blob: 24ddd1d434f3cb5772b1f370256905af8d7c6790 [file] [log] [blame]
/*
* linux/fs/ext3/super.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/jbd.h>
#include <linux/ext3_fs.h>
#include <linux/ext3_jbd.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/locks.h>
#include <linux/blkdev.h>
#include <linux/smp_lock.h>
#include <asm/uaccess.h>
#ifdef CONFIG_JBD_DEBUG
static int ext3_ro_after; /* Make fs read-only after this many jiffies */
#endif
static int ext3_load_journal(struct super_block *, struct ext3_super_block *);
static int ext3_create_journal(struct super_block *, struct ext3_super_block *,
int);
static void ext3_commit_super (struct super_block * sb,
struct ext3_super_block * es,
int sync);
static void ext3_mark_recovery_complete(struct super_block * sb,
struct ext3_super_block * es);
static void ext3_clear_journal_err(struct super_block * sb,
struct ext3_super_block * es);
#ifdef CONFIG_JBD_DEBUG
int journal_no_write[2];
/*
* Debug code for turning filesystems "read-only" after a specified
* amount of time. This is for crash/recovery testing.
*/
static void make_rdonly(struct block_device *bdev, int *no_write)
{
if (bdev) {
printk(KERN_WARNING "Turning device %s read-only\n",
bdevname(to_kdev_t(bdev->bd_dev)));
*no_write = 0xdead0000 + bdev->bd_dev;
}
}
static void turn_fs_readonly(unsigned long arg)
{
struct super_block *sb = (struct super_block *)arg;
make_rdonly(sb->s_bdev, &journal_no_write[0]);
make_rdonly(EXT3_SB(sb)->s_journal->j_dev, &journal_no_write[1]);
wake_up(&EXT3_SB(sb)->ro_wait_queue);
}
static void setup_ro_after(struct super_block *sb)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
init_timer(&sbi->turn_ro_timer);
if (ext3_ro_after) {
printk(KERN_DEBUG "fs will go read-only in %d jiffies\n",
ext3_ro_after);
init_waitqueue_head(&sbi->ro_wait_queue);
journal_no_write[0] = 0;
journal_no_write[1] = 0;
sbi->turn_ro_timer.function = turn_fs_readonly;
sbi->turn_ro_timer.data = (unsigned long)sb;
sbi->turn_ro_timer.expires = jiffies + ext3_ro_after;
ext3_ro_after = 0;
add_timer(&sbi->turn_ro_timer);
}
}
static void clear_ro_after(struct super_block *sb)
{
del_timer_sync(&EXT3_SB(sb)->turn_ro_timer);
journal_no_write[0] = 0;
journal_no_write[1] = 0;
ext3_ro_after = 0;
}
#else
#define setup_ro_after(sb) do {} while (0)
#define clear_ro_after(sb) do {} while (0)
#endif
static char error_buf[1024];
/* Determine the appropriate response to ext3_error on a given filesystem */
static int ext3_error_behaviour(struct super_block *sb)
{
/* First check for mount-time options */
if (test_opt (sb, ERRORS_PANIC))
return EXT3_ERRORS_PANIC;
if (test_opt (sb, ERRORS_RO))
return EXT3_ERRORS_RO;
if (test_opt (sb, ERRORS_CONT))
return EXT3_ERRORS_CONTINUE;
/* If no overrides were specified on the mount, then fall back
* to the default behaviour set in the filesystem's superblock
* on disk. */
switch (le16_to_cpu(sb->u.ext3_sb.s_es->s_errors)) {
case EXT3_ERRORS_PANIC:
return EXT3_ERRORS_PANIC;
case EXT3_ERRORS_RO:
return EXT3_ERRORS_RO;
default:
break;
}
return EXT3_ERRORS_CONTINUE;
}
/* Deal with the reporting of failure conditions on a filesystem such as
* inconsistencies detected or read IO failures.
*
* On ext2, we can store the error state of the filesystem in the
* superblock. That is not possible on ext3, because we may have other
* write ordering constraints on the superblock which prevent us from
* writing it out straight away; and given that the journal is about to
* be aborted, we can't rely on the current, or future, transactions to
* write out the superblock safely.
*
* We'll just use the journal_abort() error code to record an error in
* the journal instead. On recovery, the journal will compain about
* that error until we've noted it down and cleared it.
*/
static void ext3_handle_error(struct super_block *sb)
{
struct ext3_super_block *es = EXT3_SB(sb)->s_es;
EXT3_SB(sb)->s_mount_state |= EXT3_ERROR_FS;
es->s_state |= cpu_to_le32(EXT3_ERROR_FS);
if (sb->s_flags & MS_RDONLY)
return;
if (ext3_error_behaviour(sb) != EXT3_ERRORS_CONTINUE) {
EXT3_SB(sb)->s_mount_opt |= EXT3_MOUNT_ABORT;
journal_abort(EXT3_SB(sb)->s_journal, -EIO);
}
if (ext3_error_behaviour(sb) == EXT3_ERRORS_PANIC)
panic ("EXT3-fs (device %s): panic forced after error\n",
sb->s_id);
if (ext3_error_behaviour(sb) == EXT3_ERRORS_RO) {
printk (KERN_CRIT "Remounting filesystem read-only\n");
sb->s_flags |= MS_RDONLY;
}
ext3_commit_super(sb, es, 1);
}
void ext3_error (struct super_block * sb, const char * function,
const char * fmt, ...)
{
va_list args;
va_start (args, fmt);
vsprintf (error_buf, fmt, args);
va_end (args);
printk (KERN_CRIT "EXT3-fs error (device %s): %s: %s\n",
sb->s_id, function, error_buf);
ext3_handle_error(sb);
}
const char *ext3_decode_error(struct super_block * sb, int errno, char nbuf[16])
{
char *errstr = NULL;
switch (errno) {
case -EIO:
errstr = "IO failure";
break;
case -ENOMEM:
errstr = "Out of memory";
break;
case -EROFS:
if (!sb || EXT3_SB(sb)->s_journal->j_flags & JFS_ABORT)
errstr = "Journal has aborted";
else
errstr = "Readonly filesystem";
break;
default:
/* If the caller passed in an extra buffer for unknown
* errors, textualise them now. Else we just return
* NULL. */
if (nbuf) {
/* Check for truncated error codes... */
if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
errstr = nbuf;
}
break;
}
return errstr;
}
/* __ext3_std_error decodes expected errors from journaling functions
* automatically and invokes the appropriate error response. */
void __ext3_std_error (struct super_block * sb, const char * function,
int errno)
{
char nbuf[16];
const char *errstr = ext3_decode_error(sb, errno, nbuf);
printk (KERN_CRIT "EXT3-fs error (device %s) in %s: %s\n",
sb->s_id, function, errstr);
ext3_handle_error(sb);
}
/*
* ext3_abort is a much stronger failure handler than ext3_error. The
* abort function may be used to deal with unrecoverable failures such
* as journal IO errors or ENOMEM at a critical moment in log management.
*
* We unconditionally force the filesystem into an ABORT|READONLY state,
* unless the error response on the fs has been set to panic in which
* case we take the easy way out and panic immediately.
*/
void ext3_abort (struct super_block * sb, const char * function,
const char * fmt, ...)
{
va_list args;
printk (KERN_CRIT "ext3_abort called.\n");
va_start (args, fmt);
vsprintf (error_buf, fmt, args);
va_end (args);
if (ext3_error_behaviour(sb) == EXT3_ERRORS_PANIC)
panic ("EXT3-fs panic (device %s): %s: %s\n",
sb->s_id, function, error_buf);
printk (KERN_CRIT "EXT3-fs abort (device %s): %s: %s\n",
sb->s_id, function, error_buf);
if (sb->s_flags & MS_RDONLY)
return;
printk (KERN_CRIT "Remounting filesystem read-only\n");
sb->u.ext3_sb.s_mount_state |= EXT3_ERROR_FS;
sb->s_flags |= MS_RDONLY;
sb->u.ext3_sb.s_mount_opt |= EXT3_MOUNT_ABORT;
journal_abort(EXT3_SB(sb)->s_journal, -EIO);
}
/* Deal with the reporting of failure conditions while running, such as
* inconsistencies in operation or invalid system states.
*
* Use ext3_error() for cases of invalid filesystem states, as that will
* record an error on disk and force a filesystem check on the next boot.
*/
NORET_TYPE void ext3_panic (struct super_block * sb, const char * function,
const char * fmt, ...)
{
va_list args;
va_start (args, fmt);
vsprintf (error_buf, fmt, args);
va_end (args);
/* this is to prevent panic from syncing this filesystem */
/* AKPM: is this sufficient? */
sb->s_flags |= MS_RDONLY;
panic ("EXT3-fs panic (device %s): %s: %s\n",
sb->s_id, function, error_buf);
}
void ext3_warning (struct super_block * sb, const char * function,
const char * fmt, ...)
{
va_list args;
va_start (args, fmt);
vsprintf (error_buf, fmt, args);
va_end (args);
printk (KERN_WARNING "EXT3-fs warning (device %s): %s: %s\n",
sb->s_id, function, error_buf);
}
void ext3_update_dynamic_rev(struct super_block *sb)
{
struct ext3_super_block *es = EXT3_SB(sb)->s_es;
if (le32_to_cpu(es->s_rev_level) > EXT3_GOOD_OLD_REV)
return;
ext3_warning(sb, __FUNCTION__,
"updating to rev %d because of new feature flag, "
"running e2fsck is recommended",
EXT3_DYNAMIC_REV);
es->s_first_ino = cpu_to_le32(EXT3_GOOD_OLD_FIRST_INO);
es->s_inode_size = cpu_to_le16(EXT3_GOOD_OLD_INODE_SIZE);
es->s_rev_level = cpu_to_le32(EXT3_DYNAMIC_REV);
/* leave es->s_feature_*compat flags alone */
/* es->s_uuid will be set by e2fsck if empty */
/*
* The rest of the superblock fields should be zero, and if not it
* means they are likely already in use, so leave them alone. We
* can leave it up to e2fsck to clean up any inconsistencies there.
*/
}
/*
* Open the external journal device
*/
static struct block_device *ext3_blkdev_get(kdev_t dev)
{
struct block_device *bdev;
int err = -ENODEV;
bdev = bdget(kdev_t_to_nr(dev));
if (bdev == NULL)
goto fail;
err = blkdev_get(bdev, FMODE_READ|FMODE_WRITE, 0, BDEV_FS);
if (err < 0)
goto fail;
return bdev;
fail:
printk(KERN_ERR "EXT3: failed to open journal device %s: %d\n",
bdevname(dev), err);
return NULL;
}
/*
* Release the journal device
*/
static int ext3_blkdev_put(struct block_device *bdev)
{
return blkdev_put(bdev, BDEV_FS);
}
static int ext3_blkdev_remove(struct ext3_sb_info *sbi)
{
struct block_device *bdev;
int ret = -ENODEV;
bdev = sbi->journal_bdev;
if (bdev) {
ret = ext3_blkdev_put(bdev);
sbi->journal_bdev = 0;
}
return ret;
}
static inline struct inode *orphan_list_entry(struct list_head *l)
{
return &list_entry(l, struct ext3_inode_info, i_orphan)->vfs_inode;
}
static void dump_orphan_list(struct super_block *sb, struct ext3_sb_info *sbi)
{
struct list_head *l;
printk(KERN_ERR "sb orphan head is %d\n",
le32_to_cpu(sbi->s_es->s_last_orphan));
printk(KERN_ERR "sb_info orphan list:\n");
list_for_each(l, &sbi->s_orphan) {
struct inode *inode = orphan_list_entry(l);
printk(KERN_ERR " "
"inode %s:%ld at %p: mode %o, nlink %d, next %d\n",
inode->i_sb->s_id, inode->i_ino, inode,
inode->i_mode, inode->i_nlink,
le32_to_cpu(NEXT_ORPHAN(inode)));
}
}
void ext3_put_super (struct super_block * sb)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
struct ext3_super_block *es = sbi->s_es;
int i;
journal_destroy(sbi->s_journal);
if (!(sb->s_flags & MS_RDONLY)) {
EXT3_CLEAR_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
es->s_state = le16_to_cpu(sbi->s_mount_state);
BUFFER_TRACE(sbi->s_sbh, "marking dirty");
mark_buffer_dirty(sbi->s_sbh);
ext3_commit_super(sb, es, 1);
}
for (i = 0; i < sbi->s_gdb_count; i++)
brelse(sbi->s_group_desc[i]);
kfree(sbi->s_group_desc);
for (i = 0; i < EXT3_MAX_GROUP_LOADED; i++)
brelse(sbi->s_inode_bitmap[i]);
for (i = 0; i < EXT3_MAX_GROUP_LOADED; i++)
brelse(sbi->s_block_bitmap[i]);
brelse(sbi->s_sbh);
/* Debugging code just in case the in-memory inode orphan list
* isn't empty. The on-disk one can be non-empty if we've
* detected an error and taken the fs readonly, but the
* in-memory list had better be clean by this point. */
if (!list_empty(&sbi->s_orphan))
dump_orphan_list(sb, sbi);
J_ASSERT(list_empty(&sbi->s_orphan));
invalidate_bdev(sb->s_bdev, 0);
if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
/*
* Invalidate the journal device's buffers. We don't want them
* floating about in memory - the physical journal device may
* hotswapped, and it breaks the `ro-after' testing code.
*/
fsync_no_super(sbi->journal_bdev);
invalidate_bdev(sbi->journal_bdev, 0);
ext3_blkdev_remove(sbi);
}
clear_ro_after(sb);
return;
}
static kmem_cache_t * ext3_inode_cachep;
static struct inode *ext3_alloc_inode(struct super_block *sb)
{
struct ext3_inode_info *ei;
ei = (struct ext3_inode_info *)kmem_cache_alloc(ext3_inode_cachep, SLAB_KERNEL);
if (!ei)
return NULL;
return &ei->vfs_inode;
}
static void ext3_destroy_inode(struct inode *inode)
{
kmem_cache_free(ext3_inode_cachep, EXT3_I(inode));
}
static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
{
struct ext3_inode_info *ei = (struct ext3_inode_info *) foo;
if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
SLAB_CTOR_CONSTRUCTOR) {
INIT_LIST_HEAD(&ei->i_orphan);
init_rwsem(&ei->truncate_sem);
inode_init_once(&ei->vfs_inode);
}
}
static int init_inodecache(void)
{
ext3_inode_cachep = kmem_cache_create("ext3_inode_cache",
sizeof(struct ext3_inode_info),
0, SLAB_HWCACHE_ALIGN,
init_once, NULL);
if (ext3_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
if (kmem_cache_destroy(ext3_inode_cachep))
printk(KERN_INFO "ext3_inode_cache: not all structures were freed\n");
}
static struct super_operations ext3_sops = {
alloc_inode: ext3_alloc_inode,
destroy_inode: ext3_destroy_inode,
read_inode: ext3_read_inode, /* BKL held */
write_inode: ext3_write_inode, /* BKL not held. Don't need */
dirty_inode: ext3_dirty_inode, /* BKL not held. We take it */
put_inode: ext3_put_inode, /* BKL not held. Don't need */
delete_inode: ext3_delete_inode, /* BKL not held. We take it */
put_super: ext3_put_super, /* BKL held */
write_super: ext3_write_super, /* BKL held */
write_super_lockfs: ext3_write_super_lockfs, /* BKL not held. Take it */
unlockfs: ext3_unlockfs, /* BKL not held. We take it */
statfs: ext3_statfs, /* BKL held */
remount_fs: ext3_remount, /* BKL held */
};
static int want_value(char *value, char *option)
{
if (!value || !*value) {
printk(KERN_NOTICE "EXT3-fs: the %s option needs an argument\n",
option);
return -1;
}
return 0;
}
static int want_null_value(char *value, char *option)
{
if (*value) {
printk(KERN_NOTICE "EXT3-fs: Invalid %s argument: %s\n",
option, value);
return -1;
}
return 0;
}
static int want_numeric(char *value, char *option, unsigned long *number)
{
if (want_value(value, option))
return -1;
*number = simple_strtoul(value, &value, 0);
if (want_null_value(value, option))
return -1;
return 0;
}
/*
* This function has been shamelessly adapted from the msdos fs
*/
static int parse_options (char * options, unsigned long * sb_block,
struct ext3_sb_info *sbi,
unsigned long * inum,
int is_remount)
{
unsigned long *mount_options = &sbi->s_mount_opt;
uid_t *resuid = &sbi->s_resuid;
gid_t *resgid = &sbi->s_resgid;
char * this_char;
char * value;
if (!options)
return 1;
for (this_char = strtok (options, ",");
this_char != NULL;
this_char = strtok (NULL, ",")) {
if ((value = strchr (this_char, '=')) != NULL)
*value++ = 0;
if (!strcmp (this_char, "bsddf"))
clear_opt (*mount_options, MINIX_DF);
else if (!strcmp (this_char, "nouid32")) {
set_opt (*mount_options, NO_UID32);
}
else if (!strcmp (this_char, "abort"))
set_opt (*mount_options, ABORT);
else if (!strcmp (this_char, "check")) {
if (!value || !*value || !strcmp (value, "none"))
clear_opt (*mount_options, CHECK);
else
#ifdef CONFIG_EXT3_CHECK
set_opt (*mount_options, CHECK);
#else
printk(KERN_ERR
"EXT3 Check option not supported\n");
#endif
}
else if (!strcmp (this_char, "debug"))
set_opt (*mount_options, DEBUG);
else if (!strcmp (this_char, "errors")) {
if (want_value(value, "errors"))
return 0;
if (!strcmp (value, "continue")) {
clear_opt (*mount_options, ERRORS_RO);
clear_opt (*mount_options, ERRORS_PANIC);
set_opt (*mount_options, ERRORS_CONT);
}
else if (!strcmp (value, "remount-ro")) {
clear_opt (*mount_options, ERRORS_CONT);
clear_opt (*mount_options, ERRORS_PANIC);
set_opt (*mount_options, ERRORS_RO);
}
else if (!strcmp (value, "panic")) {
clear_opt (*mount_options, ERRORS_CONT);
clear_opt (*mount_options, ERRORS_RO);
set_opt (*mount_options, ERRORS_PANIC);
}
else {
printk (KERN_ERR
"EXT3-fs: Invalid errors option: %s\n",
value);
return 0;
}
}
else if (!strcmp (this_char, "grpid") ||
!strcmp (this_char, "bsdgroups"))
set_opt (*mount_options, GRPID);
else if (!strcmp (this_char, "minixdf"))
set_opt (*mount_options, MINIX_DF);
else if (!strcmp (this_char, "nocheck"))
clear_opt (*mount_options, CHECK);
else if (!strcmp (this_char, "nogrpid") ||
!strcmp (this_char, "sysvgroups"))
clear_opt (*mount_options, GRPID);
else if (!strcmp (this_char, "resgid")) {
unsigned long v;
if (want_numeric(value, "resgid", &v))
return 0;
*resgid = v;
}
else if (!strcmp (this_char, "resuid")) {
unsigned long v;
if (want_numeric(value, "resuid", &v))
return 0;
*resuid = v;
}
else if (!strcmp (this_char, "sb")) {
if (want_numeric(value, "sb", sb_block))
return 0;
}
#ifdef CONFIG_JBD_DEBUG
else if (!strcmp (this_char, "ro-after")) {
unsigned long v;
if (want_numeric(value, "ro-after", &v))
return 0;
ext3_ro_after = v;
}
#endif
/* Silently ignore the quota options */
else if (!strcmp (this_char, "grpquota")
|| !strcmp (this_char, "noquota")
|| !strcmp (this_char, "quota")
|| !strcmp (this_char, "usrquota"))
/* Don't do anything ;-) */ ;
else if (!strcmp (this_char, "journal")) {
/* @@@ FIXME */
/* Eventually we will want to be able to create
a journal file here. For now, only allow the
user to specify an existing inode to be the
journal file. */
if (is_remount) {
printk(KERN_ERR "EXT3-fs: cannot specify "
"journal on remount\n");
return 0;
}
if (want_value(value, "journal"))
return 0;
if (!strcmp (value, "update"))
set_opt (*mount_options, UPDATE_JOURNAL);
else if (want_numeric(value, "journal", inum))
return 0;
}
else if (!strcmp (this_char, "noload"))
set_opt (*mount_options, NOLOAD);
else if (!strcmp (this_char, "data")) {
int data_opt = 0;
if (want_value(value, "data"))
return 0;
if (!strcmp (value, "journal"))
data_opt = EXT3_MOUNT_JOURNAL_DATA;
else if (!strcmp (value, "ordered"))
data_opt = EXT3_MOUNT_ORDERED_DATA;
else if (!strcmp (value, "writeback"))
data_opt = EXT3_MOUNT_WRITEBACK_DATA;
else {
printk (KERN_ERR
"EXT3-fs: Invalid data option: %s\n",
value);
return 0;
}
if (is_remount) {
if ((*mount_options & EXT3_MOUNT_DATA_FLAGS) !=
data_opt) {
printk(KERN_ERR
"EXT3-fs: cannot change data "
"mode on remount\n");
return 0;
}
} else {
*mount_options &= ~EXT3_MOUNT_DATA_FLAGS;
*mount_options |= data_opt;
}
} else {
printk (KERN_ERR
"EXT3-fs: Unrecognized mount option %s\n",
this_char);
return 0;
}
}
return 1;
}
static int ext3_setup_super(struct super_block *sb, struct ext3_super_block *es,
int read_only)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
int res = 0;
if (le32_to_cpu(es->s_rev_level) > EXT3_MAX_SUPP_REV) {
printk (KERN_ERR "EXT3-fs warning: revision level too high, "
"forcing read-only mode\n");
res = MS_RDONLY;
}
if (read_only)
return res;
if (!(sbi->s_mount_state & EXT3_VALID_FS))
printk (KERN_WARNING "EXT3-fs warning: mounting unchecked fs, "
"running e2fsck is recommended\n");
else if ((sbi->s_mount_state & EXT3_ERROR_FS))
printk (KERN_WARNING
"EXT3-fs warning: mounting fs with errors, "
"running e2fsck is recommended\n");
else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
le16_to_cpu(es->s_mnt_count) >=
(unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
printk (KERN_WARNING
"EXT3-fs warning: maximal mount count reached, "
"running e2fsck is recommended\n");
else if (le32_to_cpu(es->s_checkinterval) &&
(le32_to_cpu(es->s_lastcheck) +
le32_to_cpu(es->s_checkinterval) <= CURRENT_TIME))
printk (KERN_WARNING
"EXT3-fs warning: checktime reached, "
"running e2fsck is recommended\n");
#if 0
/* @@@ We _will_ want to clear the valid bit if we find
inconsistencies, to force a fsck at reboot. But for
a plain journaled filesystem we can keep it set as
valid forever! :) */
es->s_state = cpu_to_le16(le16_to_cpu(es->s_state) & ~EXT3_VALID_FS);
#endif
if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
es->s_max_mnt_count =
(__s16) cpu_to_le16(EXT3_DFL_MAX_MNT_COUNT);
es->s_mnt_count=cpu_to_le16(le16_to_cpu(es->s_mnt_count) + 1);
es->s_mtime = cpu_to_le32(CURRENT_TIME);
ext3_update_dynamic_rev(sb);
EXT3_SET_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
ext3_commit_super (sb, es, 1);
if (test_opt (sb, DEBUG))
printk (KERN_INFO
"[EXT3 FS %s, %s, bs=%lu, gc=%lu, "
"bpg=%lu, ipg=%lu, mo=%04lx]\n",
EXT3FS_VERSION, EXT3FS_DATE, sb->s_blocksize,
sbi->s_groups_count,
EXT3_BLOCKS_PER_GROUP(sb),
EXT3_INODES_PER_GROUP(sb),
sbi->s_mount_opt);
printk(KERN_INFO "EXT3 FS " EXT3FS_VERSION ", " EXT3FS_DATE " on %s, ",
sb->s_id);
if (EXT3_SB(sb)->s_journal->j_inode == NULL) {
printk("external journal on %s\n",
bdevname(to_kdev_t(EXT3_SB(sb)->s_journal->j_dev->bd_dev)));
} else {
printk("internal journal\n");
}
#ifdef CONFIG_EXT3_CHECK
if (test_opt (sb, CHECK)) {
ext3_check_blocks_bitmap (sb);
ext3_check_inodes_bitmap (sb);
}
#endif
setup_ro_after(sb);
return res;
}
static int ext3_check_descriptors (struct super_block * sb)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
unsigned long block = le32_to_cpu(sbi->s_es->s_first_data_block);
struct ext3_group_desc * gdp = NULL;
int desc_block = 0;
int i;
ext3_debug ("Checking group descriptors");
for (i = 0; i < sbi->s_groups_count; i++)
{
if ((i % EXT3_DESC_PER_BLOCK(sb)) == 0)
gdp = (struct ext3_group_desc *)
sbi->s_group_desc[desc_block++]->b_data;
if (le32_to_cpu(gdp->bg_block_bitmap) < block ||
le32_to_cpu(gdp->bg_block_bitmap) >=
block + EXT3_BLOCKS_PER_GROUP(sb))
{
ext3_error (sb, "ext3_check_descriptors",
"Block bitmap for group %d"
" not in group (block %lu)!",
i, (unsigned long)
le32_to_cpu(gdp->bg_block_bitmap));
return 0;
}
if (le32_to_cpu(gdp->bg_inode_bitmap) < block ||
le32_to_cpu(gdp->bg_inode_bitmap) >=
block + EXT3_BLOCKS_PER_GROUP(sb))
{
ext3_error (sb, "ext3_check_descriptors",
"Inode bitmap for group %d"
" not in group (block %lu)!",
i, (unsigned long)
le32_to_cpu(gdp->bg_inode_bitmap));
return 0;
}
if (le32_to_cpu(gdp->bg_inode_table) < block ||
le32_to_cpu(gdp->bg_inode_table) + sbi->s_itb_per_group >=
block + EXT3_BLOCKS_PER_GROUP(sb))
{
ext3_error (sb, "ext3_check_descriptors",
"Inode table for group %d"
" not in group (block %lu)!",
i, (unsigned long)
le32_to_cpu(gdp->bg_inode_table));
return 0;
}
block += EXT3_BLOCKS_PER_GROUP(sb);
gdp++;
}
return 1;
}
/* ext3_orphan_cleanup() walks a singly-linked list of inodes (starting at
* the superblock) which were deleted from all directories, but held open by
* a process at the time of a crash. We walk the list and try to delete these
* inodes at recovery time (only with a read-write filesystem).
*
* In order to keep the orphan inode chain consistent during traversal (in
* case of crash during recovery), we link each inode into the superblock
* orphan list_head and handle it the same way as an inode deletion during
* normal operation (which journals the operations for us).
*
* We only do an iget() and an iput() on each inode, which is very safe if we
* accidentally point at an in-use or already deleted inode. The worst that
* can happen in this case is that we get a "bit already cleared" message from
* ext3_free_inode(). The only reason we would point at a wrong inode is if
* e2fsck was run on this filesystem, and it must have already done the orphan
* inode cleanup for us, so we can safely abort without any further action.
*/
static void ext3_orphan_cleanup (struct super_block * sb,
struct ext3_super_block * es)
{
unsigned int s_flags = sb->s_flags;
int nr_orphans = 0, nr_truncates = 0;
if (!es->s_last_orphan) {
jbd_debug(4, "no orphan inodes to clean up\n");
return;
}
if (s_flags & MS_RDONLY) {
printk(KERN_INFO "EXT3-fs: %s: orphan cleanup on readonly fs\n",
sb->s_id);
sb->s_flags &= ~MS_RDONLY;
}
if (sb->u.ext3_sb.s_mount_state & EXT3_ERROR_FS) {
if (es->s_last_orphan)
jbd_debug(1, "Errors on filesystem, "
"clearing orphan list.\n");
es->s_last_orphan = 0;
jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
return;
}
while (es->s_last_orphan) {
struct inode *inode;
if (!(inode =
ext3_orphan_get(sb, le32_to_cpu(es->s_last_orphan)))) {
es->s_last_orphan = 0;
break;
}
list_add(&EXT3_I(inode)->i_orphan, &EXT3_SB(sb)->s_orphan);
if (inode->i_nlink) {
printk(KERN_DEBUG __FUNCTION__
": truncating inode %ld to %Ld bytes\n",
inode->i_ino, inode->i_size);
jbd_debug(2, "truncating inode %ld to %Ld bytes\n",
inode->i_ino, inode->i_size);
ext3_truncate(inode);
nr_truncates++;
} else {
printk(KERN_DEBUG __FUNCTION__
": deleting unreferenced inode %ld\n",
inode->i_ino);
jbd_debug(2, "deleting unreferenced inode %ld\n",
inode->i_ino);
nr_orphans++;
}
iput(inode); /* The delete magic happens here! */
}
#define PLURAL(x) (x), ((x)==1) ? "" : "s"
if (nr_orphans)
printk(KERN_INFO "EXT3-fs: %s: %d orphan inode%s deleted\n",
sb->s_id, PLURAL(nr_orphans));
if (nr_truncates)
printk(KERN_INFO "EXT3-fs: %s: %d truncate%s cleaned up\n",
sb->s_id, PLURAL(nr_truncates));
sb->s_flags = s_flags; /* Restore MS_RDONLY status */
}
#define log2(n) ffz(~(n))
/*
* Maximal file size. There is a direct, and {,double-,triple-}indirect
* block limit, and also a limit of (2^32 - 1) 512-byte sectors in i_blocks.
* We need to be 1 filesystem block less than the 2^32 sector limit.
*/
static loff_t ext3_max_size(int bits)
{
loff_t res = EXT3_NDIR_BLOCKS;
res += 1LL << (bits-2);
res += 1LL << (2*(bits-2));
res += 1LL << (3*(bits-2));
res <<= bits;
if (res > (512LL << 32) - (1 << bits))
res = (512LL << 32) - (1 << bits);
return res;
}
static int ext3_fill_super (struct super_block *sb, void *data, int silent)
{
struct buffer_head * bh;
struct ext3_super_block *es = 0;
struct ext3_sb_info *sbi = EXT3_SB(sb);
unsigned long sb_block = 1;
unsigned long logic_sb_block = 1;
unsigned long offset = 0;
unsigned long journal_inum = 0;
kdev_t dev = sb->s_dev;
int blocksize;
int hblock;
int db_count;
int i;
int needs_recovery;
#ifdef CONFIG_JBD_DEBUG
ext3_ro_after = 0;
#endif
/*
* See what the current blocksize for the device is, and
* use that as the blocksize. Otherwise (or if the blocksize
* is smaller than the default) use the default.
* This is important for devices that have a hardware
* sectorsize that is larger than the default.
*/
sbi->s_mount_opt = 0;
sbi->s_resuid = EXT3_DEF_RESUID;
sbi->s_resgid = EXT3_DEF_RESGID;
if (!parse_options ((char *) data, &sb_block, sbi, &journal_inum, 0))
goto out_fail;
blocksize = sb_min_blocksize(sb, EXT3_MIN_BLOCK_SIZE);
/*
* The ext3 superblock will not be buffer aligned for other than 1kB
* block sizes. We need to calculate the offset from buffer start.
*/
if (blocksize != EXT3_MIN_BLOCK_SIZE) {
logic_sb_block = (sb_block * EXT3_MIN_BLOCK_SIZE) / blocksize;
offset = (sb_block * EXT3_MIN_BLOCK_SIZE) % blocksize;
}
if (!(bh = sb_bread(sb, logic_sb_block))) {
printk (KERN_ERR "EXT3-fs: unable to read superblock\n");
goto out_fail;
}
/*
* Note: s_es must be initialized as soon as possible because
* some ext3 macro-instructions depend on its value
*/
es = (struct ext3_super_block *) (((char *)bh->b_data) + offset);
sbi->s_es = es;
sb->s_magic = le16_to_cpu(es->s_magic);
if (sb->s_magic != EXT3_SUPER_MAGIC) {
if (!silent)
printk(KERN_ERR
"VFS: Can't find ext3 filesystem on dev %s.\n",
sb->s_id);
goto failed_mount;
}
if (le32_to_cpu(es->s_rev_level) == EXT3_GOOD_OLD_REV &&
(EXT3_HAS_COMPAT_FEATURE(sb, ~0U) ||
EXT3_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
EXT3_HAS_INCOMPAT_FEATURE(sb, ~0U)))
printk(KERN_WARNING
"EXT3-fs warning: feature flags set on rev 0 fs, "
"running e2fsck is recommended\n");
/*
* Check feature flags regardless of the revision level, since we
* previously didn't change the revision level when setting the flags,
* so there is a chance incompat flags are set on a rev 0 filesystem.
*/
if ((i = EXT3_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))) {
printk(KERN_ERR "EXT3-fs: %s: couldn't mount because of "
"unsupported optional features (%x).\n",
sb->s_id, i);
goto failed_mount;
}
if (!(sb->s_flags & MS_RDONLY) &&
(i = EXT3_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))){
printk(KERN_ERR "EXT3-fs: %s: couldn't mount RDWR because of "
"unsupported optional features (%x).\n",
sb->s_id, i);
goto failed_mount;
}
blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
if (blocksize < EXT3_MIN_BLOCK_SIZE ||
blocksize > EXT3_MAX_BLOCK_SIZE) {
printk(KERN_ERR
"EXT3-fs: Unsupported filesystem blocksize %d on %s.\n",
blocksize, sb->s_id);
goto failed_mount;
}
sb->s_maxbytes = ext3_max_size(sb->s_blocksize_bits);
hblock = get_hardsect_size(dev);
if (sb->s_blocksize != blocksize) {
/*
* Make sure the blocksize for the filesystem is larger
* than the hardware sectorsize for the machine.
*/
if (blocksize < hblock) {
printk(KERN_ERR "EXT3-fs: blocksize %d too small for "
"device blocksize %d.\n", blocksize, hblock);
goto failed_mount;
}
brelse (bh);
sb_set_blocksize(sb, blocksize);
logic_sb_block = (sb_block * EXT3_MIN_BLOCK_SIZE) / blocksize;
offset = (sb_block * EXT3_MIN_BLOCK_SIZE) % blocksize;
bh = sb_bread(sb, logic_sb_block);
if (!bh) {
printk(KERN_ERR
"EXT3-fs: Can't read superblock on 2nd try.\n");
return -EINVAL;
}
es = (struct ext3_super_block *)(((char *)bh->b_data) + offset);
sbi->s_es = es;
if (es->s_magic != le16_to_cpu(EXT3_SUPER_MAGIC)) {
printk (KERN_ERR
"EXT3-fs: Magic mismatch, very weird !\n");
goto failed_mount;
}
}
if (le32_to_cpu(es->s_rev_level) == EXT3_GOOD_OLD_REV) {
sbi->s_inode_size = EXT3_GOOD_OLD_INODE_SIZE;
sbi->s_first_ino = EXT3_GOOD_OLD_FIRST_INO;
} else {
sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
if (sbi->s_inode_size != EXT3_GOOD_OLD_INODE_SIZE) {
printk (KERN_ERR
"EXT3-fs: unsupported inode size: %d\n",
sbi->s_inode_size);
goto failed_mount;
}
}
sbi->s_frag_size = EXT3_MIN_FRAG_SIZE <<
le32_to_cpu(es->s_log_frag_size);
if (blocksize != sbi->s_frag_size) {
printk(KERN_ERR
"EXT3-fs: fragsize %lu != blocksize %u (unsupported)\n",
sbi->s_frag_size, blocksize);
goto failed_mount;
}
sbi->s_frags_per_block = 1;
sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
sbi->s_frags_per_group = le32_to_cpu(es->s_frags_per_group);
sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
sbi->s_inodes_per_block = blocksize / EXT3_INODE_SIZE(sb);
sbi->s_itb_per_group = sbi->s_inodes_per_group /sbi->s_inodes_per_block;
sbi->s_desc_per_block = blocksize / sizeof(struct ext3_group_desc);
sbi->s_sbh = bh;
if (sbi->s_resuid == EXT3_DEF_RESUID)
sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
if (sbi->s_resgid == EXT3_DEF_RESGID)
sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
sbi->s_mount_state = le16_to_cpu(es->s_state);
sbi->s_addr_per_block_bits = log2(EXT3_ADDR_PER_BLOCK(sb));
sbi->s_desc_per_block_bits = log2(EXT3_DESC_PER_BLOCK(sb));
if (sbi->s_blocks_per_group > blocksize * 8) {
printk (KERN_ERR
"EXT3-fs: #blocks per group too big: %lu\n",
sbi->s_blocks_per_group);
goto failed_mount;
}
if (sbi->s_frags_per_group > blocksize * 8) {
printk (KERN_ERR
"EXT3-fs: #fragments per group too big: %lu\n",
sbi->s_frags_per_group);
goto failed_mount;
}
if (sbi->s_inodes_per_group > blocksize * 8) {
printk (KERN_ERR
"EXT3-fs: #inodes per group too big: %lu\n",
sbi->s_inodes_per_group);
goto failed_mount;
}
sbi->s_groups_count = (le32_to_cpu(es->s_blocks_count) -
le32_to_cpu(es->s_first_data_block) +
EXT3_BLOCKS_PER_GROUP(sb) - 1) /
EXT3_BLOCKS_PER_GROUP(sb);
db_count = (sbi->s_groups_count + EXT3_DESC_PER_BLOCK(sb) - 1) /
EXT3_DESC_PER_BLOCK(sb);
sbi->s_group_desc = kmalloc(db_count * sizeof (struct buffer_head *),
GFP_KERNEL);
if (sbi->s_group_desc == NULL) {
printk (KERN_ERR "EXT3-fs: not enough memory\n");
goto failed_mount;
}
for (i = 0; i < db_count; i++) {
sbi->s_group_desc[i] = sb_bread(sb, logic_sb_block + i + 1);
if (!sbi->s_group_desc[i]) {
printk (KERN_ERR "EXT3-fs: "
"can't read group descriptor %d\n", i);
db_count = i;
goto failed_mount2;
}
}
if (!ext3_check_descriptors (sb)) {
printk (KERN_ERR "EXT3-fs: group descriptors corrupted !\n");
goto failed_mount2;
}
for (i = 0; i < EXT3_MAX_GROUP_LOADED; i++) {
sbi->s_inode_bitmap_number[i] = 0;
sbi->s_inode_bitmap[i] = NULL;
sbi->s_block_bitmap_number[i] = 0;
sbi->s_block_bitmap[i] = NULL;
}
sbi->s_loaded_inode_bitmaps = 0;
sbi->s_loaded_block_bitmaps = 0;
sbi->s_gdb_count = db_count;
/*
* set up enough so that it can read an inode
*/
sb->s_op = &ext3_sops;
INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
sb->s_root = 0;
needs_recovery = (es->s_last_orphan != 0 ||
EXT3_HAS_INCOMPAT_FEATURE(sb,
EXT3_FEATURE_INCOMPAT_RECOVER));
/*
* The first inode we look at is the journal inode. Don't try
* root first: it may be modified in the journal!
*/
if (!test_opt(sb, NOLOAD) &&
EXT3_HAS_COMPAT_FEATURE(sb, EXT3_FEATURE_COMPAT_HAS_JOURNAL)) {
if (ext3_load_journal(sb, es))
goto failed_mount2;
} else if (journal_inum) {
if (ext3_create_journal(sb, es, journal_inum))
goto failed_mount2;
} else {
if (!silent)
printk (KERN_ERR
"ext3: No journal on filesystem on %s\n",
sb->s_id);
goto failed_mount2;
}
/* We have now updated the journal if required, so we can
* validate the data journaling mode. */
switch (test_opt(sb, DATA_FLAGS)) {
case 0:
/* No mode set, assume a default based on the journal
capabilities: ORDERED_DATA if the journal can
cope, else JOURNAL_DATA */
if (journal_check_available_features
(sbi->s_journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE))
set_opt(sbi->s_mount_opt, ORDERED_DATA);
else
set_opt(sbi->s_mount_opt, JOURNAL_DATA);
break;
case EXT3_MOUNT_ORDERED_DATA:
case EXT3_MOUNT_WRITEBACK_DATA:
if (!journal_check_available_features
(sbi->s_journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)) {
printk(KERN_ERR "EXT3-fs: Journal does not support "
"requested data journaling mode\n");
goto failed_mount3;
}
default:
break;
}
/*
* The journal_load will have done any necessary log recovery,
* so we can safely mount the rest of the filesystem now.
*/
sb->s_root = d_alloc_root(iget(sb, EXT3_ROOT_INO));
if (!sb->s_root || !S_ISDIR(sb->s_root->d_inode->i_mode) ||
!sb->s_root->d_inode->i_blocks || !sb->s_root->d_inode->i_size) {
if (sb->s_root) {
dput(sb->s_root);
sb->s_root = NULL;
printk(KERN_ERR
"EXT3-fs: corrupt root inode, run e2fsck\n");
} else
printk(KERN_ERR "EXT3-fs: get root inode failed\n");
goto failed_mount3;
}
ext3_setup_super (sb, es, sb->s_flags & MS_RDONLY);
/*
* akpm: core read_super() calls in here with the superblock locked.
* That deadlocks, because orphan cleanup needs to lock the superblock
* in numerous places. Here we just pop the lock - it's relatively
* harmless, because we are now ready to accept write_super() requests,
* and aviro says that's the only reason for hanging onto the
* superblock lock.
*/
EXT3_SB(sb)->s_mount_state |= EXT3_ORPHAN_FS;
unlock_super(sb); /* akpm: sigh */
ext3_orphan_cleanup(sb, es);
lock_super(sb);
EXT3_SB(sb)->s_mount_state &= ~EXT3_ORPHAN_FS;
if (needs_recovery)
printk (KERN_INFO "EXT3-fs: recovery complete.\n");
ext3_mark_recovery_complete(sb, es);
printk (KERN_INFO "EXT3-fs: mounted filesystem with %s data mode.\n",
test_opt(sb,DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ? "journal":
test_opt(sb,DATA_FLAGS) == EXT3_MOUNT_ORDERED_DATA ? "ordered":
"writeback");
return 0;
failed_mount3:
journal_destroy(sbi->s_journal);
failed_mount2:
for (i = 0; i < db_count; i++)
brelse(sbi->s_group_desc[i]);
kfree(sbi->s_group_desc);
failed_mount:
ext3_blkdev_remove(sbi);
brelse(bh);
out_fail:
return -EINVAL;
}
static journal_t *ext3_get_journal(struct super_block *sb, int journal_inum)
{
struct inode *journal_inode;
journal_t *journal;
/* First, test for the existence of a valid inode on disk. Bad
* things happen if we iget() an unused inode, as the subsequent
* iput() will try to delete it. */
journal_inode = iget(sb, journal_inum);
if (!journal_inode) {
printk(KERN_ERR "EXT3-fs: no journal found.\n");
return NULL;
}
if (!journal_inode->i_nlink) {
make_bad_inode(journal_inode);
iput(journal_inode);
printk(KERN_ERR "EXT3-fs: journal inode is deleted.\n");
return NULL;
}
jbd_debug(2, "Journal inode found at %p: %Ld bytes\n",
journal_inode, journal_inode->i_size);
if (is_bad_inode(journal_inode) || !S_ISREG(journal_inode->i_mode)) {
printk(KERN_ERR "EXT3-fs: invalid journal inode.\n");
iput(journal_inode);
return NULL;
}
journal = journal_init_inode(journal_inode);
if (!journal) {
printk(KERN_ERR "EXT3-fs: Could not load journal inode\n");
iput(journal_inode);
}
return journal;
}
static journal_t *ext3_get_dev_journal(struct super_block *sb,
kdev_t j_dev)
{
struct buffer_head * bh;
journal_t *journal;
int start;
int len;
int hblock, blocksize;
unsigned long sb_block;
unsigned long offset;
struct ext3_super_block * es;
struct block_device *bdev;
bdev = ext3_blkdev_get(j_dev);
if (bdev == NULL)
return NULL;
blocksize = sb->s_blocksize;
hblock = get_hardsect_size(j_dev);
if (blocksize < hblock) {
printk(KERN_ERR
"EXT3-fs: blocksize too small for journal device.\n");
goto out_bdev;
}
sb_block = EXT3_MIN_BLOCK_SIZE / blocksize;
offset = EXT3_MIN_BLOCK_SIZE % blocksize;
set_blocksize(j_dev, blocksize);
if (!(bh = __bread(bdev, sb_block, blocksize))) {
printk(KERN_ERR "EXT3-fs: couldn't read superblock of "
"external journal\n");
goto out_bdev;
}
es = (struct ext3_super_block *) (((char *)bh->b_data) + offset);
if ((le16_to_cpu(es->s_magic) != EXT3_SUPER_MAGIC) ||
!(le32_to_cpu(es->s_feature_incompat) &
EXT3_FEATURE_INCOMPAT_JOURNAL_DEV)) {
printk(KERN_ERR "EXT3-fs: external journal has "
"bad superblock\n");
brelse(bh);
goto out_bdev;
}
if (memcmp(EXT3_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
printk(KERN_ERR "EXT3-fs: journal UUID does not match\n");
brelse(bh);
goto out_bdev;
}
len = le32_to_cpu(es->s_blocks_count);
start = sb_block + 1;
brelse(bh); /* we're done with the superblock */
journal = journal_init_dev(bdev, sb->s_bdev,
start, len, blocksize);
if (!journal) {
printk(KERN_ERR "EXT3-fs: failed to create device journal\n");
goto out_bdev;
}
ll_rw_block(READ, 1, &journal->j_sb_buffer);
wait_on_buffer(journal->j_sb_buffer);
if (!buffer_uptodate(journal->j_sb_buffer)) {
printk(KERN_ERR "EXT3-fs: I/O error on journal device\n");
goto out_journal;
}
if (ntohl(journal->j_superblock->s_nr_users) != 1) {
printk(KERN_ERR "EXT3-fs: External journal has more than one "
"user (unsupported) - %d\n",
ntohl(journal->j_superblock->s_nr_users));
goto out_journal;
}
EXT3_SB(sb)->journal_bdev = bdev;
return journal;
out_journal:
journal_destroy(journal);
out_bdev:
ext3_blkdev_put(bdev);
return NULL;
}
static int ext3_load_journal(struct super_block * sb,
struct ext3_super_block * es)
{
journal_t *journal;
int journal_inum = le32_to_cpu(es->s_journal_inum);
kdev_t journal_dev = to_kdev_t(le32_to_cpu(es->s_journal_dev));
int err = 0;
int really_read_only;
really_read_only = is_read_only(sb->s_dev);
/*
* Are we loading a blank journal or performing recovery after a
* crash? For recovery, we need to check in advance whether we
* can get read-write access to the device.
*/
if (EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER)) {
if (sb->s_flags & MS_RDONLY) {
printk(KERN_INFO "EXT3-fs: INFO: recovery "
"required on readonly filesystem.\n");
if (really_read_only) {
printk(KERN_ERR "EXT3-fs: write access "
"unavailable, cannot proceed.\n");
return -EROFS;
}
printk (KERN_INFO "EXT3-fs: write access will "
"be enabled during recovery.\n");
}
}
if (journal_inum && !kdev_none(journal_dev)) {
printk(KERN_ERR "EXT3-fs: filesystem has both journal "
"and inode journals!\n");
return -EINVAL;
}
if (journal_inum) {
if (!(journal = ext3_get_journal(sb, journal_inum)))
return -EINVAL;
} else {
if (!(journal = ext3_get_dev_journal(sb, journal_dev)))
return -EINVAL;
}
if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
err = journal_update_format(journal);
if (err) {
printk(KERN_ERR "EXT3-fs: error updating journal.\n");
journal_destroy(journal);
return err;
}
}
if (!EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER))
err = journal_wipe(journal, !really_read_only);
if (!err)
err = journal_load(journal);
if (err) {
printk(KERN_ERR "EXT3-fs: error loading journal.\n");
journal_destroy(journal);
return err;
}
EXT3_SB(sb)->s_journal = journal;
ext3_clear_journal_err(sb, es);
return 0;
}
static int ext3_create_journal(struct super_block * sb,
struct ext3_super_block * es,
int journal_inum)
{
journal_t *journal;
if (sb->s_flags & MS_RDONLY) {
printk(KERN_ERR "EXT3-fs: readonly filesystem when trying to "
"create journal.\n");
return -EROFS;
}
if (!(journal = ext3_get_journal(sb, journal_inum)))
return -EINVAL;
printk(KERN_INFO "EXT3-fs: creating new journal on inode %d\n",
journal_inum);
if (journal_create(journal)) {
printk(KERN_ERR "EXT3-fs: error creating journal.\n");
journal_destroy(journal);
return -EIO;
}
EXT3_SB(sb)->s_journal = journal;
ext3_update_dynamic_rev(sb);
EXT3_SET_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
EXT3_SET_COMPAT_FEATURE(sb, EXT3_FEATURE_COMPAT_HAS_JOURNAL);
es->s_journal_inum = cpu_to_le32(journal_inum);
sb->s_dirt = 1;
/* Make sure we flush the recovery flag to disk. */
ext3_commit_super(sb, es, 1);
return 0;
}
static void ext3_commit_super (struct super_block * sb,
struct ext3_super_block * es,
int sync)
{
es->s_wtime = cpu_to_le32(CURRENT_TIME);
BUFFER_TRACE(sb->u.ext3_sb.s_sbh, "marking dirty");
mark_buffer_dirty(sb->u.ext3_sb.s_sbh);
if (sync) {
ll_rw_block(WRITE, 1, &sb->u.ext3_sb.s_sbh);
wait_on_buffer(sb->u.ext3_sb.s_sbh);
}
}
/*
* Have we just finished recovery? If so, and if we are mounting (or
* remounting) the filesystem readonly, then we will end up with a
* consistent fs on disk. Record that fact.
*/
static void ext3_mark_recovery_complete(struct super_block * sb,
struct ext3_super_block * es)
{
journal_flush(EXT3_SB(sb)->s_journal);
if (EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER) &&
sb->s_flags & MS_RDONLY) {
EXT3_CLEAR_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
sb->s_dirt = 0;
ext3_commit_super(sb, es, 1);
}
}
/*
* If we are mounting (or read-write remounting) a filesystem whose journal
* has recorded an error from a previous lifetime, move that error to the
* main filesystem now.
*/
static void ext3_clear_journal_err(struct super_block * sb,
struct ext3_super_block * es)
{
journal_t *journal;
int j_errno;
const char *errstr;
journal = EXT3_SB(sb)->s_journal;
/*
* Now check for any error status which may have been recorded in the
* journal by a prior ext3_error() or ext3_abort()
*/
j_errno = journal_errno(journal);
if (j_errno) {
char nbuf[16];
errstr = ext3_decode_error(sb, j_errno, nbuf);
ext3_warning(sb, __FUNCTION__, "Filesystem error recorded "
"from previous mount: %s", errstr);
ext3_warning(sb, __FUNCTION__, "Marking fs in need of "
"filesystem check.");
sb->u.ext3_sb.s_mount_state |= EXT3_ERROR_FS;
es->s_state |= cpu_to_le16(EXT3_ERROR_FS);
ext3_commit_super (sb, es, 1);
journal_clear_err(journal);
}
}
/*
* Force the running and committing transactions to commit,
* and wait on the commit.
*/
int ext3_force_commit(struct super_block *sb)
{
journal_t *journal;
int ret;
if (sb->s_flags & MS_RDONLY)
return 0;
journal = EXT3_SB(sb)->s_journal;
sb->s_dirt = 0;
lock_kernel(); /* important: lock down j_running_transaction */
ret = ext3_journal_force_commit(journal);
unlock_kernel();
return ret;
}
/*
* Ext3 always journals updates to the superblock itself, so we don't
* have to propagate any other updates to the superblock on disk at this
* point. Just start an async writeback to get the buffers on their way
* to the disk.
*
* This implicitly triggers the writebehind on sync().
*/
static int do_sync_supers = 0;
MODULE_PARM(do_sync_supers, "i");
MODULE_PARM_DESC(do_sync_supers, "Write superblocks synchronously");
void ext3_write_super (struct super_block * sb)
{
tid_t target;
if (down_trylock(&sb->s_lock) == 0)
BUG(); /* aviro detector */
sb->s_dirt = 0;
target = log_start_commit(EXT3_SB(sb)->s_journal, NULL);
if (do_sync_supers) {
unlock_super(sb);
log_wait_commit(EXT3_SB(sb)->s_journal, target);
lock_super(sb);
}
}
/*
* LVM calls this function before a (read-only) snapshot is created. This
* gives us a chance to flush the journal completely and mark the fs clean.
*/
void ext3_write_super_lockfs(struct super_block *sb)
{
sb->s_dirt = 0;
lock_kernel(); /* 2.4.5 forgot to do this for us */
if (!(sb->s_flags & MS_RDONLY)) {
journal_t *journal = EXT3_SB(sb)->s_journal;
/* Now we set up the journal barrier. */
journal_lock_updates(journal);
journal_flush(journal);
/* Journal blocked and flushed, clear needs_recovery flag. */
EXT3_CLEAR_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
ext3_commit_super(sb, EXT3_SB(sb)->s_es, 1);
}
unlock_kernel();
}
/*
* Called by LVM after the snapshot is done. We need to reset the RECOVER
* flag here, even though the filesystem is not technically dirty yet.
*/
void ext3_unlockfs(struct super_block *sb)
{
if (!(sb->s_flags & MS_RDONLY)) {
lock_kernel();
lock_super(sb);
/* Reser the needs_recovery flag before the fs is unlocked. */
EXT3_SET_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER);
ext3_commit_super(sb, EXT3_SB(sb)->s_es, 1);
unlock_super(sb);
journal_unlock_updates(EXT3_SB(sb)->s_journal);
unlock_kernel();
}
}
int ext3_remount (struct super_block * sb, int * flags, char * data)
{
struct ext3_super_block * es;
struct ext3_sb_info *sbi = EXT3_SB(sb);
unsigned long tmp;
clear_ro_after(sb);
/*
* Allow the "check" option to be passed as a remount option.
*/
if (!parse_options(data, &tmp, sbi, &tmp, 1))
return -EINVAL;
if (sbi->s_mount_opt & EXT3_MOUNT_ABORT)
ext3_abort(sb, __FUNCTION__, "Abort forced by user");
es = sbi->s_es;
if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
if (sbi->s_mount_opt & EXT3_MOUNT_ABORT)
return -EROFS;
if (*flags & MS_RDONLY) {
/*
* First of all, the unconditional stuff we have to do
* to disable replay of the journal when we next remount
*/
sb->s_flags |= MS_RDONLY;
/*
* OK, test if we are remounting a valid rw partition
* readonly, and if so set the rdonly flag and then
* mark the partition as valid again.
*/
if (!(es->s_state & cpu_to_le16(EXT3_VALID_FS)) &&
(sbi->s_mount_state & EXT3_VALID_FS))
es->s_state = cpu_to_le16(sbi->s_mount_state);
ext3_mark_recovery_complete(sb, es);
} else {
int ret;
if ((ret = EXT3_HAS_RO_COMPAT_FEATURE(sb,
~EXT3_FEATURE_RO_COMPAT_SUPP))) {
printk(KERN_WARNING "EXT3-fs: %s: couldn't "
"remount RDWR because of unsupported "
"optional features (%x).\n",
sb->s_id, ret);
return -EROFS;
}
/*
* Mounting a RDONLY partition read-write, so reread
* and store the current valid flag. (It may have
* been changed by e2fsck since we originally mounted
* the partition.)
*/
ext3_clear_journal_err(sb, es);
sbi->s_mount_state = le16_to_cpu(es->s_state);
if (!ext3_setup_super (sb, es, 0))
sb->s_flags &= ~MS_RDONLY;
}
}
setup_ro_after(sb);
return 0;
}
int ext3_statfs (struct super_block * sb, struct statfs * buf)
{
struct ext3_super_block *es = EXT3_SB(sb)->s_es;
unsigned long overhead;
int i;
if (test_opt (sb, MINIX_DF))
overhead = 0;
else {
/*
* Compute the overhead (FS structures)
*/
/*
* All of the blocks before first_data_block are
* overhead
*/
overhead = le32_to_cpu(es->s_first_data_block);
/*
* Add the overhead attributed to the superblock and
* block group descriptors. If the sparse superblocks
* feature is turned on, then not all groups have this.
*/
for (i = 0; i < EXT3_SB(sb)->s_groups_count; i++)
overhead += ext3_bg_has_super(sb, i) +
ext3_bg_num_gdb(sb, i);
/*
* Every block group has an inode bitmap, a block
* bitmap, and an inode table.
*/
overhead += (EXT3_SB(sb)->s_groups_count *
(2 + EXT3_SB(sb)->s_itb_per_group));
}
buf->f_type = EXT3_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = le32_to_cpu(es->s_blocks_count) - overhead;
buf->f_bfree = ext3_count_free_blocks (sb);
buf->f_bavail = buf->f_bfree - le32_to_cpu(es->s_r_blocks_count);
if (buf->f_bfree < le32_to_cpu(es->s_r_blocks_count))
buf->f_bavail = 0;
buf->f_files = le32_to_cpu(es->s_inodes_count);
buf->f_ffree = ext3_count_free_inodes (sb);
buf->f_namelen = EXT3_NAME_LEN;
return 0;
}
static struct super_block *ext3_get_sb(struct file_system_type *fs_type,
int flags, char *dev_name, void *data)
{
return get_sb_bdev(fs_type, flags, dev_name, data, ext3_fill_super);
}
static struct file_system_type ext3_fs_type = {
owner: THIS_MODULE,
name: "ext3",
get_sb: ext3_get_sb,
fs_flags: FS_REQUIRES_DEV,
};
static int __init init_ext3_fs(void)
{
int err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&ext3_fs_type);
if (err)
goto out;
return 0;
out:
destroy_inodecache();
out1:
return err;
}
static void __exit exit_ext3_fs(void)
{
unregister_filesystem(&ext3_fs_type);
destroy_inodecache();
}
EXPORT_NO_SYMBOLS;
MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
MODULE_DESCRIPTION("Second Extended Filesystem with journaling extensions");
MODULE_LICENSE("GPL");
module_init(init_ext3_fs)
module_exit(exit_ext3_fs)