blob: 0e670a6ca27be7461cf4dd8dfbb6024497590584 [file] [log] [blame]
/*
* iplink_can.c CAN device support
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Wolfgang Grandegger <wg@grandegger.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <linux/can/netlink.h>
#include "rt_names.h"
#include "utils.h"
#include "ip_common.h"
static void print_usage(FILE *f)
{
fprintf(f,
"Usage: ip link set DEVICE type can\n"
"\t[ bitrate BITRATE [ sample-point SAMPLE-POINT] ] |\n"
"\t[ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1\n \t phase-seg2 PHASE-SEG2 [ sjw SJW ] ]\n"
"\n"
"\t[ dbitrate BITRATE [ dsample-point SAMPLE-POINT] ] |\n"
"\t[ dtq TQ dprop-seg PROP_SEG dphase-seg1 PHASE-SEG1\n \t dphase-seg2 PHASE-SEG2 [ dsjw SJW ] ]\n"
"\t[ tdcv TDCV tdco TDCO tdcf TDCF ]\n"
"\n"
"\t[ loopback { on | off } ]\n"
"\t[ listen-only { on | off } ]\n"
"\t[ triple-sampling { on | off } ]\n"
"\t[ one-shot { on | off } ]\n"
"\t[ berr-reporting { on | off } ]\n"
"\t[ fd { on | off } ]\n"
"\t[ fd-non-iso { on | off } ]\n"
"\t[ presume-ack { on | off } ]\n"
"\t[ cc-len8-dlc { on | off } ]\n"
"\t[ tdc-mode { auto | manual | off } ]\n"
"\n"
"\t[ restart-ms TIME-MS ]\n"
"\t[ restart ]\n"
"\n"
"\t[ termination { 0..65535 } ]\n"
"\n"
"\tWhere: BITRATE := { NUMBER in bps }\n"
"\t SAMPLE-POINT := { 0.000..0.999 }\n"
"\t TQ := { NUMBER in ns }\n"
"\t PROP-SEG := { NUMBER in tq }\n"
"\t PHASE-SEG1 := { NUMBER in tq }\n"
"\t PHASE-SEG2 := { NUMBER in tq }\n"
"\t SJW := { NUMBER in tq }\n"
"\t TDCV := { NUMBER in tc }\n"
"\t TDCO := { NUMBER in tc }\n"
"\t TDCF := { NUMBER in tc }\n"
"\t RESTART-MS := { 0 | NUMBER in ms }\n"
);
}
static void usage(void)
{
print_usage(stderr);
}
static int get_float(float *val, const char *arg)
{
float res;
char *ptr;
if (!arg || !*arg)
return -1;
res = strtof(arg, &ptr);
if (!ptr || ptr == arg || *ptr)
return -1;
*val = res;
return 0;
}
static void set_ctrlmode(char *name, char *arg,
struct can_ctrlmode *cm, __u32 flags)
{
if (strcmp(arg, "on") == 0) {
cm->flags |= flags;
} else if (strcmp(arg, "off") != 0) {
fprintf(stderr,
"Error: argument of \"%s\" must be \"on\" or \"off\", not \"%s\"\n",
name, arg);
exit(-1);
}
cm->mask |= flags;
}
static void print_flag(enum output_type t, __u32 *flags, __u32 flag,
const char* name)
{
if (*flags & flag) {
*flags &= ~flag;
print_string(t, NULL, *flags ? "%s," : "%s", name);
}
}
static void print_ctrlmode(enum output_type t, __u32 flags, const char* key)
{
if (!flags)
return;
open_json_array(t, is_json_context() ? key : "<");
print_flag(t, &flags, CAN_CTRLMODE_LOOPBACK, "LOOPBACK");
print_flag(t, &flags, CAN_CTRLMODE_LISTENONLY, "LISTEN-ONLY");
print_flag(t, &flags, CAN_CTRLMODE_3_SAMPLES, "TRIPLE-SAMPLING");
print_flag(t, &flags, CAN_CTRLMODE_ONE_SHOT, "ONE-SHOT");
print_flag(t, &flags, CAN_CTRLMODE_BERR_REPORTING, "BERR-REPORTING");
print_flag(t, &flags, CAN_CTRLMODE_FD, "FD");
print_flag(t, &flags, CAN_CTRLMODE_FD_NON_ISO, "FD-NON-ISO");
print_flag(t, &flags, CAN_CTRLMODE_PRESUME_ACK, "PRESUME-ACK");
print_flag(t, &flags, CAN_CTRLMODE_CC_LEN8_DLC, "CC-LEN8-DLC");
print_flag(t, &flags, CAN_CTRLMODE_TDC_AUTO, "TDC-AUTO");
print_flag(t, &flags, CAN_CTRLMODE_TDC_MANUAL, "TDC-MANUAL");
if (flags)
print_hex(t, NULL, "%x", flags);
close_json_array(t, "> ");
}
static int can_parse_opt(struct link_util *lu, int argc, char **argv,
struct nlmsghdr *n)
{
struct can_bittiming bt = {}, dbt = {};
struct can_ctrlmode cm = { 0 };
struct rtattr *tdc;
__u32 tdcv = -1, tdco = -1, tdcf = -1;
while (argc > 0) {
if (matches(*argv, "bitrate") == 0) {
NEXT_ARG();
if (get_u32(&bt.bitrate, *argv, 0))
invarg("invalid \"bitrate\" value\n", *argv);
} else if (matches(*argv, "sample-point") == 0) {
float sp;
NEXT_ARG();
if (get_float(&sp, *argv))
invarg("invalid \"sample-point\" value\n",
*argv);
bt.sample_point = (__u32)(sp * 1000);
} else if (matches(*argv, "tq") == 0) {
NEXT_ARG();
if (get_u32(&bt.tq, *argv, 0))
invarg("invalid \"tq\" value\n", *argv);
} else if (matches(*argv, "prop-seg") == 0) {
NEXT_ARG();
if (get_u32(&bt.prop_seg, *argv, 0))
invarg("invalid \"prop-seg\" value\n", *argv);
} else if (matches(*argv, "phase-seg1") == 0) {
NEXT_ARG();
if (get_u32(&bt.phase_seg1, *argv, 0))
invarg("invalid \"phase-seg1\" value\n", *argv);
} else if (matches(*argv, "phase-seg2") == 0) {
NEXT_ARG();
if (get_u32(&bt.phase_seg2, *argv, 0))
invarg("invalid \"phase-seg2\" value\n", *argv);
} else if (matches(*argv, "sjw") == 0) {
NEXT_ARG();
if (get_u32(&bt.sjw, *argv, 0))
invarg("invalid \"sjw\" value\n", *argv);
} else if (matches(*argv, "dbitrate") == 0) {
NEXT_ARG();
if (get_u32(&dbt.bitrate, *argv, 0))
invarg("invalid \"dbitrate\" value\n", *argv);
} else if (matches(*argv, "dsample-point") == 0) {
float sp;
NEXT_ARG();
if (get_float(&sp, *argv))
invarg("invalid \"dsample-point\" value\n", *argv);
dbt.sample_point = (__u32)(sp * 1000);
} else if (matches(*argv, "dtq") == 0) {
NEXT_ARG();
if (get_u32(&dbt.tq, *argv, 0))
invarg("invalid \"dtq\" value\n", *argv);
} else if (matches(*argv, "dprop-seg") == 0) {
NEXT_ARG();
if (get_u32(&dbt.prop_seg, *argv, 0))
invarg("invalid \"dprop-seg\" value\n", *argv);
} else if (matches(*argv, "dphase-seg1") == 0) {
NEXT_ARG();
if (get_u32(&dbt.phase_seg1, *argv, 0))
invarg("invalid \"dphase-seg1\" value\n", *argv);
} else if (matches(*argv, "dphase-seg2") == 0) {
NEXT_ARG();
if (get_u32(&dbt.phase_seg2, *argv, 0))
invarg("invalid \"dphase-seg2\" value\n", *argv);
} else if (matches(*argv, "dsjw") == 0) {
NEXT_ARG();
if (get_u32(&dbt.sjw, *argv, 0))
invarg("invalid \"dsjw\" value\n", *argv);
} else if (matches(*argv, "tdcv") == 0) {
NEXT_ARG();
if (get_u32(&tdcv, *argv, 0))
invarg("invalid \"tdcv\" value\n", *argv);
} else if (matches(*argv, "tdco") == 0) {
NEXT_ARG();
if (get_u32(&tdco, *argv, 0))
invarg("invalid \"tdco\" value\n", *argv);
} else if (matches(*argv, "tdcf") == 0) {
NEXT_ARG();
if (get_u32(&tdcf, *argv, 0))
invarg("invalid \"tdcf\" value\n", *argv);
} else if (matches(*argv, "loopback") == 0) {
NEXT_ARG();
set_ctrlmode("loopback", *argv, &cm,
CAN_CTRLMODE_LOOPBACK);
} else if (matches(*argv, "listen-only") == 0) {
NEXT_ARG();
set_ctrlmode("listen-only", *argv, &cm,
CAN_CTRLMODE_LISTENONLY);
} else if (matches(*argv, "triple-sampling") == 0) {
NEXT_ARG();
set_ctrlmode("triple-sampling", *argv, &cm,
CAN_CTRLMODE_3_SAMPLES);
} else if (matches(*argv, "one-shot") == 0) {
NEXT_ARG();
set_ctrlmode("one-shot", *argv, &cm,
CAN_CTRLMODE_ONE_SHOT);
} else if (matches(*argv, "berr-reporting") == 0) {
NEXT_ARG();
set_ctrlmode("berr-reporting", *argv, &cm,
CAN_CTRLMODE_BERR_REPORTING);
} else if (matches(*argv, "fd") == 0) {
NEXT_ARG();
set_ctrlmode("fd", *argv, &cm,
CAN_CTRLMODE_FD);
} else if (matches(*argv, "fd-non-iso") == 0) {
NEXT_ARG();
set_ctrlmode("fd-non-iso", *argv, &cm,
CAN_CTRLMODE_FD_NON_ISO);
} else if (matches(*argv, "presume-ack") == 0) {
NEXT_ARG();
set_ctrlmode("presume-ack", *argv, &cm,
CAN_CTRLMODE_PRESUME_ACK);
} else if (matches(*argv, "cc-len8-dlc") == 0) {
NEXT_ARG();
set_ctrlmode("cc-len8-dlc", *argv, &cm,
CAN_CTRLMODE_CC_LEN8_DLC);
} else if (matches(*argv, "tdc-mode") == 0) {
NEXT_ARG();
if (strcmp(*argv, "auto") == 0) {
cm.flags |= CAN_CTRLMODE_TDC_AUTO;
cm.mask |= CAN_CTRLMODE_TDC_AUTO;
} else if (strcmp(*argv, "manual") == 0) {
cm.flags |= CAN_CTRLMODE_TDC_MANUAL;
cm.mask |= CAN_CTRLMODE_TDC_MANUAL;
} else if (strcmp(*argv, "off") == 0) {
cm.mask |= CAN_CTRLMODE_TDC_AUTO |
CAN_CTRLMODE_TDC_MANUAL;
} else {
fprintf(stderr,
"Error: argument of \"tdc-mode\" must be \"auto\", \"manual\" or \"off\", not \"%s\"\n",
*argv);
exit (-1);
}
} else if (matches(*argv, "restart") == 0) {
__u32 val = 1;
addattr32(n, 1024, IFLA_CAN_RESTART, val);
} else if (matches(*argv, "restart-ms") == 0) {
__u32 val;
NEXT_ARG();
if (get_u32(&val, *argv, 0))
invarg("invalid \"restart-ms\" value\n", *argv);
addattr32(n, 1024, IFLA_CAN_RESTART_MS, val);
} else if (matches(*argv, "termination") == 0) {
__u16 val;
NEXT_ARG();
if (get_u16(&val, *argv, 0))
invarg("invalid \"termination\" value\n",
*argv);
addattr16(n, 1024, IFLA_CAN_TERMINATION, val);
} else if (matches(*argv, "help") == 0) {
usage();
return -1;
} else {
fprintf(stderr, "can: unknown option \"%s\"\n", *argv);
usage();
return -1;
}
argc--, argv++;
}
if (bt.bitrate || bt.tq)
addattr_l(n, 1024, IFLA_CAN_BITTIMING, &bt, sizeof(bt));
if (dbt.bitrate || dbt.tq)
addattr_l(n, 1024, IFLA_CAN_DATA_BITTIMING, &dbt, sizeof(dbt));
if (cm.mask)
addattr_l(n, 1024, IFLA_CAN_CTRLMODE, &cm, sizeof(cm));
if (tdcv != -1 || tdco != -1 || tdcf != -1) {
tdc = addattr_nest(n, 1024, IFLA_CAN_TDC | NLA_F_NESTED);
if (tdcv != -1)
addattr32(n, 1024, IFLA_CAN_TDC_TDCV, tdcv);
if (tdco != -1)
addattr32(n, 1024, IFLA_CAN_TDC_TDCO, tdco);
if (tdcf != -1)
addattr32(n, 1024, IFLA_CAN_TDC_TDCF, tdcf);
addattr_nest_end(n, tdc);
}
return 0;
}
static const char *can_state_names[CAN_STATE_MAX] = {
[CAN_STATE_ERROR_ACTIVE] = "ERROR-ACTIVE",
[CAN_STATE_ERROR_WARNING] = "ERROR-WARNING",
[CAN_STATE_ERROR_PASSIVE] = "ERROR-PASSIVE",
[CAN_STATE_BUS_OFF] = "BUS-OFF",
[CAN_STATE_STOPPED] = "STOPPED",
[CAN_STATE_SLEEPING] = "SLEEPING"
};
static void can_print_nl_indent(void)
{
print_nl();
print_string(PRINT_FP, NULL, "%s", "\t ");
}
static void __attribute__((format(printf, 2, 0)))
can_print_timing_min_max(const char *json_attr, const char *fp_attr,
int min, int max)
{
print_null(PRINT_FP, NULL, fp_attr, NULL);
open_json_object(json_attr);
print_uint(PRINT_ANY, "min", " %d", min);
print_uint(PRINT_ANY, "max", "..%d", max);
close_json_object();
}
static void can_print_tdc_opt(FILE *f, struct rtattr *tdc_attr)
{
struct rtattr *tb[IFLA_CAN_TDC_MAX + 1];
parse_rtattr_nested(tb, IFLA_CAN_TDC_MAX, tdc_attr);
if (tb[IFLA_CAN_TDC_TDCV] || tb[IFLA_CAN_TDC_TDCO] ||
tb[IFLA_CAN_TDC_TDCF]) {
open_json_object("tdc");
can_print_nl_indent();
if (tb[IFLA_CAN_TDC_TDCV]) {
__u32 *tdcv = RTA_DATA(tb[IFLA_CAN_TDC_TDCV]);
print_uint(PRINT_ANY, "tdcv", " tdcv %u", *tdcv);
}
if (tb[IFLA_CAN_TDC_TDCO]) {
__u32 *tdco = RTA_DATA(tb[IFLA_CAN_TDC_TDCO]);
print_uint(PRINT_ANY, "tdco", " tdco %u", *tdco);
}
if (tb[IFLA_CAN_TDC_TDCF]) {
__u32 *tdcf = RTA_DATA(tb[IFLA_CAN_TDC_TDCF]);
print_uint(PRINT_ANY, "tdcf", " tdcf %u", *tdcf);
}
close_json_object();
}
}
static void can_print_tdc_const_opt(FILE *f, struct rtattr *tdc_attr)
{
struct rtattr *tb[IFLA_CAN_TDC_MAX + 1];
parse_rtattr_nested(tb, IFLA_CAN_TDC_MAX, tdc_attr);
open_json_object("tdc");
can_print_nl_indent();
if (tb[IFLA_CAN_TDC_TDCV_MIN] && tb[IFLA_CAN_TDC_TDCV_MAX]) {
__u32 *tdcv_min = RTA_DATA(tb[IFLA_CAN_TDC_TDCV_MIN]);
__u32 *tdcv_max = RTA_DATA(tb[IFLA_CAN_TDC_TDCV_MAX]);
can_print_timing_min_max("tdcv", " tdcv", *tdcv_min, *tdcv_max);
}
if (tb[IFLA_CAN_TDC_TDCO_MIN] && tb[IFLA_CAN_TDC_TDCO_MAX]) {
__u32 *tdco_min = RTA_DATA(tb[IFLA_CAN_TDC_TDCO_MIN]);
__u32 *tdco_max = RTA_DATA(tb[IFLA_CAN_TDC_TDCO_MAX]);
can_print_timing_min_max("tdco", " tdco", *tdco_min, *tdco_max);
}
if (tb[IFLA_CAN_TDC_TDCF_MIN] && tb[IFLA_CAN_TDC_TDCF_MAX]) {
__u32 *tdcf_min = RTA_DATA(tb[IFLA_CAN_TDC_TDCF_MIN]);
__u32 *tdcf_max = RTA_DATA(tb[IFLA_CAN_TDC_TDCF_MAX]);
can_print_timing_min_max("tdcf", " tdcf", *tdcf_min, *tdcf_max);
}
close_json_object();
}
static void can_print_ctrlmode_ext(FILE *f, struct rtattr *ctrlmode_ext_attr,
__u32 cm_flags)
{
struct rtattr *tb[IFLA_CAN_CTRLMODE_MAX + 1];
parse_rtattr_nested(tb, IFLA_CAN_CTRLMODE_MAX, ctrlmode_ext_attr);
if (tb[IFLA_CAN_CTRLMODE_SUPPORTED]) {
__u32 *supported = RTA_DATA(tb[IFLA_CAN_CTRLMODE_SUPPORTED]);
print_ctrlmode(PRINT_JSON, *supported, "ctrlmode_supported");
print_ctrlmode(PRINT_JSON, cm_flags & ~*supported, "ctrlmode_static");
}
}
static void can_print_opt(struct link_util *lu, FILE *f, struct rtattr *tb[])
{
if (!tb)
return;
if (tb[IFLA_CAN_CTRLMODE]) {
struct can_ctrlmode *cm = RTA_DATA(tb[IFLA_CAN_CTRLMODE]);
print_ctrlmode(PRINT_ANY, cm->flags, "ctrlmode");
if (tb[IFLA_CAN_CTRLMODE_EXT])
can_print_ctrlmode_ext(f, tb[IFLA_CAN_CTRLMODE_EXT],
cm->flags);
}
if (tb[IFLA_CAN_STATE]) {
uint32_t state = rta_getattr_u32(tb[IFLA_CAN_STATE]);
print_string(PRINT_ANY, "state", "state %s ", state < CAN_STATE_MAX ?
can_state_names[state] : "UNKNOWN");
}
if (tb[IFLA_CAN_BERR_COUNTER]) {
struct can_berr_counter *bc =
RTA_DATA(tb[IFLA_CAN_BERR_COUNTER]);
open_json_object("berr_counter");
print_uint(PRINT_ANY, "tx", "(berr-counter tx %u", bc->txerr);
print_uint(PRINT_ANY, "rx", " rx %u) ", bc->rxerr);
close_json_object();
}
if (tb[IFLA_CAN_RESTART_MS]) {
__u32 *restart_ms = RTA_DATA(tb[IFLA_CAN_RESTART_MS]);
print_uint(PRINT_ANY, "restart_ms", "restart-ms %u ",
*restart_ms);
}
/* bittiming is irrelevant if fixed bitrate is defined */
if (tb[IFLA_CAN_BITTIMING] && !tb[IFLA_CAN_BITRATE_CONST]) {
struct can_bittiming *bt = RTA_DATA(tb[IFLA_CAN_BITTIMING]);
char sp[6];
open_json_object("bittiming");
can_print_nl_indent();
print_uint(PRINT_ANY, "bitrate", " bitrate %u", bt->bitrate);
snprintf(sp, sizeof(sp), "%.3f", bt->sample_point / 1000.);
print_string(PRINT_ANY, "sample_point", " sample-point %s", sp);
can_print_nl_indent();
print_uint(PRINT_ANY, "tq", " tq %u", bt->tq);
print_uint(PRINT_ANY, "prop_seg", " prop-seg %u", bt->prop_seg);
print_uint(PRINT_ANY, "phase_seg1", " phase-seg1 %u",
bt->phase_seg1);
print_uint(PRINT_ANY, "phase_seg2", " phase-seg2 %u",
bt->phase_seg2);
print_uint(PRINT_ANY, "sjw", " sjw %u", bt->sjw);
print_uint(PRINT_ANY, "brp", " brp %u", bt->brp);
close_json_object();
}
/* bittiming const is irrelevant if fixed bitrate is defined */
if (tb[IFLA_CAN_BITTIMING_CONST] && !tb[IFLA_CAN_BITRATE_CONST]) {
struct can_bittiming_const *btc =
RTA_DATA(tb[IFLA_CAN_BITTIMING_CONST]);
open_json_object("bittiming_const");
can_print_nl_indent();
print_string(PRINT_ANY, "name", " %s:", btc->name);
can_print_timing_min_max("tseg1", " tseg1",
btc->tseg1_min, btc->tseg1_max);
can_print_timing_min_max("tseg2", " tseg2",
btc->tseg2_min, btc->tseg2_max);
can_print_timing_min_max("sjw", " sjw", 1, btc->sjw_max);
can_print_timing_min_max("brp", " brp",
btc->brp_min, btc->brp_max);
print_uint(PRINT_ANY, "brp_inc", " brp_inc %u", btc->brp_inc);
close_json_object();
}
if (tb[IFLA_CAN_BITRATE_CONST]) {
__u32 *bitrate_const = RTA_DATA(tb[IFLA_CAN_BITRATE_CONST]);
int bitrate_cnt = RTA_PAYLOAD(tb[IFLA_CAN_BITRATE_CONST]) /
sizeof(*bitrate_const);
int i;
__u32 bitrate = 0;
if (tb[IFLA_CAN_BITTIMING]) {
struct can_bittiming *bt =
RTA_DATA(tb[IFLA_CAN_BITTIMING]);
bitrate = bt->bitrate;
}
can_print_nl_indent();
print_uint(PRINT_ANY, "bittiming_bitrate", " bitrate %u",
bitrate);
can_print_nl_indent();
open_json_array(PRINT_ANY, is_json_context() ?
"bitrate_const" : " [");
for (i = 0; i < bitrate_cnt; ++i) {
/* This will keep lines below 80 signs */
if (!(i % 6) && i) {
can_print_nl_indent();
print_string(PRINT_FP, NULL, "%s", " ");
}
print_uint(PRINT_ANY, NULL,
i < bitrate_cnt - 1 ? "%8u, " : "%8u",
bitrate_const[i]);
}
close_json_array(PRINT_JSON, " ]");
}
/* data bittiming is irrelevant if fixed bitrate is defined */
if (tb[IFLA_CAN_DATA_BITTIMING] && !tb[IFLA_CAN_DATA_BITRATE_CONST]) {
struct can_bittiming *dbt =
RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]);
char dsp[6];
open_json_object("data_bittiming");
can_print_nl_indent();
print_uint(PRINT_ANY, "bitrate", " dbitrate %u", dbt->bitrate);
snprintf(dsp, sizeof(dsp), "%.3f", dbt->sample_point / 1000.);
print_string(PRINT_ANY, "sample_point", " dsample-point %s",
dsp);
can_print_nl_indent();
print_uint(PRINT_ANY, "tq", " dtq %u", dbt->tq);
print_uint(PRINT_ANY, "prop_seg", " dprop-seg %u",
dbt->prop_seg);
print_uint(PRINT_ANY, "phase_seg1", " dphase-seg1 %u",
dbt->phase_seg1);
print_uint(PRINT_ANY, "phase_seg2", " dphase-seg2 %u",
dbt->phase_seg2);
print_uint(PRINT_ANY, "sjw", " dsjw %u", dbt->sjw);
print_uint(PRINT_ANY, "brp", " dbrp %u", dbt->brp);
if (tb[IFLA_CAN_TDC])
can_print_tdc_opt(f, tb[IFLA_CAN_TDC]);
close_json_object();
}
/* data bittiming const is irrelevant if fixed bitrate is defined */
if (tb[IFLA_CAN_DATA_BITTIMING_CONST] &&
!tb[IFLA_CAN_DATA_BITRATE_CONST]) {
struct can_bittiming_const *dbtc =
RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING_CONST]);
open_json_object("data_bittiming_const");
can_print_nl_indent();
print_string(PRINT_ANY, "name", " %s:", dbtc->name);
can_print_timing_min_max("tseg1", " dtseg1",
dbtc->tseg1_min, dbtc->tseg1_max);
can_print_timing_min_max("tseg2", " dtseg2",
dbtc->tseg2_min, dbtc->tseg2_max);
can_print_timing_min_max("sjw", " dsjw", 1, dbtc->sjw_max);
can_print_timing_min_max("brp", " dbrp",
dbtc->brp_min, dbtc->brp_max);
print_uint(PRINT_ANY, "brp_inc", " dbrp_inc %u", dbtc->brp_inc);
if (tb[IFLA_CAN_TDC])
can_print_tdc_const_opt(f, tb[IFLA_CAN_TDC]);
close_json_object();
}
if (tb[IFLA_CAN_DATA_BITRATE_CONST]) {
__u32 *dbitrate_const =
RTA_DATA(tb[IFLA_CAN_DATA_BITRATE_CONST]);
int dbitrate_cnt =
RTA_PAYLOAD(tb[IFLA_CAN_DATA_BITRATE_CONST]) /
sizeof(*dbitrate_const);
int i;
__u32 dbitrate = 0;
if (tb[IFLA_CAN_DATA_BITTIMING]) {
struct can_bittiming *dbt =
RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]);
dbitrate = dbt->bitrate;
}
can_print_nl_indent();
print_uint(PRINT_ANY, "data_bittiming_bitrate", " dbitrate %u",
dbitrate);
can_print_nl_indent();
open_json_array(PRINT_ANY, is_json_context() ?
"data_bitrate_const" : " [");
for (i = 0; i < dbitrate_cnt; ++i) {
/* This will keep lines below 80 signs */
if (!(i % 6) && i) {
can_print_nl_indent();
print_string(PRINT_FP, NULL, "%s", " ");
}
print_uint(PRINT_ANY, NULL,
i < dbitrate_cnt - 1 ? "%8u, " : "%8u",
dbitrate_const[i]);
}
close_json_array(PRINT_JSON, " ]");
}
if (tb[IFLA_CAN_TERMINATION_CONST] && tb[IFLA_CAN_TERMINATION]) {
__u16 *trm = RTA_DATA(tb[IFLA_CAN_TERMINATION]);
__u16 *trm_const = RTA_DATA(tb[IFLA_CAN_TERMINATION_CONST]);
int trm_cnt = RTA_PAYLOAD(tb[IFLA_CAN_TERMINATION_CONST]) /
sizeof(*trm_const);
int i;
can_print_nl_indent();
print_hu(PRINT_ANY, "termination", " termination %hu [ ", *trm);
open_json_array(PRINT_JSON, "termination_const");
for (i = 0; i < trm_cnt; ++i)
print_hu(PRINT_ANY, NULL,
i < trm_cnt - 1 ? "%hu, " : "%hu",
trm_const[i]);
close_json_array(PRINT_JSON, " ]");
}
if (tb[IFLA_CAN_CLOCK]) {
struct can_clock *clock = RTA_DATA(tb[IFLA_CAN_CLOCK]);
can_print_nl_indent();
print_uint(PRINT_ANY, "clock", " clock %u ", clock->freq);
}
}
static void can_print_xstats(struct link_util *lu,
FILE *f, struct rtattr *xstats)
{
struct can_device_stats *stats;
if (xstats && RTA_PAYLOAD(xstats) == sizeof(*stats)) {
stats = RTA_DATA(xstats);
can_print_nl_indent();
print_string(PRINT_FP, NULL, "%s",
" re-started bus-errors arbit-lost error-warn error-pass bus-off");
can_print_nl_indent();
print_uint(PRINT_ANY, "restarts", " %-10u", stats->restarts);
print_uint(PRINT_ANY, "bus_error", " %-10u", stats->bus_error);
print_uint(PRINT_ANY, "arbitration_lost", " %-10u",
stats->arbitration_lost);
print_uint(PRINT_ANY, "error_warning", " %-10u",
stats->error_warning);
print_uint(PRINT_ANY, "error_passive", " %-10u",
stats->error_passive);
print_uint(PRINT_ANY, "bus_off", " %-10u", stats->bus_off);
}
}
static void can_print_help(struct link_util *lu, int argc, char **argv, FILE *f)
{
print_usage(f);
}
struct link_util can_link_util = {
.id = "can",
.maxattr = IFLA_CAN_MAX,
.parse_opt = can_parse_opt,
.print_opt = can_print_opt,
.print_xstats = can_print_xstats,
.print_help = can_print_help,
};