RED_PARMS]);
if (RTA_PAYLOAD(tb[TCA_RED_PARMS]) < sizeof(*qopt))
return -1;
if (tb[TCA_RED_MAX_P] &&
RTA_PAYLOAD(tb[TCA_RED_MAX_P]) >= sizeof(__u32))
max_P = rta_getattr_u32(tb[TCA_RED_MAX_P]);
print_uint(PRINT_JSON, "limit", NULL, qopt->limit);
print_string(PRINT_FP, NULL, "limit %s ", sprint_size(qopt->limit, b1));
print_uint(PRINT_JSON, "min", NULL, qopt->qth_min);
print_string(PRINT_FP, NULL, "min %s ", sprint_size(qopt->qth_min, b2));
print_uint(PRINT_JSON, "max", NULL, qopt->qth_max);
print_string(PRINT_FP, NULL, "max %s ", sprint_size(qopt->qth_max, b3));
tc_red_print_flags(qopt->flags);
if (show_details) {
print_uint(PRINT_ANY, "ewma", "ewma %u ", qopt->Wlog);
if (max_P)
print_float(PRINT_ANY, "probability",
"probability %lg ", max_P / pow(2, 32));
else
print_uint(PRINT_ANY, "Plog", "Plog %u ", qopt->Plog);
print_uint(PRINT_ANY, "Scell_log", "Scell_log %u",
qopt->Scell_log);
}
return 0;
}
static int red_print_xstats(struct qdisc_util *qu, FILE *f, struct rtattr *xstats)
{
#ifdef TC_RED_ECN
struct tc_red_xstats *st;
if (xstats == NULL)
return 0;
if (RTA_PAYLOAD(xstats) < sizeof(*st))
return -1;
st = RTA_DATA(xstats);
print_uint(PRINT_ANY, "marked", " marked %u ", st->marked);
print_uint(PRINT_ANY, "early", "early %u ", st->early);
print_uint(PRINT_ANY, "pdrop", "pdrop %u ", st->pdrop);
print_uint(PRINT_ANY, "other", "other %u ", st->other);
#endif
return 0;
}
struct qdisc_util red_qdisc_util = {
.id = "red",
.parse_qopt = red_parse_opt,
.print_qopt = red_print_opt,
.print_xstats = red_print_xstats,
};