blob: 3741766051547fbc71a46ab42efe72a181826993 [file] [log] [blame]
/*
* Copyright (C) 2018 Western Digital Corporation or its affiliates.
*
* This file is released under the GPL.
*/
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>
#include "compiler/compiler.h"
#include "os/os.h"
#include "file.h"
#include "fio.h"
#include "lib/pow2.h"
#include "log.h"
#include "oslib/asprintf.h"
#include "smalloc.h"
#include "verify.h"
#include "pshared.h"
#include "zbd.h"
static bool is_valid_offset(const struct fio_file *f, uint64_t offset)
{
return (uint64_t)(offset - f->file_offset) < f->io_size;
}
static inline unsigned int zbd_zone_idx(const struct fio_file *f,
struct fio_zone_info *zone)
{
return zone - f->zbd_info->zone_info;
}
/**
* zbd_offset_to_zone_idx - convert an offset into a zone number
* @f: file pointer.
* @offset: offset in bytes. If this offset is in the first zone_size bytes
* past the disk size then the index of the sentinel is returned.
*/
static unsigned int zbd_offset_to_zone_idx(const struct fio_file *f,
uint64_t offset)
{
uint32_t zone_idx;
if (f->zbd_info->zone_size_log2 > 0)
zone_idx = offset >> f->zbd_info->zone_size_log2;
else
zone_idx = offset / f->zbd_info->zone_size;
return min(zone_idx, f->zbd_info->nr_zones);
}
/**
* zbd_zone_end - Return zone end location
* @z: zone info pointer.
*/
static inline uint64_t zbd_zone_end(const struct fio_zone_info *z)
{
return (z+1)->start;
}
/**
* zbd_zone_capacity_end - Return zone capacity limit end location
* @z: zone info pointer.
*/
static inline uint64_t zbd_zone_capacity_end(const struct fio_zone_info *z)
{
return z->start + z->capacity;
}
/**
* zbd_zone_remainder - Return the number of bytes that are still available for
* writing before the zone gets full
* @z: zone info pointer.
*/
static inline uint64_t zbd_zone_remainder(struct fio_zone_info *z)
{
if (z->wp >= zbd_zone_capacity_end(z))
return 0;
return zbd_zone_capacity_end(z) - z->wp;
}
/**
* zbd_zone_full - verify whether a minimum number of bytes remain in a zone
* @f: file pointer.
* @z: zone info pointer.
* @required: minimum number of bytes that must remain in a zone.
*
* The caller must hold z->mutex.
*/
static bool zbd_zone_full(const struct fio_file *f, struct fio_zone_info *z,
uint64_t required)
{
assert((required & 511) == 0);
return z->has_wp && required > zbd_zone_remainder(z);
}
static void zone_lock(struct thread_data *td, const struct fio_file *f,
struct fio_zone_info *z)
{
#ifndef NDEBUG
unsigned int const nz = zbd_zone_idx(f, z);
/* A thread should never lock zones outside its working area. */
assert(f->min_zone <= nz && nz < f->max_zone);
assert(z->has_wp);
#endif
/*
* Lock the io_u target zone. The zone will be unlocked if io_u offset
* is changed or when io_u completes and zbd_put_io() executed.
* To avoid multiple jobs doing asynchronous I/Os from deadlocking each
* other waiting for zone locks when building an io_u batch, first
* only trylock the zone. If the zone is already locked by another job,
* process the currently queued I/Os so that I/O progress is made and
* zones unlocked.
*/
if (pthread_mutex_trylock(&z->mutex) != 0) {
if (!td_ioengine_flagged(td, FIO_SYNCIO))
io_u_quiesce(td);
pthread_mutex_lock(&z->mutex);
}
}
static inline void zone_unlock(struct fio_zone_info *z)
{
assert(z->has_wp);
pthread_mutex_unlock(&z->mutex);
}
static inline struct fio_zone_info *zbd_get_zone(const struct fio_file *f,
unsigned int zone_idx)
{
return &f->zbd_info->zone_info[zone_idx];
}
static inline struct fio_zone_info *
zbd_offset_to_zone(const struct fio_file *f, uint64_t offset)
{
return zbd_get_zone(f, zbd_offset_to_zone_idx(f, offset));
}
static bool accounting_vdb(struct thread_data *td, const struct fio_file *f)
{
return td->o.zrt.u.f && td_write(td);
}
/**
* zbd_get_zoned_model - Get a device zoned model
* @td: FIO thread data
* @f: FIO file for which to get model information
*/
static int zbd_get_zoned_model(struct thread_data *td, struct fio_file *f,
enum zbd_zoned_model *model)
{
int ret;
if (f->filetype == FIO_TYPE_PIPE) {
log_err("zonemode=zbd does not support pipes\n");
return -EINVAL;
}
/* If regular file, always emulate zones inside the file. */
if (f->filetype == FIO_TYPE_FILE) {
*model = ZBD_NONE;
return 0;
}
if (td->io_ops && td->io_ops->get_zoned_model)
ret = td->io_ops->get_zoned_model(td, f, model);
else
ret = blkzoned_get_zoned_model(td, f, model);
if (ret < 0) {
td_verror(td, errno, "get zoned model failed");
log_err("%s: get zoned model failed (%d).\n",
f->file_name, errno);
}
return ret;
}
/**
* zbd_report_zones - Get zone information
* @td: FIO thread data.
* @f: FIO file for which to get zone information
* @offset: offset from which to report zones
* @zones: Array of struct zbd_zone
* @nr_zones: Size of @zones array
*
* Get zone information into @zones starting from the zone at offset @offset
* for the device specified by @f.
*
* Returns the number of zones reported upon success and a negative error code
* upon failure. If the zone report is empty, always assume an error (device
* problem) and return -EIO.
*/
static int zbd_report_zones(struct thread_data *td, struct fio_file *f,
uint64_t offset, struct zbd_zone *zones,
unsigned int nr_zones)
{
int ret;
if (td->io_ops && td->io_ops->report_zones)
ret = td->io_ops->report_zones(td, f, offset, zones, nr_zones);
else
ret = blkzoned_report_zones(td, f, offset, zones, nr_zones);
if (ret < 0) {
td_verror(td, errno, "report zones failed");
log_err("%s: report zones from sector %"PRIu64" failed (nr_zones=%d; errno=%d).\n",
f->file_name, offset >> 9, nr_zones, errno);
} else if (ret == 0) {
td_verror(td, errno, "Empty zone report");
log_err("%s: report zones from sector %"PRIu64" is empty.\n",
f->file_name, offset >> 9);
ret = -EIO;
}
return ret;
}
/**
* zbd_reset_wp - reset the write pointer of a range of zones
* @td: FIO thread data.
* @f: FIO file for which to reset zones
* @offset: Starting offset of the first zone to reset
* @length: Length of the range of zones to reset
*
* Reset the write pointer of all zones in the range @offset...@offset+@length.
* Returns 0 upon success and a negative error code upon failure.
*/
static int zbd_reset_wp(struct thread_data *td, struct fio_file *f,
uint64_t offset, uint64_t length)
{
int ret;
if (td->io_ops && td->io_ops->reset_wp)
ret = td->io_ops->reset_wp(td, f, offset, length);
else
ret = blkzoned_reset_wp(td, f, offset, length);
if (ret < 0) {
td_verror(td, errno, "resetting wp failed");
log_err("%s: resetting wp for %"PRIu64" sectors at sector %"PRIu64" failed (%d).\n",
f->file_name, length >> 9, offset >> 9, errno);
}
return ret;
}
/**
* __zbd_reset_zone - reset the write pointer of a single zone
* @td: FIO thread data.
* @f: FIO file associated with the disk for which to reset a write pointer.
* @z: Zone to reset.
*
* Returns 0 upon success and a negative error code upon failure.
*
* The caller must hold z->mutex.
*/
static int __zbd_reset_zone(struct thread_data *td, struct fio_file *f,
struct fio_zone_info *z)
{
uint64_t offset = z->start;
uint64_t length = (z+1)->start - offset;
uint64_t data_in_zone = z->wp - z->start;
int ret = 0;
if (!data_in_zone)
return 0;
assert(is_valid_offset(f, offset + length - 1));
dprint(FD_ZBD, "%s: resetting wp of zone %u.\n",
f->file_name, zbd_zone_idx(f, z));
switch (f->zbd_info->model) {
case ZBD_HOST_AWARE:
case ZBD_HOST_MANAGED:
ret = zbd_reset_wp(td, f, offset, length);
if (ret < 0)
return ret;
break;
default:
break;
}
if (accounting_vdb(td, f)) {
pthread_mutex_lock(&f->zbd_info->mutex);
f->zbd_info->wp_valid_data_bytes -= data_in_zone;
pthread_mutex_unlock(&f->zbd_info->mutex);
}
z->wp = z->start;
td->ts.nr_zone_resets++;
return ret;
}
/**
* zbd_write_zone_put - Remove a zone from the write target zones array.
* @td: FIO thread data.
* @f: FIO file that has the write zones array to remove.
* @zone_idx: Index of the zone to remove.
*
* The caller must hold f->zbd_info->mutex.
*/
static void zbd_write_zone_put(struct thread_data *td, const struct fio_file *f,
struct fio_zone_info *z)
{
uint32_t zi;
if (!z->write)
return;
for (zi = 0; zi < f->zbd_info->num_write_zones; zi++) {
if (zbd_get_zone(f, f->zbd_info->write_zones[zi]) == z)
break;
}
if (zi == f->zbd_info->num_write_zones)
return;
dprint(FD_ZBD, "%s: removing zone %u from write zone array\n",
f->file_name, zbd_zone_idx(f, z));
memmove(f->zbd_info->write_zones + zi,
f->zbd_info->write_zones + zi + 1,
(ZBD_MAX_WRITE_ZONES - (zi + 1)) *
sizeof(f->zbd_info->write_zones[0]));
f->zbd_info->num_write_zones--;
td->num_write_zones--;
z->write = 0;
}
/**
* zbd_reset_zone - reset the write pointer of a single zone and remove the zone
* from the array of write zones.
* @td: FIO thread data.
* @f: FIO file associated with the disk for which to reset a write pointer.
* @z: Zone to reset.
*
* Returns 0 upon success and a negative error code upon failure.
*
* The caller must hold z->mutex.
*/
static int zbd_reset_zone(struct thread_data *td, struct fio_file *f,
struct fio_zone_info *z)
{
int ret;
ret = __zbd_reset_zone(td, f, z);
if (ret)
return ret;
pthread_mutex_lock(&f->zbd_info->mutex);
zbd_write_zone_put(td, f, z);
pthread_mutex_unlock(&f->zbd_info->mutex);
return 0;
}
/**
* zbd_finish_zone - finish the specified zone
* @td: FIO thread data.
* @f: FIO file for which to finish a zone
* @z: Zone to finish.
*
* Finish the zone at @offset with open or close status.
*/
static int zbd_finish_zone(struct thread_data *td, struct fio_file *f,
struct fio_zone_info *z)
{
uint64_t offset = z->start;
uint64_t length = f->zbd_info->zone_size;
int ret = 0;
switch (f->zbd_info->model) {
case ZBD_HOST_AWARE:
case ZBD_HOST_MANAGED:
if (td->io_ops && td->io_ops->finish_zone)
ret = td->io_ops->finish_zone(td, f, offset, length);
else
ret = blkzoned_finish_zone(td, f, offset, length);
break;
default:
break;
}
if (ret < 0) {
td_verror(td, errno, "finish zone failed");
log_err("%s: finish zone at sector %"PRIu64" failed (%d).\n",
f->file_name, offset >> 9, errno);
} else {
z->wp = (z+1)->start;
}
return ret;
}
/**
* zbd_reset_zones - Reset a range of zones.
* @td: fio thread data.
* @f: fio file for which to reset zones
* @zb: first zone to reset.
* @ze: first zone not to reset.
*
* Returns 0 upon success and 1 upon failure.
*/
static int zbd_reset_zones(struct thread_data *td, struct fio_file *f,
struct fio_zone_info *const zb,
struct fio_zone_info *const ze)
{
struct fio_zone_info *z;
const uint64_t min_bs = td->o.min_bs[DDIR_WRITE];
int res = 0;
if (fio_unlikely(0 == min_bs))
return 1;
dprint(FD_ZBD, "%s: examining zones %u .. %u\n",
f->file_name, zbd_zone_idx(f, zb), zbd_zone_idx(f, ze));
for (z = zb; z < ze; z++) {
if (!z->has_wp)
continue;
zone_lock(td, f, z);
if (z->wp != z->start) {
dprint(FD_ZBD, "%s: resetting zone %u\n",
f->file_name, zbd_zone_idx(f, z));
if (zbd_reset_zone(td, f, z) < 0)
res = 1;
}
zone_unlock(z);
}
return res;
}
/**
* zbd_get_max_open_zones - Get the maximum number of open zones
* @td: FIO thread data
* @f: FIO file for which to get max open zones
* @max_open_zones: Upon success, result will be stored here.
*
* A @max_open_zones value set to zero means no limit.
*
* Returns 0 upon success and a negative error code upon failure.
*/
static int zbd_get_max_open_zones(struct thread_data *td, struct fio_file *f,
unsigned int *max_open_zones)
{
int ret;
if (td->io_ops && td->io_ops->get_max_open_zones)
ret = td->io_ops->get_max_open_zones(td, f, max_open_zones);
else
ret = blkzoned_get_max_open_zones(td, f, max_open_zones);
if (ret < 0) {
td_verror(td, errno, "get max open zones failed");
log_err("%s: get max open zones failed (%d).\n",
f->file_name, errno);
}
return ret;
}
/**
* zbd_get_max_active_zones - Get the maximum number of active zones
* @td: FIO thread data
* @f: FIO file for which to get max active zones
*
* Returns max_active_zones limit value of the target file if it is available.
* Otherwise return zero, which means no limit.
*/
static unsigned int zbd_get_max_active_zones(struct thread_data *td,
struct fio_file *f)
{
unsigned int max_active_zones;
int ret;
if (td->io_ops && td->io_ops->get_max_active_zones)
ret = td->io_ops->get_max_active_zones(td, f,
&max_active_zones);
else
ret = blkzoned_get_max_active_zones(td, f, &max_active_zones);
if (ret < 0) {
dprint(FD_ZBD, "%s: max_active_zones is not available\n",
f->file_name);
return 0;
}
return max_active_zones;
}
/**
* __zbd_write_zone_get - Add a zone to the array of write zones.
* @td: fio thread data.
* @f: fio file that has the write zones array to add.
* @zone_idx: Index of the zone to add.
*
* Do same operation as @zbd_write_zone_get, except it adds the zone at
* @zone_idx to write target zones array even when it does not have remainder
* space to write one block.
*/
static bool __zbd_write_zone_get(struct thread_data *td,
const struct fio_file *f,
struct fio_zone_info *z)
{
struct zoned_block_device_info *zbdi = f->zbd_info;
uint32_t zone_idx = zbd_zone_idx(f, z);
bool res = true;
if (z->cond == ZBD_ZONE_COND_OFFLINE)
return false;
/*
* Skip full zones with data verification enabled because resetting a
* zone causes data loss and hence causes verification to fail.
*/
if (td->o.verify != VERIFY_NONE && zbd_zone_remainder(z) == 0)
return false;
/*
* zbdi->max_write_zones == 0 means that there is no limit on the
* maximum number of write target zones. In this case, do no track write
* target zones in zbdi->write_zones array.
*/
if (!zbdi->max_write_zones)
return true;
pthread_mutex_lock(&zbdi->mutex);
if (z->write) {
/*
* If the zone is going to be completely filled by writes
* already in-flight, handle it as a full zone instead of a
* write target zone.
*/
if (!zbd_zone_remainder(z))
res = false;
goto out;
}
res = false;
/* Zero means no limit */
if (td->o.job_max_open_zones > 0 &&
td->num_write_zones >= td->o.job_max_open_zones)
goto out;
if (zbdi->num_write_zones >= zbdi->max_write_zones)
goto out;
dprint(FD_ZBD, "%s: adding zone %u to write zone array\n",
f->file_name, zone_idx);
zbdi->write_zones[zbdi->num_write_zones++] = zone_idx;
td->num_write_zones++;
z->write = 1;
res = true;
out:
pthread_mutex_unlock(&zbdi->mutex);
return res;
}
/**
* zbd_write_zone_get - Add a zone to the array of write zones.
* @td: fio thread data.
* @f: fio file that has the open zones to add.
* @zone_idx: Index of the zone to add.
*
* Add a ZBD zone to write target zones array, if it is not yet added. Returns
* true if either the zone was already added or if the zone was successfully
* added to the array without exceeding the maximum number of write zones.
* Returns false if the zone was not already added and addition of the zone
* would cause the zone limit to be exceeded.
*/
static bool zbd_write_zone_get(struct thread_data *td, const struct fio_file *f,
struct fio_zone_info *z)
{
const uint64_t min_bs = td->o.min_bs[DDIR_WRITE];
/*
* Skip full zones with data verification enabled because resetting a
* zone causes data loss and hence causes verification to fail.
*/
if (td->o.verify != VERIFY_NONE && zbd_zone_full(f, z, min_bs))
return false;
return __zbd_write_zone_get(td, f, z);
}
/* Verify whether direct I/O is used for all host-managed zoned block drives. */
static bool zbd_using_direct_io(void)
{
struct fio_file *f;
int j;
for_each_td(td) {
if (td->o.odirect || !(td->o.td_ddir & TD_DDIR_WRITE))
continue;
for_each_file(td, f, j) {
if (f->zbd_info && f->filetype == FIO_TYPE_BLOCK &&
f->zbd_info->model == ZBD_HOST_MANAGED)
return false;
}
} end_for_each();
return true;
}
/* Whether or not the I/O range for f includes one or more sequential zones */
static bool zbd_is_seq_job(const struct fio_file *f)
{
uint32_t zone_idx, zone_idx_b, zone_idx_e;
assert(f->zbd_info);
if (f->io_size == 0)
return false;
zone_idx_b = zbd_offset_to_zone_idx(f, f->file_offset);
zone_idx_e =
zbd_offset_to_zone_idx(f, f->file_offset + f->io_size - 1);
for (zone_idx = zone_idx_b; zone_idx <= zone_idx_e; zone_idx++)
if (zbd_get_zone(f, zone_idx)->has_wp)
return true;
return false;
}
/*
* Verify whether the file offset and size parameters are aligned with zone
* boundaries. If the file offset is not aligned, align it down to the start of
* the zone containing the start offset and align up the file io_size parameter.
*/
static bool zbd_zone_align_file_sizes(struct thread_data *td,
struct fio_file *f)
{
const struct fio_zone_info *z;
uint64_t new_offset, new_end;
if (!f->zbd_info)
return true;
if (f->file_offset >= f->real_file_size)
return true;
if (!zbd_is_seq_job(f))
return true;
if (!td->o.zone_size) {
td->o.zone_size = f->zbd_info->zone_size;
if (!td->o.zone_size) {
log_err("%s: invalid 0 zone size\n",
f->file_name);
return false;
}
} else if (td->o.zone_size != f->zbd_info->zone_size) {
log_err("%s: zonesize %llu does not match the device zone size %"PRIu64".\n",
f->file_name, td->o.zone_size,
f->zbd_info->zone_size);
return false;
}
if (td->o.zone_skip % td->o.zone_size) {
log_err("%s: zoneskip %llu is not a multiple of the device zone size %llu.\n",
f->file_name, td->o.zone_skip,
td->o.zone_size);
return false;
}
if (td->o.td_ddir == TD_DDIR_READ) {
z = zbd_offset_to_zone(f, f->file_offset + f->io_size);
new_end = z->start;
if (f->file_offset + f->io_size > new_end) {
log_info("%s: rounded io_size from %"PRIu64" to %"PRIu64"\n",
f->file_name, f->io_size,
new_end - f->file_offset);
f->io_size = new_end - f->file_offset;
}
return true;
}
z = zbd_offset_to_zone(f, f->file_offset);
if (f->file_offset != z->start) {
new_offset = zbd_zone_end(z);
if (new_offset >= f->file_offset + f->io_size) {
log_info("%s: io_size must be at least one zone\n",
f->file_name);
return false;
}
log_info("%s: rounded up offset from %"PRIu64" to %"PRIu64"\n",
f->file_name, f->file_offset,
new_offset);
f->io_size -= (new_offset - f->file_offset);
f->file_offset = new_offset;
}
z = zbd_offset_to_zone(f, f->file_offset + f->io_size);
new_end = z->start;
if (f->file_offset + f->io_size != new_end) {
if (new_end <= f->file_offset) {
log_info("%s: io_size must be at least one zone\n",
f->file_name);
return false;
}
log_info("%s: rounded down io_size from %"PRIu64" to %"PRIu64"\n",
f->file_name, f->io_size,
new_end - f->file_offset);
f->io_size = new_end - f->file_offset;
}
return true;
}
/*
* Verify whether offset and size parameters are aligned with zone boundaries.
*/
static bool zbd_verify_sizes(void)
{
struct fio_file *f;
int j;
for_each_td(td) {
for_each_file(td, f, j) {
if (!zbd_zone_align_file_sizes(td, f))
return false;
}
} end_for_each();
return true;
}
static bool zbd_verify_bs(void)
{
struct fio_file *f;
int j;
for_each_td(td) {
if (td_trim(td) &&
(td->o.min_bs[DDIR_TRIM] != td->o.max_bs[DDIR_TRIM] ||
td->o.bssplit_nr[DDIR_TRIM])) {
log_info("bsrange and bssplit are not allowed for trim with zonemode=zbd\n");
return false;
}
for_each_file(td, f, j) {
uint64_t zone_size;
if (!f->zbd_info)
continue;
zone_size = f->zbd_info->zone_size;
if (td_trim(td) && td->o.bs[DDIR_TRIM] != zone_size) {
log_info("%s: trim block size %llu is not the zone size %"PRIu64"\n",
f->file_name, td->o.bs[DDIR_TRIM],
zone_size);
return false;
}
}
} end_for_each();
return true;
}
static int ilog2(uint64_t i)
{
int log = -1;
while (i) {
i >>= 1;
log++;
}
return log;
}
/*
* Initialize f->zbd_info for devices that are not zoned block devices. This
* allows to execute a ZBD workload against a non-ZBD device.
*/
static int init_zone_info(struct thread_data *td, struct fio_file *f)
{
uint32_t nr_zones;
struct fio_zone_info *p;
uint64_t zone_size = td->o.zone_size;
uint64_t zone_capacity = td->o.zone_capacity;
struct zoned_block_device_info *zbd_info = NULL;
int i;
if (zone_size == 0) {
log_err("%s: Specifying the zone size is mandatory for regular file/block device with --zonemode=zbd\n\n",
f->file_name);
return 1;
}
if (zone_size < 512) {
log_err("%s: zone size must be at least 512 bytes for --zonemode=zbd\n\n",
f->file_name);
return 1;
}
if (zone_capacity == 0)
zone_capacity = zone_size;
if (zone_capacity > zone_size) {
log_err("%s: job parameter zonecapacity %llu is larger than zone size %llu\n",
f->file_name, td->o.zone_capacity, td->o.zone_size);
return 1;
}
if (f->real_file_size < zone_size) {
log_err("%s: file/device size %"PRIu64" is smaller than zone size %"PRIu64"\n",
f->file_name, f->real_file_size, zone_size);
return -EINVAL;
}
nr_zones = (f->real_file_size + zone_size - 1) / zone_size;
zbd_info = scalloc(1, sizeof(*zbd_info) +
(nr_zones + 1) * sizeof(zbd_info->zone_info[0]));
if (!zbd_info)
return -ENOMEM;
mutex_init_pshared(&zbd_info->mutex);
zbd_info->refcount = 1;
p = &zbd_info->zone_info[0];
for (i = 0; i < nr_zones; i++, p++) {
mutex_init_pshared_with_type(&p->mutex,
PTHREAD_MUTEX_RECURSIVE);
p->start = i * zone_size;
p->wp = p->start;
p->type = ZBD_ZONE_TYPE_SWR;
p->cond = ZBD_ZONE_COND_EMPTY;
p->capacity = zone_capacity;
p->has_wp = 1;
}
/* a sentinel */
p->start = nr_zones * zone_size;
f->zbd_info = zbd_info;
f->zbd_info->zone_size = zone_size;
f->zbd_info->zone_size_log2 = is_power_of_2(zone_size) ?
ilog2(zone_size) : 0;
f->zbd_info->nr_zones = nr_zones;
return 0;
}
/*
* Maximum number of zones to report in one operation.
*/
#define ZBD_REPORT_MAX_ZONES 8192U
/*
* Parse the device zone report and store it in f->zbd_info. Must be called
* only for devices that are zoned, namely those with a model != ZBD_NONE.
*/
static int parse_zone_info(struct thread_data *td, struct fio_file *f)
{
int nr_zones, nrz;
struct zbd_zone *zones, *z;
struct fio_zone_info *p;
uint64_t zone_size, offset, capacity;
bool same_zone_cap = true;
struct zoned_block_device_info *zbd_info = NULL;
int i, j, ret = -ENOMEM;
zones = calloc(ZBD_REPORT_MAX_ZONES, sizeof(struct zbd_zone));
if (!zones)
goto out;
nrz = zbd_report_zones(td, f, 0, zones, ZBD_REPORT_MAX_ZONES);
if (nrz < 0) {
ret = nrz;
log_info("fio: report zones (offset 0) failed for %s (%d).\n",
f->file_name, -ret);
goto out;
}
zone_size = zones[0].len;
capacity = zones[0].capacity;
nr_zones = (f->real_file_size + zone_size - 1) / zone_size;
if (td->o.zone_size == 0) {
td->o.zone_size = zone_size;
} else if (td->o.zone_size != zone_size) {
log_err("fio: %s job parameter zonesize %llu does not match disk zone size %"PRIu64".\n",
f->file_name, td->o.zone_size, zone_size);
ret = -EINVAL;
goto out;
}
dprint(FD_ZBD, "Device %s has %d zones of size %"PRIu64" KB\n",
f->file_name, nr_zones, zone_size / 1024);
zbd_info = scalloc(1, sizeof(*zbd_info) +
(nr_zones + 1) * sizeof(zbd_info->zone_info[0]));
if (!zbd_info)
goto out;
mutex_init_pshared(&zbd_info->mutex);
zbd_info->refcount = 1;
p = &zbd_info->zone_info[0];
for (offset = 0, j = 0; j < nr_zones;) {
z = &zones[0];
for (i = 0; i < nrz; i++, j++, z++, p++) {
mutex_init_pshared_with_type(&p->mutex,
PTHREAD_MUTEX_RECURSIVE);
p->start = z->start;
p->capacity = z->capacity;
if (capacity != z->capacity)
same_zone_cap = false;
switch (z->cond) {
case ZBD_ZONE_COND_NOT_WP:
case ZBD_ZONE_COND_FULL:
p->wp = p->start + p->capacity;
break;
default:
assert(z->start <= z->wp);
assert(z->wp <= z->start + zone_size);
p->wp = z->wp;
break;
}
switch (z->type) {
case ZBD_ZONE_TYPE_SWR:
p->has_wp = 1;
break;
default:
p->has_wp = 0;
}
p->type = z->type;
p->cond = z->cond;
if (j > 0 && p->start != p[-1].start + zone_size) {
log_info("%s: invalid zone data [%d:%d]: %"PRIu64" + %"PRIu64" != %"PRIu64"\n",
f->file_name, j, i,
p[-1].start, zone_size, p->start);
ret = -EINVAL;
goto out;
}
}
z--;
offset = z->start + z->len;
if (j >= nr_zones)
break;
nrz = zbd_report_zones(td, f, offset, zones,
min((uint32_t)(nr_zones - j),
ZBD_REPORT_MAX_ZONES));
if (nrz < 0) {
ret = nrz;
log_info("fio: report zones (offset %"PRIu64") failed for %s (%d).\n",
offset, f->file_name, -ret);
goto out;
}
}
/* a sentinel */
zbd_info->zone_info[nr_zones].start = offset;
f->zbd_info = zbd_info;
f->zbd_info->zone_size = zone_size;
f->zbd_info->zone_size_log2 = is_power_of_2(zone_size) ?
ilog2(zone_size) : 0;
f->zbd_info->nr_zones = nr_zones;
f->zbd_info->max_active_zones = zbd_get_max_active_zones(td, f);
if (same_zone_cap)
dprint(FD_ZBD, "Zone capacity = %"PRIu64" KB\n",
capacity / 1024);
zbd_info = NULL;
ret = 0;
out:
sfree(zbd_info);
free(zones);
return ret;
}
static int zbd_set_max_write_zones(struct thread_data *td, struct fio_file *f)
{
struct zoned_block_device_info *zbd = f->zbd_info;
unsigned int max_open_zones;
int ret;
if (zbd->model != ZBD_HOST_MANAGED || td->o.ignore_zone_limits) {
/* Only host-managed devices have a max open limit */
zbd->max_write_zones = td->o.max_open_zones;
goto out;
}
/* If host-managed, get the max open limit */
ret = zbd_get_max_open_zones(td, f, &max_open_zones);
if (ret)
return ret;
if (!max_open_zones) {
/* No device limit */
zbd->max_write_zones = td->o.max_open_zones;
} else if (!td->o.max_open_zones) {
/* No user limit. Set limit to device limit */
zbd->max_write_zones = max_open_zones;
} else if (td->o.max_open_zones <= max_open_zones) {
/* Both user limit and dev limit. User limit not too large */
zbd->max_write_zones = td->o.max_open_zones;
} else {
/* Both user limit and dev limit. User limit too large */
td_verror(td, EINVAL,
"Specified --max_open_zones is too large");
log_err("Specified --max_open_zones (%d) is larger than max (%u)\n",
td->o.max_open_zones, max_open_zones);
return -EINVAL;
}
out:
/* Ensure that the limit is not larger than FIO's internal limit */
if (zbd->max_write_zones > ZBD_MAX_WRITE_ZONES) {
td_verror(td, EINVAL, "'max_open_zones' value is too large");
log_err("'max_open_zones' value is larger than %u\n",
ZBD_MAX_WRITE_ZONES);
return -EINVAL;
}
dprint(FD_ZBD, "%s: using max write zones limit: %"PRIu32"\n",
f->file_name, zbd->max_write_zones);
return 0;
}
/*
* Allocate zone information and store it into f->zbd_info if zonemode=zbd.
*
* Returns 0 upon success and a negative error code upon failure.
*/
static int zbd_create_zone_info(struct thread_data *td, struct fio_file *f)
{
enum zbd_zoned_model zbd_model;
int ret;
assert(td->o.zone_mode == ZONE_MODE_ZBD);
ret = zbd_get_zoned_model(td, f, &zbd_model);
if (ret)
return ret;
switch (zbd_model) {
case ZBD_HOST_AWARE:
case ZBD_HOST_MANAGED:
ret = parse_zone_info(td, f);
if (ret)
return ret;
break;
case ZBD_NONE:
ret = init_zone_info(td, f);
if (ret)
return ret;
break;
default:
td_verror(td, EINVAL, "Unsupported zoned model");
log_err("Unsupported zoned model\n");
return -EINVAL;
}
assert(f->zbd_info);
f->zbd_info->model = zbd_model;
ret = zbd_set_max_write_zones(td, f);
if (ret) {
zbd_free_zone_info(f);
return ret;
}
return 0;
}
void zbd_free_zone_info(struct fio_file *f)
{
uint32_t refcount;
assert(f->zbd_info);
pthread_mutex_lock(&f->zbd_info->mutex);
refcount = --f->zbd_info->refcount;
pthread_mutex_unlock(&f->zbd_info->mutex);
assert((int32_t)refcount >= 0);
if (refcount == 0)
sfree(f->zbd_info);
f->zbd_info = NULL;
}
/*
* Initialize f->zbd_info.
*
* Returns 0 upon success and a negative error code upon failure.
*
* Note: this function can only work correctly if it is called before the first
* fio fork() call.
*/
static int zbd_init_zone_info(struct thread_data *td, struct fio_file *file)
{
struct fio_file *f2;
int j, ret;
for_each_td(td2) {
for_each_file(td2, f2, j) {
if (td2 == td && f2 == file)
continue;
if (!f2->zbd_info ||
strcmp(f2->file_name, file->file_name) != 0)
continue;
file->zbd_info = f2->zbd_info;
file->zbd_info->refcount++;
return 0;
}
} end_for_each();
ret = zbd_create_zone_info(td, file);
if (ret < 0)
td_verror(td, -ret, "zbd_create_zone_info() failed");
return ret;
}
int zbd_init_files(struct thread_data *td)
{
struct fio_file *f;
int i;
for_each_file(td, f, i) {
if (zbd_init_zone_info(td, f))
return 1;
}
return 0;
}
void zbd_recalc_options_with_zone_granularity(struct thread_data *td)
{
struct fio_file *f;
int i;
for_each_file(td, f, i) {
struct zoned_block_device_info *zbd = f->zbd_info;
uint64_t zone_size;
/* zonemode=strided doesn't get per-file zone size. */
zone_size = zbd ? zbd->zone_size : td->o.zone_size;
if (zone_size == 0)
continue;
if (td->o.size_nz > 0)
td->o.size = td->o.size_nz * zone_size;
if (td->o.io_size_nz > 0)
td->o.io_size = td->o.io_size_nz * zone_size;
if (td->o.start_offset_nz > 0)
td->o.start_offset = td->o.start_offset_nz * zone_size;
if (td->o.offset_increment_nz > 0)
td->o.offset_increment =
td->o.offset_increment_nz * zone_size;
if (td->o.zone_skip_nz > 0)
td->o.zone_skip = td->o.zone_skip_nz * zone_size;
}
}
static uint64_t zbd_verify_and_set_vdb(struct thread_data *td,
const struct fio_file *f)
{
struct fio_zone_info *zb, *ze, *z;
uint64_t wp_vdb = 0;
struct zoned_block_device_info *zbdi = f->zbd_info;
assert(td->runstate < TD_RUNNING);
assert(zbdi);
if (!accounting_vdb(td, f))
return 0;
/*
* Ensure that the I/O range includes one or more sequential zones so
* that f->min_zone and f->max_zone have different values.
*/
if (!zbd_is_seq_job(f))
return 0;
if (zbdi->write_min_zone != zbdi->write_max_zone) {
if (zbdi->write_min_zone != f->min_zone ||
zbdi->write_max_zone != f->max_zone) {
td_verror(td, EINVAL,
"multi-jobs with different write ranges are "
"not supported with zone_reset_threshold");
log_err("multi-jobs with different write ranges are "
"not supported with zone_reset_threshold\n");
}
return 0;
}
zbdi->write_min_zone = f->min_zone;
zbdi->write_max_zone = f->max_zone;
zb = zbd_get_zone(f, f->min_zone);
ze = zbd_get_zone(f, f->max_zone);
for (z = zb; z < ze; z++)
if (z->has_wp)
wp_vdb += z->wp - z->start;
zbdi->wp_valid_data_bytes = wp_vdb;
return wp_vdb;
}
int zbd_setup_files(struct thread_data *td)
{
struct fio_file *f;
int i;
if (!zbd_using_direct_io()) {
log_err("Using direct I/O is mandatory for writing to ZBD drives\n\n");
return 1;
}
if (!zbd_verify_sizes())
return 1;
if (!zbd_verify_bs())
return 1;
if (td->o.experimental_verify) {
log_err("zonemode=zbd does not support experimental verify\n");
return 1;
}
for_each_file(td, f, i) {
struct zoned_block_device_info *zbd = f->zbd_info;
struct fio_zone_info *z;
int zi;
uint64_t vdb;
assert(zbd);
f->min_zone = zbd_offset_to_zone_idx(f, f->file_offset);
f->max_zone =
zbd_offset_to_zone_idx(f, f->file_offset + f->io_size);
vdb = zbd_verify_and_set_vdb(td, f);
dprint(FD_ZBD, "%s(%s): valid data bytes = %" PRIu64 "\n",
__func__, f->file_name, vdb);
/*
* When all zones in the I/O range are conventional, io_size
* can be smaller than zone size, making min_zone the same
* as max_zone. This is why the assert below needs to be made
* conditional.
*/
if (zbd_is_seq_job(f))
assert(f->min_zone < f->max_zone);
if (td->o.max_open_zones > 0 &&
zbd->max_write_zones != td->o.max_open_zones) {
log_err("Different 'max_open_zones' values\n");
return 1;
}
/*
* The per job max open zones limit cannot be used without a
* global max open zones limit. (As the tracking of open zones
* is disabled when there is no global max open zones limit.)
*/
if (td->o.job_max_open_zones && !zbd->max_write_zones) {
log_err("'job_max_open_zones' cannot be used without a global open zones limit\n");
return 1;
}
/*
* zbd->max_write_zones is the global limit shared for all jobs
* that target the same zoned block device. Force sync the per
* thread global limit with the actual global limit. (The real
* per thread/job limit is stored in td->o.job_max_open_zones).
*/
td->o.max_open_zones = zbd->max_write_zones;
for (zi = f->min_zone; zi < f->max_zone; zi++) {
z = &zbd->zone_info[zi];
if (z->cond != ZBD_ZONE_COND_IMP_OPEN &&
z->cond != ZBD_ZONE_COND_EXP_OPEN &&
z->cond != ZBD_ZONE_COND_CLOSED)
continue;
if (!zbd->max_active_zones &&
z->cond == ZBD_ZONE_COND_CLOSED)
continue;
if (__zbd_write_zone_get(td, f, z))
continue;
/*
* If the number of open zones exceeds specified limits,
* error out.
*/
log_err("Number of open zones exceeds max_open_zones limit\n");
return 1;
}
}
return 0;
}
/*
* Reset zbd_info.write_cnt, the counter that counts down towards the next
* zone reset.
*/
static void _zbd_reset_write_cnt(const struct thread_data *td,
const struct fio_file *f)
{
assert(0 <= td->o.zrf.u.f && td->o.zrf.u.f <= 1);
f->zbd_info->write_cnt = td->o.zrf.u.f ?
min(1.0 / td->o.zrf.u.f, 0.0 + UINT_MAX) : UINT_MAX;
}
static void zbd_reset_write_cnt(const struct thread_data *td,
const struct fio_file *f)
{
pthread_mutex_lock(&f->zbd_info->mutex);
_zbd_reset_write_cnt(td, f);
pthread_mutex_unlock(&f->zbd_info->mutex);
}
static bool zbd_dec_and_reset_write_cnt(const struct thread_data *td,
const struct fio_file *f)
{
uint32_t write_cnt = 0;
pthread_mutex_lock(&f->zbd_info->mutex);
assert(f->zbd_info->write_cnt);
if (f->zbd_info->write_cnt)
write_cnt = --f->zbd_info->write_cnt;
if (write_cnt == 0)
_zbd_reset_write_cnt(td, f);
pthread_mutex_unlock(&f->zbd_info->mutex);
return write_cnt == 0;
}
void zbd_file_reset(struct thread_data *td, struct fio_file *f)
{
struct fio_zone_info *zb, *ze;
bool verify_data_left = false;
if (!f->zbd_info || !td_write(td))
return;
zb = zbd_get_zone(f, f->min_zone);
ze = zbd_get_zone(f, f->max_zone);
/*
* If data verification is enabled reset the affected zones before
* writing any data to avoid that a zone reset has to be issued while
* writing data, which causes data loss.
*/
if (td->o.verify != VERIFY_NONE) {
verify_data_left = td->runstate == TD_VERIFYING ||
td->io_hist_len || td->verify_batch;
if (td->io_hist_len && td->o.verify_backlog)
verify_data_left =
td->io_hist_len % td->o.verify_backlog;
if (!verify_data_left)
zbd_reset_zones(td, f, zb, ze);
}
zbd_reset_write_cnt(td, f);
}
/* Return random zone index for one of the write target zones. */
static uint32_t pick_random_zone_idx(const struct fio_file *f,
const struct io_u *io_u)
{
return (io_u->offset - f->file_offset) *
f->zbd_info->num_write_zones / f->io_size;
}
static bool any_io_in_flight(void)
{
for_each_td(td) {
if (td->io_u_in_flight)
return true;
} end_for_each();
return false;
}
/*
* Modify the offset of an I/O unit that does not refer to a zone such that
* in write target zones array. Add a zone to or remove a zone from the lsit if
* necessary. The write target zone is searched across sequential zones.
* This algorithm can only work correctly if all write pointers are
* a multiple of the fio block size. The caller must neither hold z->mutex
* nor f->zbd_info->mutex. Returns with z->mutex held upon success.
*/
static struct fio_zone_info *zbd_convert_to_write_zone(struct thread_data *td,
struct io_u *io_u)
{
const uint64_t min_bs = td->o.min_bs[io_u->ddir];
struct fio_file *f = io_u->file;
struct zoned_block_device_info *zbdi = f->zbd_info;
struct fio_zone_info *z;
unsigned int write_zone_idx = -1;
uint32_t zone_idx, new_zone_idx;
int i;
bool wait_zone_write;
bool in_flight;
bool should_retry = true;
assert(is_valid_offset(f, io_u->offset));
if (zbdi->max_write_zones || td->o.job_max_open_zones) {
/*
* This statement accesses zbdi->write_zones[] on purpose
* without locking.
*/
zone_idx = zbdi->write_zones[pick_random_zone_idx(f, io_u)];
} else {
zone_idx = zbd_offset_to_zone_idx(f, io_u->offset);
}
if (zone_idx < f->min_zone)
zone_idx = f->min_zone;
else if (zone_idx >= f->max_zone)
zone_idx = f->max_zone - 1;
dprint(FD_ZBD,
"%s(%s): starting from zone %d (offset %lld, buflen %lld)\n",
__func__, f->file_name, zone_idx, io_u->offset, io_u->buflen);
/*
* Since z->mutex is the outer lock and zbdi->mutex the inner
* lock it can happen that the state of the zone with index zone_idx
* has changed after 'z' has been assigned and before zbdi->mutex
* has been obtained. Hence the loop.
*/
for (;;) {
uint32_t tmp_idx;
z = zbd_get_zone(f, zone_idx);
if (z->has_wp)
zone_lock(td, f, z);
pthread_mutex_lock(&zbdi->mutex);
if (z->has_wp) {
if (z->cond != ZBD_ZONE_COND_OFFLINE &&
zbdi->max_write_zones == 0 &&
td->o.job_max_open_zones == 0)
goto examine_zone;
if (zbdi->num_write_zones == 0) {
dprint(FD_ZBD, "%s(%s): no zone is write target\n",
__func__, f->file_name);
goto choose_other_zone;
}
}
/*
* Array of write target zones is per-device, shared across all
* threads. Start with quasi-random candidate zone. Ignore
* zones which don't belong to thread's offset/size area.
*/
write_zone_idx = pick_random_zone_idx(f, io_u);
assert(!write_zone_idx ||
write_zone_idx < zbdi->num_write_zones);
tmp_idx = write_zone_idx;
for (i = 0; i < zbdi->num_write_zones; i++) {
uint32_t tmpz;
if (tmp_idx >= zbdi->num_write_zones)
tmp_idx = 0;
tmpz = zbdi->write_zones[tmp_idx];
if (f->min_zone <= tmpz && tmpz < f->max_zone) {
write_zone_idx = tmp_idx;
goto found_candidate_zone;
}
tmp_idx++;
}
dprint(FD_ZBD, "%s(%s): no candidate zone\n",
__func__, f->file_name);
pthread_mutex_unlock(&zbdi->mutex);
if (z->has_wp)
zone_unlock(z);
return NULL;
found_candidate_zone:
new_zone_idx = zbdi->write_zones[write_zone_idx];
if (new_zone_idx == zone_idx)
break;
zone_idx = new_zone_idx;
pthread_mutex_unlock(&zbdi->mutex);
if (z->has_wp)
zone_unlock(z);
}
/* Both z->mutex and zbdi->mutex are held. */
examine_zone:
if (zbd_zone_remainder(z) >= min_bs) {
pthread_mutex_unlock(&zbdi->mutex);
goto out;
}
choose_other_zone:
/* Check if number of write target zones reaches one of limits. */
wait_zone_write =
zbdi->num_write_zones == f->max_zone - f->min_zone ||
(zbdi->max_write_zones &&
zbdi->num_write_zones == zbdi->max_write_zones) ||
(td->o.job_max_open_zones &&
td->num_write_zones == td->o.job_max_open_zones);
pthread_mutex_unlock(&zbdi->mutex);
/* Only z->mutex is held. */
/*
* When number of write target zones reaches to one of limits, wait for
* zone write completion to one of them before trying a new zone.
*/
if (wait_zone_write) {
dprint(FD_ZBD,
"%s(%s): quiesce to remove a zone from write target zones array\n",
__func__, f->file_name);
io_u_quiesce(td);
}
retry:
/* Zone 'z' is full, so try to choose a new zone. */
for (i = f->io_size / zbdi->zone_size; i > 0; i--) {
zone_idx++;
if (z->has_wp)
zone_unlock(z);
z++;
if (!is_valid_offset(f, z->start)) {
/* Wrap-around. */
zone_idx = f->min_zone;
z = zbd_get_zone(f, zone_idx);
}
assert(is_valid_offset(f, z->start));
if (!z->has_wp)
continue;
zone_lock(td, f, z);
if (z->write)
continue;
if (zbd_write_zone_get(td, f, z))
goto out;
}
/* Only z->mutex is held. */
/* Check whether the write fits in any of the write target zones. */
pthread_mutex_lock(&zbdi->mutex);
for (i = 0; i < zbdi->num_write_zones; i++) {
zone_idx = zbdi->write_zones[i];
if (zone_idx < f->min_zone || zone_idx >= f->max_zone)
continue;
pthread_mutex_unlock(&zbdi->mutex);
zone_unlock(z);
z = zbd_get_zone(f, zone_idx);
zone_lock(td, f, z);
if (zbd_zone_remainder(z) >= min_bs)
goto out;
pthread_mutex_lock(&zbdi->mutex);
}
/*
* When any I/O is in-flight or when all I/Os in-flight get completed,
* the I/Os might have removed zones from the write target array then
* retry the steps to choose a zone. Before retry, call io_u_quiesce()
* to complete in-flight writes.
*/
in_flight = any_io_in_flight();
if (in_flight || should_retry) {
dprint(FD_ZBD,
"%s(%s): wait zone write and retry write target zone selection\n",
__func__, f->file_name);
should_retry = in_flight;
pthread_mutex_unlock(&zbdi->mutex);
zone_unlock(z);
io_u_quiesce(td);
zone_lock(td, f, z);
goto retry;
}
pthread_mutex_unlock(&zbdi->mutex);
zone_unlock(z);
dprint(FD_ZBD, "%s(%s): did not choose another write zone\n",
__func__, f->file_name);
return NULL;
out:
dprint(FD_ZBD, "%s(%s): returning zone %d\n",
__func__, f->file_name, zone_idx);
io_u->offset = z->start;
assert(z->has_wp);
assert(z->cond != ZBD_ZONE_COND_OFFLINE);
return z;
}
/*
* Find another zone which has @min_bytes of readable data. Search in zones
* @zb + 1 .. @zl. For random workload, also search in zones @zb - 1 .. @zf.
*
* Either returns NULL or returns a zone pointer. When the zone has write
* pointer, hold the mutex for the zone.
*/
static struct fio_zone_info *
zbd_find_zone(struct thread_data *td, struct io_u *io_u, uint64_t min_bytes,
struct fio_zone_info *zb, struct fio_zone_info *zl)
{
struct fio_file *f = io_u->file;
struct fio_zone_info *z1, *z2;
const struct fio_zone_info *const zf = zbd_get_zone(f, f->min_zone);
/*
* Skip to the next non-empty zone in case of sequential I/O and to
* the nearest non-empty zone in case of random I/O.
*/
for (z1 = zb + 1, z2 = zb - 1; z1 < zl || z2 >= zf; z1++, z2--) {
if (z1 < zl && z1->cond != ZBD_ZONE_COND_OFFLINE) {
if (z1->has_wp)
zone_lock(td, f, z1);
if (z1->start + min_bytes <= z1->wp)
return z1;
if (z1->has_wp)
zone_unlock(z1);
} else if (!td_random(td)) {
break;
}
if (td_random(td) && z2 >= zf &&
z2->cond != ZBD_ZONE_COND_OFFLINE) {
if (z2->has_wp)
zone_lock(td, f, z2);
if (z2->start + min_bytes <= z2->wp)
return z2;
if (z2->has_wp)
zone_unlock(z2);
}
}
dprint(FD_ZBD,
"%s: no zone has %"PRIu64" bytes of readable data\n",
f->file_name, min_bytes);
return NULL;
}
/**
* zbd_end_zone_io - update zone status at command completion
* @io_u: I/O unit
* @z: zone info pointer
*
* If the write command made the zone full, remove it from the write target
* zones array.
*
* The caller must hold z->mutex.
*/
static void zbd_end_zone_io(struct thread_data *td, const struct io_u *io_u,
struct fio_zone_info *z)
{
const struct fio_file *f = io_u->file;
if (io_u->ddir == DDIR_WRITE &&
io_u->offset + io_u->buflen >= zbd_zone_capacity_end(z)) {
pthread_mutex_lock(&f->zbd_info->mutex);
zbd_write_zone_put(td, f, z);
pthread_mutex_unlock(&f->zbd_info->mutex);
}
}
/**
* zbd_queue_io - update the write pointer of a sequential zone
* @io_u: I/O unit
* @success: Whether or not the I/O unit has been queued successfully
* @q: queueing status (busy, completed or queued).
*
* For write and trim operations, update the write pointer of the I/O unit
* target zone.
*/
static void zbd_queue_io(struct thread_data *td, struct io_u *io_u, int q,
bool success)
{
const struct fio_file *f = io_u->file;
struct zoned_block_device_info *zbd_info = f->zbd_info;
struct fio_zone_info *z;
uint64_t zone_end;
assert(zbd_info);
z = zbd_offset_to_zone(f, io_u->offset);
assert(z->has_wp);
if (!success)
goto unlock;
dprint(FD_ZBD,
"%s: queued I/O (%lld, %llu) for zone %u\n",
f->file_name, io_u->offset, io_u->buflen, zbd_zone_idx(f, z));
switch (io_u->ddir) {
case DDIR_WRITE:
zone_end = min((uint64_t)(io_u->offset + io_u->buflen),
zbd_zone_capacity_end(z));
/*
* z->wp > zone_end means that one or more I/O errors
* have occurred.
*/
if (accounting_vdb(td, f) && z->wp <= zone_end) {
pthread_mutex_lock(&zbd_info->mutex);
zbd_info->wp_valid_data_bytes += zone_end - z->wp;
pthread_mutex_unlock(&zbd_info->mutex);
}
z->wp = zone_end;
break;
default:
break;
}
if (q == FIO_Q_COMPLETED && !io_u->error)
zbd_end_zone_io(td, io_u, z);
unlock:
if (!success || q != FIO_Q_QUEUED) {
/* BUSY or COMPLETED: unlock the zone */
zone_unlock(z);
io_u->zbd_put_io = NULL;
}
}
/**
* zbd_put_io - Unlock an I/O unit target zone lock
* @io_u: I/O unit
*/
static void zbd_put_io(struct thread_data *td, const struct io_u *io_u)
{
const struct fio_file *f = io_u->file;
struct fio_zone_info *z;
assert(f->zbd_info);
z = zbd_offset_to_zone(f, io_u->offset);
assert(z->has_wp);
dprint(FD_ZBD,
"%s: terminate I/O (%lld, %llu) for zone %u\n",
f->file_name, io_u->offset, io_u->buflen, zbd_zone_idx(f, z));
zbd_end_zone_io(td, io_u, z);
zone_unlock(z);
}
/*
* Windows and MacOS do not define this.
*/
#ifndef EREMOTEIO
#define EREMOTEIO 121 /* POSIX value */
#endif
bool zbd_unaligned_write(int error_code)
{
switch (error_code) {
case EIO:
case EREMOTEIO:
return true;
}
return false;
}
/**
* setup_zbd_zone_mode - handle zoneskip as necessary for ZBD drives
* @td: FIO thread data.
* @io_u: FIO I/O unit.
*
* For sequential workloads, change the file offset to skip zoneskip bytes when
* no more IO can be performed in the current zone.
* - For read workloads, zoneskip is applied when the io has reached the end of
* the zone or the zone write position (when td->o.read_beyond_wp is false).
* - For write workloads, zoneskip is applied when the zone is full.
* This applies only to read and write operations.
*/
void setup_zbd_zone_mode(struct thread_data *td, struct io_u *io_u)
{
struct fio_file *f = io_u->file;
enum fio_ddir ddir = io_u->ddir;
struct fio_zone_info *z;
assert(td->o.zone_mode == ZONE_MODE_ZBD);
assert(td->o.zone_size);
assert(f->zbd_info);
z = zbd_offset_to_zone(f, f->last_pos[ddir]);
/*
* When the zone capacity is smaller than the zone size and the I/O is
* sequential write, skip to zone end if the latest position is at the
* zone capacity limit.
*/
if (z->capacity < f->zbd_info->zone_size &&
!td_random(td) && ddir == DDIR_WRITE &&
f->last_pos[ddir] >= zbd_zone_capacity_end(z)) {
dprint(FD_ZBD,
"%s: Jump from zone capacity limit to zone end:"
" (%"PRIu64" -> %"PRIu64") for zone %u (%"PRIu64")\n",
f->file_name, f->last_pos[ddir],
zbd_zone_end(z), zbd_zone_idx(f, z), z->capacity);
td->io_skip_bytes += zbd_zone_end(z) - f->last_pos[ddir];
f->last_pos[ddir] = zbd_zone_end(z);
}
/*
* zone_skip is valid only for sequential workloads.
*/
if (td_random(td) || !td->o.zone_skip)
return;
/*
* It is time to switch to a new zone if:
* - zone_bytes == zone_size bytes have already been accessed
* - The last position reached the end of the current zone.
* - For reads with td->o.read_beyond_wp == false, the last position
* reached the zone write pointer.
*/
if (td->zone_bytes >= td->o.zone_size ||
f->last_pos[ddir] >= zbd_zone_end(z) ||
(ddir == DDIR_READ &&
(!td->o.read_beyond_wp) && f->last_pos[ddir] >= z->wp)) {
/*
* Skip zones.
*/
td->zone_bytes = 0;
f->file_offset += td->o.zone_size + td->o.zone_skip;
/*
* Wrap from the beginning, if we exceed the file size
*/
if (f->file_offset >= f->real_file_size)
f->file_offset = get_start_offset(td, f);
f->last_pos[ddir] = f->file_offset;
td->io_skip_bytes += td->o.zone_skip;
}
}
/**
* zbd_adjust_ddir - Adjust an I/O direction for zonemode=zbd.
*
* @td: FIO thread data.
* @io_u: FIO I/O unit.
* @ddir: I/O direction before adjustment.
*
* Return adjusted I/O direction.
*/
enum fio_ddir zbd_adjust_ddir(struct thread_data *td, struct io_u *io_u,
enum fio_ddir ddir)
{
/*
* In case read direction is chosen for the first random I/O, fio with
* zonemode=zbd stops because no data can be read from zoned block
* devices with all empty zones. Overwrite the first I/O direction as
* write to make sure data to read exists.
*/
assert(io_u->file->zbd_info);
if (ddir != DDIR_READ || !td_rw(td))
return ddir;
if (io_u->file->last_start[DDIR_WRITE] != -1ULL ||
td->o.read_beyond_wp || td->o.rwmix[DDIR_WRITE] == 0)
return DDIR_READ;
return DDIR_WRITE;
}
/**
* zbd_adjust_block - adjust the offset and length as necessary for ZBD drives
* @td: FIO thread data.
* @io_u: FIO I/O unit.
*
* Locking strategy: returns with z->mutex locked if and only if z refers
* to a sequential zone and if io_u_accept is returned. z is the zone that
* corresponds to io_u->offset at the end of this function.
*/
enum io_u_action zbd_adjust_block(struct thread_data *td, struct io_u *io_u)
{
struct fio_file *f = io_u->file;
struct zoned_block_device_info *zbdi = f->zbd_info;
struct fio_zone_info *zb, *zl, *orig_zb;
uint32_t orig_len = io_u->buflen;
uint64_t min_bs = td->o.min_bs[io_u->ddir];
uint64_t new_len;
int64_t range;
assert(zbdi);
assert(min_bs);
assert(is_valid_offset(f, io_u->offset));
assert(io_u->buflen);
zb = zbd_offset_to_zone(f, io_u->offset);
orig_zb = zb;
if (!zb->has_wp) {
/* Accept non-write I/Os for conventional zones. */
if (io_u->ddir != DDIR_WRITE)
return io_u_accept;
/*
* Make sure that writes to conventional zones
* don't cross over to any sequential zones.
*/
if (!(zb + 1)->has_wp ||
io_u->offset + io_u->buflen <= (zb + 1)->start)
return io_u_accept;
if (io_u->offset + min_bs > (zb + 1)->start) {
dprint(FD_IO,
"%s: off=%llu + min_bs=%"PRIu64" > next zone %"PRIu64"\n",
f->file_name, io_u->offset,
min_bs, (zb + 1)->start);
io_u->offset =
zb->start + (zb + 1)->start - io_u->offset;
new_len = min(io_u->buflen,
(zb + 1)->start - io_u->offset);
} else {
new_len = (zb + 1)->start - io_u->offset;
}
io_u->buflen = new_len / min_bs * min_bs;
return io_u_accept;
}
/*
* Accept the I/O offset for reads if reading beyond the write pointer
* is enabled.
*/
if (zb->cond != ZBD_ZONE_COND_OFFLINE &&
io_u->ddir == DDIR_READ && td->o.read_beyond_wp)
return io_u_accept;
zone_lock(td, f, zb);
switch (io_u->ddir) {
case DDIR_READ:
if (td->runstate == TD_VERIFYING && td_write(td))
goto accept;
/*
* Check that there is enough written data in the zone to do an
* I/O of at least min_bs B. If there isn't, find a new zone for
* the I/O.
*/
range = zb->cond != ZBD_ZONE_COND_OFFLINE ?
zb->wp - zb->start : 0;
if (range < min_bs ||
((!td_random(td)) && (io_u->offset + min_bs > zb->wp))) {
zone_unlock(zb);
zl = zbd_get_zone(f, f->max_zone);
zb = zbd_find_zone(td, io_u, min_bs, zb, zl);
if (!zb) {
dprint(FD_ZBD,
"%s: zbd_find_zone(%lld, %llu) failed\n",
f->file_name, io_u->offset,
io_u->buflen);
goto eof;
}
/*
* zbd_find_zone() returned a zone with a range of at
* least min_bs.
*/
range = zb->wp - zb->start;
assert(range >= min_bs);
if (!td_random(td))
io_u->offset = zb->start;
}
/*
* Make sure the I/O is within the zone valid data range while
* maximizing the I/O size and preserving randomness.
*/
if (range <= io_u->buflen)
io_u->offset = zb->start;
else if (td_random(td))
io_u->offset = zb->start +
((io_u->offset - orig_zb->start) %
(range - io_u->buflen)) / min_bs * min_bs;
/*
* When zbd_find_zone() returns a conventional zone,
* we can simply accept the new i/o offset here.
*/
if (!zb->has_wp)
return io_u_accept;
/*
* Make sure the I/O does not cross over the zone wp position.
*/
new_len = min((unsigned long long)io_u->buflen,
(unsigned long long)(zb->wp - io_u->offset));
new_len = new_len / min_bs * min_bs;
if (new_len < io_u->buflen) {
io_u->buflen = new_len;
dprint(FD_IO, "Changed length from %u into %llu\n",
orig_len, io_u->buflen);
}
assert(zb->start <= io_u->offset);
assert(io_u->offset + io_u->buflen <= zb->wp);
goto accept;
case DDIR_WRITE:
if (io_u->buflen > zbdi->zone_size) {
td_verror(td, EINVAL, "I/O buflen exceeds zone size");
dprint(FD_IO,
"%s: I/O buflen %llu exceeds zone size %"PRIu64"\n",
f->file_name, io_u->buflen, zbdi->zone_size);
goto eof;
}
retry:
if (zbd_zone_remainder(zb) > 0 &&
zbd_zone_remainder(zb) < min_bs) {
pthread_mutex_lock(&f->zbd_info->mutex);
zbd_write_zone_put(td, f, zb);
pthread_mutex_unlock(&f->zbd_info->mutex);
dprint(FD_ZBD,
"%s: finish zone %d\n",
f->file_name, zbd_zone_idx(f, zb));
io_u_quiesce(td);
zbd_finish_zone(td, f, zb);
if (zbd_zone_idx(f, zb) + 1 >= f->max_zone) {
if (!td_random(td))
goto eof;
}
zone_unlock(zb);
/* Find the next write pointer zone */
do {
zb++;
if (zbd_zone_idx(f, zb) >= f->max_zone)
zb = zbd_get_zone(f, f->min_zone);
} while (!zb->has_wp);
zone_lock(td, f, zb);
}
if (!zbd_write_zone_get(td, f, zb)) {
zone_unlock(zb);
zb = zbd_convert_to_write_zone(td, io_u);
if (!zb) {
dprint(FD_IO, "%s: can't convert to write target zone",
f->file_name);
goto eof;
}
}
if (zbd_zone_remainder(zb) > 0 &&
zbd_zone_remainder(zb) < min_bs)
goto retry;
/* Check whether the zone reset threshold has been exceeded */
if (td->o.zrf.u.f) {
if (zbdi->wp_valid_data_bytes >=
f->io_size * td->o.zrt.u.f &&
zbd_dec_and_reset_write_cnt(td, f))
zb->reset_zone = 1;
}
/* Reset the zone pointer if necessary */
if (zb->reset_zone || zbd_zone_full(f, zb, min_bs)) {
if (td->o.verify != VERIFY_NONE) {
/*
* Unset io-u->file to tell get_next_verify()
* that this IO is not requeue.
*/
io_u->file = NULL;
if (!get_next_verify(td, io_u)) {
zone_unlock(zb);
return io_u_accept;
}
io_u->file = f;
}
/*
* Since previous write requests may have been submitted
* asynchronously and since we will submit the zone
* reset synchronously, wait until previously submitted
* write requests have completed before issuing a
* zone reset.
*/
io_u_quiesce(td);
zb->reset_zone = 0;
if (__zbd_reset_zone(td, f, zb) < 0)
goto eof;
if (zb->capacity < min_bs) {
td_verror(td, EINVAL, "ZCAP is less min_bs");
log_err("zone capacity %"PRIu64" smaller than minimum block size %"PRIu64"\n",
zb->capacity, min_bs);
goto eof;
}
}
/* Make writes occur at the write pointer */
assert(!zbd_zone_full(f, zb, min_bs));
io_u->offset = zb->wp;
if (!is_valid_offset(f, io_u->offset)) {
td_verror(td, EINVAL, "invalid WP value");
dprint(FD_ZBD, "%s: dropped request with offset %llu\n",
f->file_name, io_u->offset);
goto eof;
}
/*
* Make sure that the buflen is a multiple of the minimal
* block size. Give up if shrinking would make the request too
* small.
*/
new_len = min((unsigned long long)io_u->buflen,
zbd_zone_capacity_end(zb) - io_u->offset);
new_len = new_len / min_bs * min_bs;
if (new_len == io_u->buflen)
goto accept;
if (new_len >= min_bs) {
io_u->buflen = new_len;
dprint(FD_IO, "Changed length from %u into %llu\n",
orig_len, io_u->buflen);
goto accept;
}
td_verror(td, EIO, "zone remainder too small");
log_err("zone remainder %lld smaller than min block size %"PRIu64"\n",
(zbd_zone_capacity_end(zb) - io_u->offset), min_bs);
goto eof;
case DDIR_TRIM:
/* Check random trim targets a non-empty zone */
if (!td_random(td) || zb->wp > zb->start)
goto accept;
/* Find out a non-empty zone to trim */
zone_unlock(zb);
zl = zbd_get_zone(f, f->max_zone);
zb = zbd_find_zone(td, io_u, 1, zb, zl);
if (zb) {
io_u->offset = zb->start;
dprint(FD_ZBD, "%s: found new zone(%lld) for trim\n",
f->file_name, io_u->offset);
goto accept;
}
goto eof;
case DDIR_SYNC:
/* fall-through */
case DDIR_DATASYNC:
case DDIR_SYNC_FILE_RANGE:
case DDIR_WAIT:
case DDIR_LAST:
case DDIR_INVAL:
case DDIR_TIMEOUT:
goto accept;
}
assert(false);
accept:
assert(zb->has_wp);
assert(zb->cond != ZBD_ZONE_COND_OFFLINE);
assert(!io_u->zbd_queue_io);
assert(!io_u->zbd_put_io);
io_u->zbd_queue_io = zbd_queue_io;
io_u->zbd_put_io = zbd_put_io;
/*
* Since we return with the zone lock still held,
* add an annotation to let Coverity know that it
* is intentional.
*/
/* coverity[missing_unlock] */
return io_u_accept;
eof:
if (zb && zb->has_wp)
zone_unlock(zb);
return io_u_eof;
}
/* Return a string with ZBD statistics */
char *zbd_write_status(const struct thread_stat *ts)
{
char *res;
if (asprintf(&res, "; %"PRIu64" zone resets", ts->nr_zone_resets) < 0)
return NULL;
return res;
}
/**
* zbd_do_io_u_trim - If reset zone is applicable, do reset zone instead of trim
*
* @td: FIO thread data.
* @io_u: FIO I/O unit.
*
* It is assumed that z->mutex is already locked.
* Return io_u_completed when reset zone succeeds. Return 0 when the target zone
* does not have write pointer. On error, return negative errno.
*/
int zbd_do_io_u_trim(struct thread_data *td, struct io_u *io_u)
{
struct fio_file *f = io_u->file;
struct fio_zone_info *z;
int ret;
z = zbd_offset_to_zone(f, io_u->offset);
if (!z->has_wp)
return 0;
if (io_u->offset != z->start) {
log_err("Trim offset not at zone start (%lld)\n",
io_u->offset);
return -EINVAL;
}
ret = zbd_reset_zone((struct thread_data *)td, f, z);
if (ret < 0)
return ret;
return io_u_completed;
}
void zbd_log_err(const struct thread_data *td, const struct io_u *io_u)
{
const struct fio_file *f = io_u->file;
if (td->o.zone_mode != ZONE_MODE_ZBD)
return;
if (io_u->error == EOVERFLOW)
log_err("%s: Exceeded max_active_zones limit. Check conditions of zones out of I/O ranges.\n",
f->file_name);
}