blob: 9b73ccfbecb12d6fd08e1bc9ccc54868cfb4271d [file] [log] [blame]
/*
* QEMU KVM support
*
* Copyright IBM, Corp. 2008
* Red Hat, Inc. 2008
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
* Glauber Costa <gcosta@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <stdarg.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qemu-barrier.h"
#include "sysemu.h"
#include "hw/hw.h"
#include "gdbstub.h"
#include "kvm.h"
#include "bswap.h"
#include "memory.h"
#include "exec-memory.h"
/* This check must be after config-host.h is included */
#ifdef CONFIG_EVENTFD
#include <sys/eventfd.h>
#endif
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
#define PAGE_SIZE TARGET_PAGE_SIZE
//#define DEBUG_KVM
#ifdef DEBUG_KVM
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
typedef struct KVMSlot
{
target_phys_addr_t start_addr;
ram_addr_t memory_size;
void *ram;
int slot;
int flags;
} KVMSlot;
typedef struct kvm_dirty_log KVMDirtyLog;
struct KVMState
{
KVMSlot slots[32];
int fd;
int vmfd;
int coalesced_mmio;
struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
bool coalesced_flush_in_progress;
int broken_set_mem_region;
int migration_log;
int vcpu_events;
int robust_singlestep;
int debugregs;
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
#endif
int pit_state2;
int xsave, xcrs;
int many_ioeventfds;
/* The man page (and posix) say ioctl numbers are signed int, but
* they're not. Linux, glibc and *BSD all treat ioctl numbers as
* unsigned, and treating them as signed here can break things */
unsigned irqchip_inject_ioctl;
#ifdef KVM_CAP_IRQ_ROUTING
struct kvm_irq_routing *irq_routes;
int nr_allocated_irq_routes;
uint32_t *used_gsi_bitmap;
unsigned int max_gsi;
#endif
};
KVMState *kvm_state;
bool kvm_kernel_irqchip;
static const KVMCapabilityInfo kvm_required_capabilites[] = {
KVM_CAP_INFO(USER_MEMORY),
KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
KVM_CAP_LAST_INFO
};
static KVMSlot *kvm_alloc_slot(KVMState *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
if (s->slots[i].memory_size == 0) {
return &s->slots[i];
}
}
fprintf(stderr, "%s: no free slot available\n", __func__);
abort();
}
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (start_addr == mem->start_addr &&
end_addr == mem->start_addr + mem->memory_size) {
return mem;
}
}
return NULL;
}
/*
* Find overlapping slot with lowest start address
*/
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
{
KVMSlot *found = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (mem->memory_size == 0 ||
(found && found->start_addr < mem->start_addr)) {
continue;
}
if (end_addr > mem->start_addr &&
start_addr < mem->start_addr + mem->memory_size) {
found = mem;
}
}
return found;
}
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
target_phys_addr_t *phys_addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
*phys_addr = mem->start_addr + (ram - mem->ram);
return 1;
}
}
return 0;
}
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
{
struct kvm_userspace_memory_region mem;
mem.slot = slot->slot;
mem.guest_phys_addr = slot->start_addr;
mem.memory_size = slot->memory_size;
mem.userspace_addr = (unsigned long)slot->ram;
mem.flags = slot->flags;
if (s->migration_log) {
mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
static void kvm_reset_vcpu(void *opaque)
{
CPUArchState *env = opaque;
kvm_arch_reset_vcpu(env);
}
int kvm_init_vcpu(CPUArchState *env)
{
KVMState *s = kvm_state;
long mmap_size;
int ret;
DPRINTF("kvm_init_vcpu\n");
ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
if (ret < 0) {
DPRINTF("kvm_create_vcpu failed\n");
goto err;
}
env->kvm_fd = ret;
env->kvm_state = s;
env->kvm_vcpu_dirty = 1;
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
ret = mmap_size;
DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
goto err;
}
env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
env->kvm_fd, 0);
if (env->kvm_run == MAP_FAILED) {
ret = -errno;
DPRINTF("mmap'ing vcpu state failed\n");
goto err;
}
if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
s->coalesced_mmio_ring =
(void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
}
ret = kvm_arch_init_vcpu(env);
if (ret == 0) {
qemu_register_reset(kvm_reset_vcpu, env);
kvm_arch_reset_vcpu(env);
}
err:
return ret;
}
/*
* dirty pages logging control
*/
static int kvm_mem_flags(KVMState *s, bool log_dirty)
{
return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
}
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
{
KVMState *s = kvm_state;
int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
int old_flags;
old_flags = mem->flags;
flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
mem->flags = flags;
/* If nothing changed effectively, no need to issue ioctl */
if (s->migration_log) {
flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
if (flags == old_flags) {
return 0;
}
return kvm_set_user_memory_region(s, mem);
}
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
ram_addr_t size, bool log_dirty)
{
KVMState *s = kvm_state;
KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
if (mem == NULL) {
fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
TARGET_FMT_plx "\n", __func__, phys_addr,
(target_phys_addr_t)(phys_addr + size - 1));
return -EINVAL;
}
return kvm_slot_dirty_pages_log_change(mem, log_dirty);
}
static void kvm_log_start(MemoryListener *listener,
MemoryRegionSection *section)
{
int r;
r = kvm_dirty_pages_log_change(section->offset_within_address_space,
section->size, true);
if (r < 0) {
abort();
}
}
static void kvm_log_stop(MemoryListener *listener,
MemoryRegionSection *section)
{
int r;
r = kvm_dirty_pages_log_change(section->offset_within_address_space,
section->size, false);
if (r < 0) {
abort();
}
}
static int kvm_set_migration_log(int enable)
{
KVMState *s = kvm_state;
KVMSlot *mem;
int i, err;
s->migration_log = enable;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
mem = &s->slots[i];
if (!mem->memory_size) {
continue;
}
if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
continue;
}
err = kvm_set_user_memory_region(s, mem);
if (err) {
return err;
}
}
return 0;
}
/* get kvm's dirty pages bitmap and update qemu's */
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
unsigned long *bitmap)
{
unsigned int i, j;
unsigned long page_number, c;
target_phys_addr_t addr, addr1;
unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
/*
* bitmap-traveling is faster than memory-traveling (for addr...)
* especially when most of the memory is not dirty.
*/
for (i = 0; i < len; i++) {
if (bitmap[i] != 0) {
c = leul_to_cpu(bitmap[i]);
do {
j = ffsl(c) - 1;
c &= ~(1ul << j);
page_number = (i * HOST_LONG_BITS + j) * hpratio;
addr1 = page_number * TARGET_PAGE_SIZE;
addr = section->offset_within_region + addr1;
memory_region_set_dirty(section->mr, addr,
TARGET_PAGE_SIZE * hpratio);
} while (c != 0);
}
}
return 0;
}
#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
/**
* kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
* This function updates qemu's dirty bitmap using
* memory_region_set_dirty(). This means all bits are set
* to dirty.
*
* @start_add: start of logged region.
* @end_addr: end of logged region.
*/
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
{
KVMState *s = kvm_state;
unsigned long size, allocated_size = 0;
KVMDirtyLog d;
KVMSlot *mem;
int ret = 0;
target_phys_addr_t start_addr = section->offset_within_address_space;
target_phys_addr_t end_addr = start_addr + section->size;
d.dirty_bitmap = NULL;
while (start_addr < end_addr) {
mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
if (mem == NULL) {
break;
}
/* XXX bad kernel interface alert
* For dirty bitmap, kernel allocates array of size aligned to
* bits-per-long. But for case when the kernel is 64bits and
* the userspace is 32bits, userspace can't align to the same
* bits-per-long, since sizeof(long) is different between kernel
* and user space. This way, userspace will provide buffer which
* may be 4 bytes less than the kernel will use, resulting in
* userspace memory corruption (which is not detectable by valgrind
* too, in most cases).
* So for now, let's align to 64 instead of HOST_LONG_BITS here, in
* a hope that sizeof(long) wont become >8 any time soon.
*/
size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
/*HOST_LONG_BITS*/ 64) / 8;
if (!d.dirty_bitmap) {
d.dirty_bitmap = g_malloc(size);
} else if (size > allocated_size) {
d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
}
allocated_size = size;
memset(d.dirty_bitmap, 0, allocated_size);
d.slot = mem->slot;
if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
DPRINTF("ioctl failed %d\n", errno);
ret = -1;
break;
}
kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
start_addr = mem->start_addr + mem->memory_size;
}
g_free(d.dirty_bitmap);
return ret;
}
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
int ret = -ENOSYS;
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
zone.pad = 0;
ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
}
return ret;
}
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
int ret = -ENOSYS;
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
zone.pad = 0;
ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
return ret;
}
int kvm_check_extension(KVMState *s, unsigned int extension)
{
int ret;
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
if (ret < 0) {
ret = 0;
}
return ret;
}
static int kvm_check_many_ioeventfds(void)
{
/* Userspace can use ioeventfd for io notification. This requires a host
* that supports eventfd(2) and an I/O thread; since eventfd does not
* support SIGIO it cannot interrupt the vcpu.
*
* Older kernels have a 6 device limit on the KVM io bus. Find out so we
* can avoid creating too many ioeventfds.
*/
#if defined(CONFIG_EVENTFD)
int ioeventfds[7];
int i, ret = 0;
for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
if (ioeventfds[i] < 0) {
break;
}
ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
if (ret < 0) {
close(ioeventfds[i]);
break;
}
}
/* Decide whether many devices are supported or not */
ret = i == ARRAY_SIZE(ioeventfds);
while (i-- > 0) {
kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
close(ioeventfds[i]);
}
return ret;
#else
return 0;
#endif
}
static const KVMCapabilityInfo *
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
{
while (list->name) {
if (!kvm_check_extension(s, list->value)) {
return list;
}
list++;
}
return NULL;
}
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
{
KVMState *s = kvm_state;
KVMSlot *mem, old;
int err;
MemoryRegion *mr = section->mr;
bool log_dirty = memory_region_is_logging(mr);
target_phys_addr_t start_addr = section->offset_within_address_space;
ram_addr_t size = section->size;
void *ram = NULL;
unsigned delta;
/* kvm works in page size chunks, but the function may be called
with sub-page size and unaligned start address. */
delta = TARGET_PAGE_ALIGN(size) - size;
if (delta > size) {
return;
}
start_addr += delta;
size -= delta;
size &= TARGET_PAGE_MASK;
if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
return;
}
if (!memory_region_is_ram(mr)) {
return;
}
ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
while (1) {
mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
if (!mem) {
break;
}
if (add && start_addr >= mem->start_addr &&
(start_addr + size <= mem->start_addr + mem->memory_size) &&
(ram - start_addr == mem->ram - mem->start_addr)) {
/* The new slot fits into the existing one and comes with
* identical parameters - update flags and done. */
kvm_slot_dirty_pages_log_change(mem, log_dirty);
return;
}
old = *mem;
if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
kvm_physical_sync_dirty_bitmap(section);
}
/* unregister the overlapping slot */
mem->memory_size = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
__func__, strerror(-err));
abort();
}
/* Workaround for older KVM versions: we can't join slots, even not by
* unregistering the previous ones and then registering the larger
* slot. We have to maintain the existing fragmentation. Sigh.
*
* This workaround assumes that the new slot starts at the same
* address as the first existing one. If not or if some overlapping
* slot comes around later, we will fail (not seen in practice so far)
* - and actually require a recent KVM version. */
if (s->broken_set_mem_region &&
old.start_addr == start_addr && old.memory_size < size && add) {
mem = kvm_alloc_slot(s);
mem->memory_size = old.memory_size;
mem->start_addr = old.start_addr;
mem->ram = old.ram;
mem->flags = kvm_mem_flags(s, log_dirty);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error updating slot: %s\n", __func__,
strerror(-err));
abort();
}
start_addr += old.memory_size;
ram += old.memory_size;
size -= old.memory_size;
continue;
}
/* register prefix slot */
if (old.start_addr < start_addr) {
mem = kvm_alloc_slot(s);
mem->memory_size = start_addr - old.start_addr;
mem->start_addr = old.start_addr;
mem->ram = old.ram;
mem->flags = kvm_mem_flags(s, log_dirty);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering prefix slot: %s\n",
__func__, strerror(-err));
#ifdef TARGET_PPC
fprintf(stderr, "%s: This is probably because your kernel's " \
"PAGE_SIZE is too big. Please try to use 4k " \
"PAGE_SIZE!\n", __func__);
#endif
abort();
}
}
/* register suffix slot */
if (old.start_addr + old.memory_size > start_addr + size) {
ram_addr_t size_delta;
mem = kvm_alloc_slot(s);
mem->start_addr = start_addr + size;
size_delta = mem->start_addr - old.start_addr;
mem->memory_size = old.memory_size - size_delta;
mem->ram = old.ram + size_delta;
mem->flags = kvm_mem_flags(s, log_dirty);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering suffix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
}
/* in case the KVM bug workaround already "consumed" the new slot */
if (!size) {
return;
}
if (!add) {
return;
}
mem = kvm_alloc_slot(s);
mem->memory_size = size;
mem->start_addr = start_addr;
mem->ram = ram;
mem->flags = kvm_mem_flags(s, log_dirty);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering slot: %s\n", __func__,
strerror(-err));
abort();
}
}
static void kvm_begin(MemoryListener *listener)
{
}
static void kvm_commit(MemoryListener *listener)
{
}
static void kvm_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
kvm_set_phys_mem(section, true);
}
static void kvm_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
kvm_set_phys_mem(section, false);
}
static void kvm_region_nop(MemoryListener *listener,
MemoryRegionSection *section)
{
}
static void kvm_log_sync(MemoryListener *listener,
MemoryRegionSection *section)
{
int r;
r = kvm_physical_sync_dirty_bitmap(section);
if (r < 0) {
abort();
}
}
static void kvm_log_global_start(struct MemoryListener *listener)
{
int r;
r = kvm_set_migration_log(1);
assert(r >= 0);
}
static void kvm_log_global_stop(struct MemoryListener *listener)
{
int r;
r = kvm_set_migration_log(0);
assert(r >= 0);
}
static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
bool match_data, uint64_t data, int fd)
{
int r;
assert(match_data && section->size <= 8);
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
data, true, section->size);
if (r < 0) {
abort();
}
}
static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
bool match_data, uint64_t data, int fd)
{
int r;
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
data, false, section->size);
if (r < 0) {
abort();
}
}
static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
bool match_data, uint64_t data, int fd)
{
int r;
assert(match_data && section->size == 2);
r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
data, true);
if (r < 0) {
abort();
}
}
static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
bool match_data, uint64_t data, int fd)
{
int r;
r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
data, false);
if (r < 0) {
abort();
}
}
static void kvm_eventfd_add(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data, int fd)
{
if (section->address_space == get_system_memory()) {
kvm_mem_ioeventfd_add(section, match_data, data, fd);
} else {
kvm_io_ioeventfd_add(section, match_data, data, fd);
}
}
static void kvm_eventfd_del(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data, int fd)
{
if (section->address_space == get_system_memory()) {
kvm_mem_ioeventfd_del(section, match_data, data, fd);
} else {
kvm_io_ioeventfd_del(section, match_data, data, fd);
}
}
static MemoryListener kvm_memory_listener = {
.begin = kvm_begin,
.commit = kvm_commit,
.region_add = kvm_region_add,
.region_del = kvm_region_del,
.region_nop = kvm_region_nop,
.log_start = kvm_log_start,
.log_stop = kvm_log_stop,
.log_sync = kvm_log_sync,
.log_global_start = kvm_log_global_start,
.log_global_stop = kvm_log_global_stop,
.eventfd_add = kvm_eventfd_add,
.eventfd_del = kvm_eventfd_del,
.priority = 10,
};
static void kvm_handle_interrupt(CPUArchState *env, int mask)
{
env->interrupt_request |= mask;
if (!qemu_cpu_is_self(env)) {
qemu_cpu_kick(env);
}
}
int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
{
struct kvm_irq_level event;
int ret;
assert(kvm_irqchip_in_kernel());
event.level = level;
event.irq = irq;
ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
if (ret < 0) {
perror("kvm_set_irqchip_line");
abort();
}
return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
}
#ifdef KVM_CAP_IRQ_ROUTING
static void set_gsi(KVMState *s, unsigned int gsi)
{
assert(gsi < s->max_gsi);
s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
}
static void kvm_init_irq_routing(KVMState *s)
{
int gsi_count;
gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
if (gsi_count > 0) {
unsigned int gsi_bits, i;
/* Round up so we can search ints using ffs */
gsi_bits = ALIGN(gsi_count, 32);
s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
s->max_gsi = gsi_bits;
/* Mark any over-allocated bits as already in use */
for (i = gsi_count; i < gsi_bits; i++) {
set_gsi(s, i);
}
}
s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
s->nr_allocated_irq_routes = 0;
kvm_arch_init_irq_routing(s);
}
static void kvm_add_routing_entry(KVMState *s,
struct kvm_irq_routing_entry *entry)
{
struct kvm_irq_routing_entry *new;
int n, size;
if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
n = s->nr_allocated_irq_routes * 2;
if (n < 64) {
n = 64;
}
size = sizeof(struct kvm_irq_routing);
size += n * sizeof(*new);
s->irq_routes = g_realloc(s->irq_routes, size);
s->nr_allocated_irq_routes = n;
}
n = s->irq_routes->nr++;
new = &s->irq_routes->entries[n];
memset(new, 0, sizeof(*new));
new->gsi = entry->gsi;
new->type = entry->type;
new->flags = entry->flags;
new->u = entry->u;
set_gsi(s, entry->gsi);
}
void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
{
struct kvm_irq_routing_entry e;
e.gsi = irq;
e.type = KVM_IRQ_ROUTING_IRQCHIP;
e.flags = 0;
e.u.irqchip.irqchip = irqchip;
e.u.irqchip.pin = pin;
kvm_add_routing_entry(s, &e);
}
int kvm_irqchip_commit_routes(KVMState *s)
{
s->irq_routes->flags = 0;
return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
}
#else /* !KVM_CAP_IRQ_ROUTING */
static void kvm_init_irq_routing(KVMState *s)
{
}
#endif /* !KVM_CAP_IRQ_ROUTING */
static int kvm_irqchip_create(KVMState *s)
{
QemuOptsList *list = qemu_find_opts("machine");
int ret;
if (QTAILQ_EMPTY(&list->head) ||
!qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
"kernel_irqchip", false) ||
!kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
return 0;
}
ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
if (ret < 0) {
fprintf(stderr, "Create kernel irqchip failed\n");
return ret;
}
s->irqchip_inject_ioctl = KVM_IRQ_LINE;
if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
}
kvm_kernel_irqchip = true;
kvm_init_irq_routing(s);
return 0;
}
int kvm_init(void)
{
static const char upgrade_note[] =
"Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
"(see http://sourceforge.net/projects/kvm).\n";
KVMState *s;
const KVMCapabilityInfo *missing_cap;
int ret;
int i;
s = g_malloc0(sizeof(KVMState));
/*
* On systems where the kernel can support different base page
* sizes, host page size may be different from TARGET_PAGE_SIZE,
* even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
* page size for the system though.
*/
assert(TARGET_PAGE_SIZE <= getpagesize());
#ifdef KVM_CAP_SET_GUEST_DEBUG
QTAILQ_INIT(&s->kvm_sw_breakpoints);
#endif
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
s->slots[i].slot = i;
}
s->vmfd = -1;
s->fd = qemu_open("/dev/kvm", O_RDWR);
if (s->fd == -1) {
fprintf(stderr, "Could not access KVM kernel module: %m\n");
ret = -errno;
goto err;
}
ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
if (ret < KVM_API_VERSION) {
if (ret > 0) {
ret = -EINVAL;
}
fprintf(stderr, "kvm version too old\n");
goto err;
}
if (ret > KVM_API_VERSION) {
ret = -EINVAL;
fprintf(stderr, "kvm version not supported\n");
goto err;
}
s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
if (s->vmfd < 0) {
#ifdef TARGET_S390X
fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
"your host kernel command line\n");
#endif
ret = s->vmfd;
goto err;
}
missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
if (!missing_cap) {
missing_cap =
kvm_check_extension_list(s, kvm_arch_required_capabilities);
}
if (missing_cap) {
ret = -EINVAL;
fprintf(stderr, "kvm does not support %s\n%s",
missing_cap->name, upgrade_note);
goto err;
}
s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
s->broken_set_mem_region = 1;
ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
if (ret > 0) {
s->broken_set_mem_region = 0;
}
#ifdef KVM_CAP_VCPU_EVENTS
s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
#endif
s->robust_singlestep =
kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
#ifdef KVM_CAP_DEBUGREGS
s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
#endif
#ifdef KVM_CAP_XSAVE
s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
#endif
#ifdef KVM_CAP_XCRS
s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
#endif
#ifdef KVM_CAP_PIT_STATE2
s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
#endif
ret = kvm_arch_init(s);
if (ret < 0) {
goto err;
}
ret = kvm_irqchip_create(s);
if (ret < 0) {
goto err;
}
kvm_state = s;
memory_listener_register(&kvm_memory_listener, NULL);
s->many_ioeventfds = kvm_check_many_ioeventfds();
cpu_interrupt_handler = kvm_handle_interrupt;
return 0;
err:
if (s) {
if (s->vmfd >= 0) {
close(s->vmfd);
}
if (s->fd != -1) {
close(s->fd);
}
}
g_free(s);
return ret;
}
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
uint32_t count)
{
int i;
uint8_t *ptr = data;
for (i = 0; i < count; i++) {
if (direction == KVM_EXIT_IO_IN) {
switch (size) {
case 1:
stb_p(ptr, cpu_inb(port));
break;
case 2:
stw_p(ptr, cpu_inw(port));
break;
case 4:
stl_p(ptr, cpu_inl(port));
break;
}
} else {
switch (size) {
case 1:
cpu_outb(port, ldub_p(ptr));
break;
case 2:
cpu_outw(port, lduw_p(ptr));
break;
case 4:
cpu_outl(port, ldl_p(ptr));
break;
}
}
ptr += size;
}
}
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
{
fprintf(stderr, "KVM internal error.");
if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
int i;
fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
for (i = 0; i < run->internal.ndata; ++i) {
fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
i, (uint64_t)run->internal.data[i]);
}
} else {
fprintf(stderr, "\n");
}
if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
fprintf(stderr, "emulation failure\n");
if (!kvm_arch_stop_on_emulation_error(env)) {
cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
return EXCP_INTERRUPT;
}
}
/* FIXME: Should trigger a qmp message to let management know
* something went wrong.
*/
return -1;
}
void kvm_flush_coalesced_mmio_buffer(void)
{
KVMState *s = kvm_state;
if (s->coalesced_flush_in_progress) {
return;
}
s->coalesced_flush_in_progress = true;
if (s->coalesced_mmio_ring) {
struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
while (ring->first != ring->last) {
struct kvm_coalesced_mmio *ent;
ent = &ring->coalesced_mmio[ring->first];
cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
smp_wmb();
ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
}
}
s->coalesced_flush_in_progress = false;
}
static void do_kvm_cpu_synchronize_state(void *_env)
{
CPUArchState *env = _env;
if (!env->kvm_vcpu_dirty) {
kvm_arch_get_registers(env);
env->kvm_vcpu_dirty = 1;
}
}
void kvm_cpu_synchronize_state(CPUArchState *env)
{
if (!env->kvm_vcpu_dirty) {
run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
}
}
void kvm_cpu_synchronize_post_reset(CPUArchState *env)
{
kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
env->kvm_vcpu_dirty = 0;
}
void kvm_cpu_synchronize_post_init(CPUArchState *env)
{
kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
env->kvm_vcpu_dirty = 0;
}
int kvm_cpu_exec(CPUArchState *env)
{
struct kvm_run *run = env->kvm_run;
int ret, run_ret;
DPRINTF("kvm_cpu_exec()\n");
if (kvm_arch_process_async_events(env)) {
env->exit_request = 0;
return EXCP_HLT;
}
do {
if (env->kvm_vcpu_dirty) {
kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
env->kvm_vcpu_dirty = 0;
}
kvm_arch_pre_run(env, run);
if (env->exit_request) {
DPRINTF("interrupt exit requested\n");
/*
* KVM requires us to reenter the kernel after IO exits to complete
* instruction emulation. This self-signal will ensure that we
* leave ASAP again.
*/
qemu_cpu_kick_self();
}
qemu_mutex_unlock_iothread();
run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
qemu_mutex_lock_iothread();
kvm_arch_post_run(env, run);
kvm_flush_coalesced_mmio_buffer();
if (run_ret < 0) {
if (run_ret == -EINTR || run_ret == -EAGAIN) {
DPRINTF("io window exit\n");
ret = EXCP_INTERRUPT;
break;
}
fprintf(stderr, "error: kvm run failed %s\n",
strerror(-run_ret));
abort();
}
switch (run->exit_reason) {
case KVM_EXIT_IO:
DPRINTF("handle_io\n");
kvm_handle_io(run->io.port,
(uint8_t *)run + run->io.data_offset,
run->io.direction,
run->io.size,
run->io.count);
ret = 0;
break;
case KVM_EXIT_MMIO:
DPRINTF("handle_mmio\n");
cpu_physical_memory_rw(run->mmio.phys_addr,
run->mmio.data,
run->mmio.len,
run->mmio.is_write);
ret = 0;
break;
case KVM_EXIT_IRQ_WINDOW_OPEN:
DPRINTF("irq_window_open\n");
ret = EXCP_INTERRUPT;
break;
case KVM_EXIT_SHUTDOWN:
DPRINTF("shutdown\n");
qemu_system_reset_request();
ret = EXCP_INTERRUPT;
break;
case KVM_EXIT_UNKNOWN:
fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
(uint64_t)run->hw.hardware_exit_reason);
ret = -1;
break;
case KVM_EXIT_INTERNAL_ERROR:
ret = kvm_handle_internal_error(env, run);
break;
default:
DPRINTF("kvm_arch_handle_exit\n");
ret = kvm_arch_handle_exit(env, run);
break;
}
} while (ret == 0);
if (ret < 0) {
cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
vm_stop(RUN_STATE_INTERNAL_ERROR);
}
env->exit_request = 0;
return ret;
}
int kvm_ioctl(KVMState *s, int type, ...)
{
int ret;
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
ret = ioctl(s->fd, type, arg);
if (ret == -1) {
ret = -errno;
}
return ret;
}
int kvm_vm_ioctl(KVMState *s, int type, ...)
{
int ret;
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
ret = ioctl(s->vmfd, type, arg);
if (ret == -1) {
ret = -errno;
}
return ret;
}
int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
{
int ret;
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
ret = ioctl(env->kvm_fd, type, arg);
if (ret == -1) {
ret = -errno;
}
return ret;
}
int kvm_has_sync_mmu(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
}
int kvm_has_vcpu_events(void)
{
return kvm_state->vcpu_events;
}
int kvm_has_robust_singlestep(void)
{
return kvm_state->robust_singlestep;
}
int kvm_has_debugregs(void)
{
return kvm_state->debugregs;
}
int kvm_has_xsave(void)
{
return kvm_state->xsave;
}
int kvm_has_xcrs(void)
{
return kvm_state->xcrs;
}
int kvm_has_pit_state2(void)
{
return kvm_state->pit_state2;
}
int kvm_has_many_ioeventfds(void)
{
if (!kvm_enabled()) {
return 0;
}
return kvm_state->many_ioeventfds;
}
int kvm_has_gsi_routing(void)
{
#ifdef KVM_CAP_IRQ_ROUTING
return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
#else
return false;
#endif
}
int kvm_allows_irq0_override(void)
{
return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
}
void kvm_setup_guest_memory(void *start, size_t size)
{
if (!kvm_has_sync_mmu()) {
int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
if (ret) {
perror("qemu_madvise");
fprintf(stderr,
"Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
exit(1);
}
}
}
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
target_ulong pc)
{
struct kvm_sw_breakpoint *bp;
QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
if (bp->pc == pc) {
return bp;
}
}
return NULL;
}
int kvm_sw_breakpoints_active(CPUArchState *env)
{
return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
}
struct kvm_set_guest_debug_data {
struct kvm_guest_debug dbg;
CPUArchState *env;
int err;
};
static void kvm_invoke_set_guest_debug(void *data)
{
struct kvm_set_guest_debug_data *dbg_data = data;
CPUArchState *env = dbg_data->env;
dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
}
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
{
struct kvm_set_guest_debug_data data;
data.dbg.control = reinject_trap;
if (env->singlestep_enabled) {
data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
}
kvm_arch_update_guest_debug(env, &data.dbg);
data.env = env;
run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
return data.err;
}
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
target_ulong len, int type)
{
struct kvm_sw_breakpoint *bp;
CPUArchState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_env, addr);
if (bp) {
bp->use_count++;
return 0;
}
bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
if (!bp) {
return -ENOMEM;
}
bp->pc = addr;
bp->use_count = 1;
err = kvm_arch_insert_sw_breakpoint(current_env, bp);
if (err) {
g_free(bp);
return err;
}
QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
bp, entry);
} else {
err = kvm_arch_insert_hw_breakpoint(addr, len, type);
if (err) {
return err;
}
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err) {
return err;
}
}
return 0;
}
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
target_ulong len, int type)
{
struct kvm_sw_breakpoint *bp;
CPUArchState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_env, addr);
if (!bp) {
return -ENOENT;
}
if (bp->use_count > 1) {
bp->use_count--;
return 0;
}
err = kvm_arch_remove_sw_breakpoint(current_env, bp);
if (err) {
return err;
}
QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
g_free(bp);
} else {
err = kvm_arch_remove_hw_breakpoint(addr, len, type);
if (err) {
return err;
}
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err) {
return err;
}
}
return 0;
}
void kvm_remove_all_breakpoints(CPUArchState *current_env)
{
struct kvm_sw_breakpoint *bp, *next;
KVMState *s = current_env->kvm_state;
CPUArchState *env;
QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
/* Try harder to find a CPU that currently sees the breakpoint. */
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
break;
}
}
}
}
kvm_arch_remove_all_hw_breakpoints();
for (env = first_cpu; env != NULL; env = env->next_cpu) {
kvm_update_guest_debug(env, 0);
}
}
#else /* !KVM_CAP_SET_GUEST_DEBUG */
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
{
return -EINVAL;
}
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
void kvm_remove_all_breakpoints(CPUArchState *current_env)
{
}
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
{
struct kvm_signal_mask *sigmask;
int r;
if (!sigset) {
return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
}
sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
sigmask->len = 8;
memcpy(sigmask->sigset, sigset, sizeof(*sigset));
r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
g_free(sigmask);
return r;
}
int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
uint32_t size)
{
int ret;
struct kvm_ioeventfd iofd;
iofd.datamatch = val;
iofd.addr = addr;
iofd.len = size;
iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
iofd.fd = fd;
if (!kvm_enabled()) {
return -ENOSYS;
}
if (!assign) {
iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
if (ret < 0) {
return -errno;
}
return 0;
}
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
{
struct kvm_ioeventfd kick = {
.datamatch = val,
.addr = addr,
.len = 2,
.flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
.fd = fd,
};
int r;
if (!kvm_enabled()) {
return -ENOSYS;
}
if (!assign) {
kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
if (r < 0) {
return r;
}
return 0;
}
int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
{
return kvm_arch_on_sigbus_vcpu(env, code, addr);
}
int kvm_on_sigbus(int code, void *addr)
{
return kvm_arch_on_sigbus(code, addr);
}