blob: 7bb767ba646a55c4a29230e9f74063ea9abad5aa [file] [log] [blame]
/*
* Node information (ConfigROM) collection and management.
*
* Copyright (C) 2000 Andreas E. Bombe
* 2001-2003 Ben Collins <bcollins@debian.net>
*
* This code is licensed under the GPL. See the file COPYING in the root
* directory of the kernel sources for details.
*/
#include <linux/kernel.h>
#include <linux/config.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kmod.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <asm/atomic.h>
#include <asm/byteorder.h>
#include "ieee1394_types.h"
#include "ieee1394.h"
#include "hosts.h"
#include "ieee1394_transactions.h"
#include "ieee1394_hotplug.h"
#include "highlevel.h"
#include "csr.h"
#include "nodemgr.h"
static char *nodemgr_find_oui_name(int oui)
{
#ifdef CONFIG_IEEE1394_OUI_DB
extern struct oui_list_struct {
int oui;
char *name;
} oui_list[];
int i;
for (i = 0; oui_list[i].name; i++)
if (oui_list[i].oui == oui)
return oui_list[i].name;
#endif
return NULL;
}
/*
* Basically what we do here is start off retrieving the bus_info block.
* From there will fill in some info about the node, verify it is of IEEE
* 1394 type, and that the crc checks out ok. After that we start off with
* the root directory, and subdirectories. To do this, we retrieve the
* quadlet header for a directory, find out the length, and retrieve the
* complete directory entry (be it a leaf or a directory). We then process
* it and add the info to our structure for that particular node.
*
* We verify CRC's along the way for each directory/block/leaf. The entire
* node structure is generic, and simply stores the information in a way
* that's easy to parse by the protocol interface.
*/
/*
* The nodemgr relies heavily on the Drive Model for device callbacks and
* driver/device mappings. The old nodemgr used to handle all this itself,
* but now we are much simpler because of the LDM.
*/
static DECLARE_MUTEX(nodemgr_serialize);
static struct hpsb_highlevel *nodemgr_hl;
struct host_info {
struct hpsb_host *host;
struct list_head list;
struct completion exited;
struct semaphore reset_sem;
int pid;
int id;
char daemon_name[15];
};
#define fw_attr(class, class_type, field, type, format_string) \
static ssize_t fw_show_##class##_##field (struct device *dev, char *buf)\
{ \
class_type *class; \
class = container_of(dev, class_type, device); \
return sprintf(buf, format_string, (type)class->field); \
} \
static struct device_attribute dev_attr_##class##_##field = { \
.attr = {.name = __stringify(field), .mode = S_IRUGO }, \
.show = fw_show_##class##_##field, \
};
#define fw_drv_attr(field, type, format_string) \
static ssize_t fw_drv_show_##field (struct device_driver *drv, char *buf) \
{ \
struct hpsb_protocol_driver *driver; \
driver = container_of(drv, struct hpsb_protocol_driver, driver); \
return sprintf(buf, format_string, (type)driver->field);\
} \
static struct driver_attribute driver_attr_drv_##field = { \
.attr = {.name = __stringify(field), .mode = S_IRUGO }, \
.show = fw_drv_show_##field, \
};
static ssize_t fw_show_ne_bus_options(struct device *dev, char *buf)
{
struct node_entry *ne = container_of(dev, struct node_entry, device);
return sprintf(buf, "IRMC(%d) CMC(%d) ISC(%d) BMC(%d) PMC(%d) GEN(%d) "
"LSPD(%d) MAX_REC(%d) CYC_CLK_ACC(%d)\n", ne->busopt.irmc,
ne->busopt.cmc, ne->busopt.isc, ne->busopt.bmc,
ne->busopt.pmc, ne->busopt.generation, ne->busopt.lnkspd,
ne->busopt.max_rec, ne->busopt.cyc_clk_acc);
}
static DEVICE_ATTR(bus_options,S_IRUGO,fw_show_ne_bus_options,NULL);
static ssize_t fw_show_ne_tlabels_free(struct device *dev, char *buf)
{
struct node_entry *ne = container_of(dev, struct node_entry, device);
return sprintf(buf, "%d\n", atomic_read(&ne->tpool->count.count) + 1);
}
static DEVICE_ATTR(tlabels_free,S_IRUGO,fw_show_ne_tlabels_free,NULL);
static ssize_t fw_show_ne_tlabels_allocations(struct device *dev, char *buf)
{
struct node_entry *ne = container_of(dev, struct node_entry, device);
return sprintf(buf, "%u\n", ne->tpool->allocations);
}
static DEVICE_ATTR(tlabels_allocations,S_IRUGO,fw_show_ne_tlabels_allocations,NULL);
static ssize_t fw_show_ne_tlabels_mask(struct device *dev, char *buf)
{
struct node_entry *ne = container_of(dev, struct node_entry, device);
#if (BITS_PER_LONG <= 32)
return sprintf(buf, "0x%08lx%08lx\n", ne->tpool->pool[0], ne->tpool->pool[1]);
#else
return sprintf(buf, "0x%016lx\n", ne->tpool->pool[0]);
#endif
}
static DEVICE_ATTR(tlabels_mask,S_IRUGO,fw_show_ne_tlabels_mask,NULL);
fw_attr(ne, struct node_entry, capabilities, unsigned int, "0x%06x\n")
fw_attr(ne, struct node_entry, nodeid, unsigned int, "0x%04x\n")
fw_attr(ne, struct node_entry, vendor_id, unsigned int, "0x%06x\n")
fw_attr(ne, struct node_entry, vendor_name, const char *, "%s\n")
fw_attr(ne, struct node_entry, vendor_oui, const char *, "%s\n")
fw_attr(ne, struct node_entry, guid, unsigned long long, "0x%016Lx\n")
fw_attr(ne, struct node_entry, guid_vendor_id, unsigned int, "0x%06x\n")
fw_attr(ne, struct node_entry, guid_vendor_oui, const char *, "%s\n")
static struct device_attribute *const fw_ne_attrs[] = {
&dev_attr_ne_guid,
&dev_attr_ne_guid_vendor_id,
&dev_attr_ne_capabilities,
&dev_attr_ne_vendor_id,
&dev_attr_ne_nodeid,
&dev_attr_bus_options,
&dev_attr_tlabels_free,
&dev_attr_tlabels_allocations,
&dev_attr_tlabels_mask,
};
fw_attr(ud, struct unit_directory, address, unsigned long long, "0x%016Lx\n")
fw_attr(ud, struct unit_directory, length, int, "%d\n")
/* These are all dependent on the value being provided */
fw_attr(ud, struct unit_directory, vendor_id, unsigned int, "0x%06x\n")
fw_attr(ud, struct unit_directory, model_id, unsigned int, "0x%06x\n")
fw_attr(ud, struct unit_directory, specifier_id, unsigned int, "0x%06x\n")
fw_attr(ud, struct unit_directory, version, unsigned int, "0x%06x\n")
fw_attr(ud, struct unit_directory, vendor_name, const char *, "%s\n")
fw_attr(ud, struct unit_directory, vendor_oui, const char *, "%s\n")
fw_attr(ud, struct unit_directory, model_name, const char *, "%s\n")
static struct device_attribute *const fw_ud_attrs[] = {
&dev_attr_ud_address,
&dev_attr_ud_length,
};
fw_attr(host, struct hpsb_host, node_count, int, "%d\n")
fw_attr(host, struct hpsb_host, selfid_count, int, "%d\n")
fw_attr(host, struct hpsb_host, nodes_active, int, "%d\n")
fw_attr(host, struct hpsb_host, in_bus_reset, int, "%d\n")
fw_attr(host, struct hpsb_host, is_root, int, "%d\n")
fw_attr(host, struct hpsb_host, is_cycmst, int, "%d\n")
fw_attr(host, struct hpsb_host, is_irm, int, "%d\n")
fw_attr(host, struct hpsb_host, is_busmgr, int, "%d\n")
static struct device_attribute *const fw_host_attrs[] = {
&dev_attr_host_node_count,
&dev_attr_host_selfid_count,
&dev_attr_host_nodes_active,
&dev_attr_host_in_bus_reset,
&dev_attr_host_is_root,
&dev_attr_host_is_cycmst,
&dev_attr_host_is_irm,
&dev_attr_host_is_busmgr,
};
static ssize_t fw_show_drv_device_ids(struct device_driver *drv, char *buf)
{
struct hpsb_protocol_driver *driver;
struct ieee1394_device_id *id;
int length = 0;
char *scratch = buf;
driver = container_of(drv, struct hpsb_protocol_driver, driver);
for (id = driver->id_table; id->match_flags != 0; id++) {
int need_coma = 0;
if (id->match_flags & IEEE1394_MATCH_VENDOR_ID) {
length += sprintf(scratch, "vendor_id=0x%06x", id->vendor_id);
scratch = buf + length;
need_coma++;
}
if (id->match_flags & IEEE1394_MATCH_MODEL_ID) {
length += sprintf(scratch, "%smodel_id=0x%06x",
need_coma++ ? "," : "",
id->model_id);
scratch = buf + length;
}
if (id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) {
length += sprintf(scratch, "%sspecifier_id=0x%06x",
need_coma++ ? "," : "",
id->specifier_id);
scratch = buf + length;
}
if (id->match_flags & IEEE1394_MATCH_VERSION) {
length += sprintf(scratch, "%sversion=0x%06x",
need_coma++ ? "," : "",
id->version);
scratch = buf + length;
}
if (need_coma) {
*scratch++ = '\n';
length++;
}
}
return length;
}
static DRIVER_ATTR(device_ids,S_IRUGO,fw_show_drv_device_ids,NULL);
fw_drv_attr(name, const char *, "%s\n")
static struct driver_attribute *const fw_drv_attrs[] = {
&driver_attr_drv_name,
&driver_attr_device_ids,
};
static void nodemgr_create_drv_files(struct hpsb_protocol_driver *driver)
{
struct device_driver *drv = &driver->driver;
int i;
for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
driver_create_file(drv, fw_drv_attrs[i]);
}
static void nodemgr_remove_drv_files(struct hpsb_protocol_driver *driver)
{
struct device_driver *drv = &driver->driver;
int i;
for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
driver_remove_file(drv, fw_drv_attrs[i]);
}
static void nodemgr_create_ne_dev_files(struct node_entry *ne)
{
struct device *dev = &ne->device;
int i;
for (i = 0; i < ARRAY_SIZE(fw_ne_attrs); i++)
device_create_file(dev, fw_ne_attrs[i]);
}
static void nodemgr_create_host_dev_files(struct hpsb_host *host)
{
struct device *dev = &host->device;
int i;
for (i = 0; i < ARRAY_SIZE(fw_host_attrs); i++)
device_create_file(dev, fw_host_attrs[i]);
}
static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host, nodeid_t nodeid);
static void nodemgr_update_host_dev_links(struct hpsb_host *host)
{
struct device *dev = &host->device;
struct node_entry *ne;
sysfs_remove_link(&dev->kobj, "irm_id");
sysfs_remove_link(&dev->kobj, "busmgr_id");
sysfs_remove_link(&dev->kobj, "host_id");
if ((ne = find_entry_by_nodeid(host, host->irm_id)))
sysfs_create_link(&dev->kobj, &ne->device.kobj, "irm_id");
if ((ne = find_entry_by_nodeid(host, host->busmgr_id)))
sysfs_create_link(&dev->kobj, &ne->device.kobj, "busmgr_id");
if ((ne = find_entry_by_nodeid(host, host->node_id)))
sysfs_create_link(&dev->kobj, &ne->device.kobj, "host_id");
}
static void nodemgr_create_ud_dev_files(struct unit_directory *ud)
{
struct device *dev = &ud->device;
int i;
for (i = 0; i < ARRAY_SIZE(fw_ud_attrs); i++)
device_create_file(dev, fw_ud_attrs[i]);
if (ud->flags & UNIT_DIRECTORY_SPECIFIER_ID)
device_create_file(dev, &dev_attr_ud_specifier_id);
if (ud->flags & UNIT_DIRECTORY_VERSION)
device_create_file(dev, &dev_attr_ud_version);
if (ud->flags & UNIT_DIRECTORY_VENDOR_ID) {
device_create_file(dev, &dev_attr_ud_vendor_id);
if (ud->flags & UNIT_DIRECTORY_VENDOR_TEXT)
device_create_file(dev, &dev_attr_ud_vendor_name);
}
if (ud->flags & UNIT_DIRECTORY_MODEL_ID) {
device_create_file(dev, &dev_attr_ud_model_id);
if (ud->flags & UNIT_DIRECTORY_MODEL_TEXT)
device_create_file(dev, &dev_attr_ud_model_name);
}
}
static int nodemgr_bus_match(struct device * dev, struct device_driver * drv)
{
struct hpsb_protocol_driver *driver;
struct unit_directory *ud;
struct ieee1394_device_id *id;
if (dev->class_num != DEV_CLASS_UNIT_DIRECTORY)
return 0;
ud = container_of(dev, struct unit_directory, device);
driver = container_of(drv, struct hpsb_protocol_driver, driver);
for (id = driver->id_table; id->match_flags != 0; id++) {
if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) &&
id->vendor_id != ud->vendor_id)
continue;
if ((id->match_flags & IEEE1394_MATCH_MODEL_ID) &&
id->model_id != ud->model_id)
continue;
if ((id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) &&
id->specifier_id != ud->specifier_id)
continue;
if ((id->match_flags & IEEE1394_MATCH_VERSION) &&
id->version != ud->version)
continue;
return 1;
}
return 0;
}
static void nodemgr_release_ud(struct device *dev)
{
kfree(container_of(dev, struct unit_directory, device));
}
static void nodemgr_release_ne(struct device *dev)
{
kfree(container_of(dev, struct node_entry, device));
}
static void nodemgr_remove_ud(struct unit_directory *ud)
{
struct device *dev = &ud->device;
int i;
for (i = 0; i < ARRAY_SIZE(fw_ud_attrs); i++)
device_remove_file(dev, fw_ud_attrs[i]);
device_remove_file(dev, &dev_attr_ud_specifier_id);
device_remove_file(dev, &dev_attr_ud_version);
device_remove_file(dev, &dev_attr_ud_vendor_id);
device_remove_file(dev, &dev_attr_ud_vendor_name);
device_remove_file(dev, &dev_attr_ud_vendor_oui);
device_remove_file(dev, &dev_attr_ud_model_id);
device_remove_file(dev, &dev_attr_ud_model_name);
device_unregister(dev);
}
static void nodemgr_remove_node_uds(struct node_entry *ne)
{
struct list_head *lh, *next;
list_for_each_safe(lh, next, &ne->device.children) {
struct unit_directory *ud;
ud = container_of(list_to_dev(lh), struct unit_directory, device);
nodemgr_remove_ud(ud);
}
}
static void nodemgr_update_ud_names(struct host_info *hi, struct node_entry *ne)
{
struct list_head *lh;
list_for_each(lh, &ne->device.children) {
struct unit_directory *ud;
ud = container_of(list_to_dev(lh), struct unit_directory, device);
snprintf(ud->device.name, DEVICE_NAME_SIZE,
"IEEE-1394 unit directory %d-" NODE_BUS_FMT "-%u",
hi->id, NODE_BUS_ARGS(ne->nodeid), ud->id);
}
}
static void nodemgr_remove_ne(struct node_entry *ne)
{
struct device *dev = &ne->device;
int i;
nodemgr_remove_node_uds(ne);
for (i = 0; i < ARRAY_SIZE(fw_ne_attrs); i++)
device_remove_file(dev, fw_ne_attrs[i]);
device_remove_file(dev, &dev_attr_ne_guid_vendor_oui);
device_remove_file(dev, &dev_attr_ne_vendor_name);
device_remove_file(dev, &dev_attr_ne_vendor_oui);
device_unregister(dev);
}
static void nodemgr_remove_host_dev(struct device *dev)
{
int i;
struct list_head *lh, *next;
list_for_each_safe(lh, next, &dev->children) {
struct node_entry *ne;
ne = container_of(list_to_dev(lh), struct node_entry, device);
nodemgr_remove_ne(ne);
}
for (i = 0; i < ARRAY_SIZE(fw_host_attrs); i++)
device_remove_file(dev, fw_host_attrs[i]);
sysfs_remove_link(&dev->kobj, "irm_id");
sysfs_remove_link(&dev->kobj, "busmgr_id");
sysfs_remove_link(&dev->kobj, "host_id");
}
static struct device nodemgr_dev_template_ud = {
.bus = &ieee1394_bus_type,
.release = nodemgr_release_ud,
.class_num = DEV_CLASS_UNIT_DIRECTORY,
};
static struct device nodemgr_dev_template_ne = {
.bus = &ieee1394_bus_type,
.release = nodemgr_release_ne,
.class_num = DEV_CLASS_NODE,
};
static struct device nodemgr_dev_template_host = {
.bus = &ieee1394_bus_type,
.class_num = DEV_CLASS_HOST,
};
static int nodemgr_hotplug(struct device *dev, char **envp, int num_envp,
char *buffer, int buffer_size);
struct bus_type ieee1394_bus_type = {
.name = "ieee1394",
.match = nodemgr_bus_match,
.hotplug = nodemgr_hotplug,
};
static int nodemgr_read_quadlet(struct hpsb_host *host,
nodeid_t nodeid, unsigned int generation,
octlet_t address, quadlet_t *quad)
{
int i;
int ret = 0;
for (i = 0; i < 3; i++) {
ret = hpsb_read(host, nodeid, generation, address, quad, 4);
if (!ret)
break;
set_current_state(TASK_INTERRUPTIBLE);
if (schedule_timeout (HZ/3))
return -1;
}
*quad = be32_to_cpu(*quad);
return ret;
}
static int nodemgr_size_text_leaf(struct hpsb_host *host,
nodeid_t nodeid, unsigned int generation,
octlet_t address)
{
quadlet_t quad;
int size = 0;
if (nodemgr_read_quadlet(host, nodeid, generation, address, &quad))
return -1;
if (CONFIG_ROM_KEY(quad) == CONFIG_ROM_DESCRIPTOR_LEAF) {
/* This is the offset. */
address += 4 * CONFIG_ROM_VALUE(quad);
if (nodemgr_read_quadlet(host, nodeid, generation, address, &quad))
return -1;
/* Now we got the size of the text descriptor leaf. */
size = CONFIG_ROM_LEAF_LENGTH(quad);
}
return size;
}
static int nodemgr_read_text_leaf(struct node_entry *ne,
octlet_t address,
quadlet_t *quadp)
{
quadlet_t quad;
int i, size, ret;
if (nodemgr_read_quadlet(ne->host, ne->nodeid, ne->generation, address, &quad)
|| CONFIG_ROM_KEY(quad) != CONFIG_ROM_DESCRIPTOR_LEAF)
return -1;
/* This is the offset. */
address += 4 * CONFIG_ROM_VALUE(quad);
if (nodemgr_read_quadlet(ne->host, ne->nodeid, ne->generation, address, &quad))
return -1;
/* Now we got the size of the text descriptor leaf. */
size = CONFIG_ROM_LEAF_LENGTH(quad) - 2;
if (size <= 0)
return -1;
address += 4;
for (i = 0; i < 2; i++, address += 4, quadp++) {
if (nodemgr_read_quadlet(ne->host, ne->nodeid, ne->generation, address, quadp))
return -1;
}
/* Now read the text string. */
ret = -ENXIO;
for (; size > 0; size--, address += 4, quadp++) {
for (i = 0; i < 3; i++) {
ret = hpsb_node_read(ne, address, quadp, 4);
if (ret != -EAGAIN)
break;
}
if (ret)
break;
}
return ret;
}
static struct node_entry *nodemgr_scan_root_directory
(struct hpsb_host *host, nodeid_t nodeid, unsigned int generation)
{
octlet_t address;
quadlet_t quad;
int length;
int code, size, total_size;
struct node_entry *ne;
address = CSR_REGISTER_BASE + CSR_CONFIG_ROM;
if (nodemgr_read_quadlet(host, nodeid, generation, address, &quad))
return NULL;
if (CONFIG_ROM_BUS_INFO_LENGTH(quad) == 1) /* minimal config rom */
return NULL;
address += 4 + CONFIG_ROM_BUS_INFO_LENGTH(quad) * 4;
if (nodemgr_read_quadlet(host, nodeid, generation, address, &quad))
return NULL;
length = CONFIG_ROM_ROOT_LENGTH(quad);
address += 4;
size = 0;
total_size = sizeof(struct node_entry);
for (; length > 0; length--, address += 4) {
if (nodemgr_read_quadlet(host, nodeid, generation, address, &quad))
return NULL;
code = CONFIG_ROM_KEY(quad);
if (code == CONFIG_ROM_VENDOR_ID && length > 0) {
/* Check if there is a text descriptor leaf
immediately after this. */
size = nodemgr_size_text_leaf(host, nodeid, generation,
address + 4);
if (size > 0) {
address += 4;
length--;
total_size += (size + 1) * sizeof (quadlet_t);
} else if (size < 0)
return NULL;
}
}
ne = kmalloc(total_size, GFP_KERNEL);
if (!ne)
return NULL;
memset(ne, 0, total_size);
if (size != 0) {
ne->vendor_name = (const char *) &(ne->quadlets[2]);
ne->quadlets[size] = 0;
} else {
ne->vendor_name = NULL;
}
return ne;
}
static void nodemgr_process_config_rom(struct host_info *hi,
struct node_entry *ne, quadlet_t busoptions);
static struct node_entry *nodemgr_create_node(octlet_t guid, quadlet_t busoptions,
struct host_info *hi, nodeid_t nodeid,
unsigned int generation)
{
struct hpsb_host *host = hi->host;
struct node_entry *ne;
ne = nodemgr_scan_root_directory (host, nodeid, generation);
if (!ne) return NULL;
ne->tpool = &host->tpool[nodeid & NODE_MASK];
ne->host = host;
ne->nodeid = nodeid;
ne->generation = generation;
ne->guid = guid;
ne->guid_vendor_id = (guid >> 40) & 0xffffff;
ne->guid_vendor_oui = nodemgr_find_oui_name(ne->guid_vendor_id);
memcpy(&ne->device, &nodemgr_dev_template_ne,
sizeof(ne->device));
ne->device.parent = &host->device;
snprintf(ne->device.bus_id, BUS_ID_SIZE, "%016Lx",
(unsigned long long)(ne->guid));
snprintf(ne->device.name, DEVICE_NAME_SIZE,
"IEEE-1394 device %d-" NODE_BUS_FMT, hi->id,
NODE_BUS_ARGS(ne->nodeid));
device_register(&ne->device);
if (ne->guid_vendor_oui)
device_create_file(&ne->device, &dev_attr_ne_guid_vendor_oui);
nodemgr_create_ne_dev_files(ne);
nodemgr_process_config_rom (hi, ne, busoptions);
nodemgr_update_ud_names(hi, ne);
HPSB_DEBUG("%s added: ID:BUS[%d-" NODE_BUS_FMT "] GUID[%016Lx]",
(host->node_id == nodeid) ? "Host" : "Node",
hi->id, NODE_BUS_ARGS(nodeid), (unsigned long long)guid);
return ne;
}
struct guid_search_baton {
u64 guid;
struct node_entry *ne;
};
static int nodemgr_guid_search_cb(struct device *dev, void *__data)
{
struct guid_search_baton *search = __data;
struct node_entry *ne;
if (dev->class_num != DEV_CLASS_NODE)
return 0;
ne = container_of(dev, struct node_entry, device);
if (ne->guid == search->guid) {
search->ne = ne;
return 1;
}
return 0;
}
static struct node_entry *find_entry_by_guid(u64 guid)
{
struct guid_search_baton search;
search.guid = guid;
search.ne = NULL;
bus_for_each_dev(&ieee1394_bus_type, NULL, &search, nodemgr_guid_search_cb);
return search.ne;
}
struct nodeid_search_baton {
nodeid_t nodeid;
struct node_entry *ne;
struct hpsb_host *host;
};
static int nodemgr_nodeid_search_cb(struct device *dev, void *__data)
{
struct nodeid_search_baton *search = __data;
struct node_entry *ne;
if (dev->class_num != DEV_CLASS_NODE)
return 0;
ne = container_of(dev, struct node_entry, device);
if (ne->host == search->host && ne->nodeid == search->nodeid) {
search->ne = ne;
/* Returning 1 stops the iteration */
return 1;
}
return 0;
}
static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host, nodeid_t nodeid)
{
struct nodeid_search_baton search;
search.nodeid = nodeid;
search.ne = NULL;
search.host = host;
bus_for_each_dev(&ieee1394_bus_type, NULL, &search, nodemgr_nodeid_search_cb);
return search.ne;
}
static struct unit_directory *nodemgr_scan_unit_directory
(struct node_entry *ne, octlet_t address)
{
struct unit_directory *ud;
quadlet_t quad;
u8 flags, todo;
int length, size, total_size, count;
int vendor_name_size, model_name_size;
if (nodemgr_read_quadlet(ne->host, ne->nodeid, ne->generation, address, &quad))
return NULL;
length = CONFIG_ROM_DIRECTORY_LENGTH(quad) ;
address += 4;
size = 0;
total_size = sizeof (struct unit_directory);
flags = 0;
count = 0;
vendor_name_size = 0;
model_name_size = 0;
for (; length > 0; length--, address += 4) {
int code;
quadlet_t value;
if (nodemgr_read_quadlet(ne->host, ne->nodeid, ne->generation,
address, &quad))
return NULL;
code = CONFIG_ROM_KEY(quad);
value = CONFIG_ROM_VALUE(quad);
todo = 0;
switch (code) {
case CONFIG_ROM_VENDOR_ID:
todo = UNIT_DIRECTORY_VENDOR_TEXT;
break;
case CONFIG_ROM_MODEL_ID:
todo = UNIT_DIRECTORY_MODEL_TEXT;
break;
case CONFIG_ROM_SPECIFIER_ID:
case CONFIG_ROM_UNIT_SW_VERSION:
break;
case CONFIG_ROM_DESCRIPTOR_LEAF:
case CONFIG_ROM_DESCRIPTOR_DIRECTORY:
/* TODO: read strings... icons? */
break;
default:
/* Which types of quadlets do we want to
store? Only count immediate values and
CSR offsets for now. */
code &= CONFIG_ROM_KEY_TYPE_MASK;
if ((code & 0x80) == 0)
count++;
break;
}
if (todo && length > 0) {
/* Check if there is a text descriptor leaf
immediately after this. */
size = nodemgr_size_text_leaf(ne->host,
ne->nodeid,
ne->generation,
address + 4);
if (todo == UNIT_DIRECTORY_VENDOR_TEXT)
vendor_name_size = size;
else
model_name_size = size;
if (size > 0) {
address += 4;
length--;
flags |= todo;
total_size += (size + 1) * sizeof (quadlet_t);
}
else if (size < 0)
return NULL;
}
}
total_size += count * sizeof (quadlet_t);
ud = kmalloc (total_size, GFP_KERNEL);
if (ud != NULL) {
memset (ud, 0, total_size);
ud->flags = flags;
ud->length = count;
ud->vendor_name_size = vendor_name_size;
ud->model_name_size = model_name_size;
}
return ud;
}
/* This implementation currently only scans the config rom and its
* immediate unit directories looking for software_id and
* software_version entries, in order to get driver autoloading working. */
static void nodemgr_process_unit_directory(struct host_info *hi, struct node_entry *ne,
octlet_t address, unsigned int id)
{
struct unit_directory *ud;
quadlet_t quad;
quadlet_t *infop;
int length;
if (!(ud = nodemgr_scan_unit_directory(ne, address)))
goto unit_directory_error;
ud->ne = ne;
ud->address = address;
ud->id = id;
if (nodemgr_read_quadlet(ne->host, ne->nodeid, ne->generation,
address, &quad))
goto unit_directory_error;
length = CONFIG_ROM_DIRECTORY_LENGTH(quad) ;
address += 4;
infop = (quadlet_t *) ud->quadlets;
for (; length > 0; length--, address += 4) {
int code;
quadlet_t value;
quadlet_t *quadp;
if (nodemgr_read_quadlet(ne->host, ne->nodeid, ne->generation,
address, &quad))
goto unit_directory_error;
code = CONFIG_ROM_KEY(quad) ;
value = CONFIG_ROM_VALUE(quad);
switch (code) {
case CONFIG_ROM_VENDOR_ID:
ud->vendor_id = value;
ud->flags |= UNIT_DIRECTORY_VENDOR_ID;
if (ud->vendor_id)
ud->vendor_oui = nodemgr_find_oui_name(ud->vendor_id);
if ((ud->flags & UNIT_DIRECTORY_VENDOR_TEXT) != 0) {
length--;
address += 4;
quadp = &(ud->quadlets[ud->length]);
if (nodemgr_read_text_leaf(ne, address, quadp) == 0
&& quadp[0] == 0 && quadp[1] == 0) {
/* We only support minimal
ASCII and English. */
quadp[ud->vendor_name_size] = 0;
ud->vendor_name
= (const char *) &(quadp[2]);
}
}
break;
case CONFIG_ROM_MODEL_ID:
ud->model_id = value;
ud->flags |= UNIT_DIRECTORY_MODEL_ID;
if ((ud->flags & UNIT_DIRECTORY_MODEL_TEXT) != 0) {
length--;
address += 4;
quadp = &(ud->quadlets[ud->length + ud->vendor_name_size + 1]);
if (nodemgr_read_text_leaf(ne, address, quadp) == 0
&& quadp[0] == 0 && quadp[1] == 0) {
/* We only support minimal
ASCII and English. */
quadp[ud->model_name_size] = 0;
ud->model_name
= (const char *) &(quadp[2]);
}
}
break;
case CONFIG_ROM_SPECIFIER_ID:
ud->specifier_id = value;
ud->flags |= UNIT_DIRECTORY_SPECIFIER_ID;
break;
case CONFIG_ROM_UNIT_SW_VERSION:
ud->version = value;
ud->flags |= UNIT_DIRECTORY_VERSION;
break;
case CONFIG_ROM_DESCRIPTOR_LEAF:
case CONFIG_ROM_DESCRIPTOR_DIRECTORY:
/* TODO: read strings... icons? */
break;
default:
/* Which types of quadlets do we want to
store? Only count immediate values and
CSR offsets for now. */
code &= CONFIG_ROM_KEY_TYPE_MASK;
if ((code & 0x80) == 0)
*infop++ = quad;
break;
}
}
memcpy(&ud->device, &nodemgr_dev_template_ud,
sizeof(ud->device));
ud->device.parent = &ne->device;
snprintf(ud->device.bus_id, BUS_ID_SIZE, "%s-%u",
ne->device.bus_id, ud->id);
device_register(&ud->device);
if (ud->vendor_oui)
device_create_file(&ud->device, &dev_attr_ud_vendor_oui);
nodemgr_create_ud_dev_files(ud);
return;
unit_directory_error:
if (ud != NULL)
kfree(ud);
}
static void nodemgr_process_root_directory(struct host_info *hi, struct node_entry *ne)
{
octlet_t address;
quadlet_t quad;
int length;
unsigned int ud_id = 0;
address = CSR_REGISTER_BASE + CSR_CONFIG_ROM;
if (nodemgr_read_quadlet(ne->host, ne->nodeid, ne->generation,
address, &quad))
return;
address += 4 + CONFIG_ROM_BUS_INFO_LENGTH(quad) * 4;
if (nodemgr_read_quadlet(ne->host, ne->nodeid, ne->generation,
address, &quad))
return;
length = CONFIG_ROM_ROOT_LENGTH(quad);
address += 4;
for (; length > 0; length--, address += 4) {
int code, value;
if (nodemgr_read_quadlet(ne->host, ne->nodeid, ne->generation,
address, &quad))
return;
code = CONFIG_ROM_KEY(quad);
value = CONFIG_ROM_VALUE(quad);
switch (code) {
case CONFIG_ROM_VENDOR_ID:
ne->vendor_id = value;
if (ne->vendor_id)
ne->vendor_oui = nodemgr_find_oui_name(ne->vendor_id);
/* Now check if there is a vendor name text
string. */
if (ne->vendor_name != NULL) {
length--;
address += 4;
if (nodemgr_read_text_leaf(ne, address, ne->quadlets) != 0
|| ne->quadlets[0] != 0 || ne->quadlets[1] != 0)
/* We only support minimal
ASCII and English. */
ne->vendor_name = NULL;
else
device_create_file(&ne->device,
&dev_attr_ne_vendor_name);
}
break;
case CONFIG_ROM_NODE_CAPABILITES:
ne->capabilities = value;
break;
case CONFIG_ROM_UNIT_DIRECTORY:
nodemgr_process_unit_directory(hi, ne, address + value * 4, ud_id++);
break;
case CONFIG_ROM_DESCRIPTOR_LEAF:
case CONFIG_ROM_DESCRIPTOR_DIRECTORY:
/* TODO: read strings... icons? */
break;
}
}
}
#ifdef CONFIG_HOTPLUG
static int nodemgr_hotplug(struct device *dev, char **envp, int num_envp,
char *buffer, int buffer_size)
{
struct unit_directory *ud;
char *scratch;
int i = 0;
int length = 0;
if (!dev)
return -ENODEV;
if (dev->class_num != DEV_CLASS_UNIT_DIRECTORY)
return -ENODEV;
ud = container_of(dev, struct unit_directory, device);
scratch = buffer;
#define PUT_ENVP(fmt,val) \
do { \
envp[i++] = scratch; \
length += snprintf(scratch, buffer_size - length, \
fmt, val); \
if ((buffer_size - length <= 0) || (i >= num_envp)) \
return -ENOMEM; \
++length; \
scratch = buffer + length; \
} while(0)
PUT_ENVP("VENDOR_ID=%06x", ud->vendor_id);
PUT_ENVP("MODEL_ID=%06x", ud->model_id);
PUT_ENVP("GUID=%016Lx", (unsigned long long)ud->ne->guid);
PUT_ENVP("SPECIFIER_ID=%06x", ud->specifier_id);
PUT_ENVP("VERSION=%06x", ud->version);
#undef PUT_ENVP
envp[i] = 0;
return 0;
}
#else
static int nodemgr_hotplug(struct device *dev, char **envp, int num_envp,
char *buffer, int buffer_size)
{
return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */
static int nodemgr_alloc_host_num(void)
{
int hostnum;
for (hostnum = 0; hpsb_get_hostinfo_bykey(nodemgr_hl, hostnum); hostnum++)
/* Do nothing */;
return hostnum;
}
int hpsb_register_protocol(struct hpsb_protocol_driver *driver)
{
driver_register(&driver->driver);
nodemgr_create_drv_files(driver);
/*
* Right now registration always succeeds, but maybe we should
* detect clashes in protocols handled by other drivers.
*/
return 0;
}
void hpsb_unregister_protocol(struct hpsb_protocol_driver *driver)
{
nodemgr_remove_drv_files(driver);
/* This will subsequently disconnect all devices that our driver
* is attached to. */
driver_unregister(&driver->driver);
}
static void nodemgr_process_config_rom(struct host_info *hi,
struct node_entry *ne, quadlet_t busoptions)
{
ne->busopt.irmc = (busoptions >> 31) & 1;
ne->busopt.cmc = (busoptions >> 30) & 1;
ne->busopt.isc = (busoptions >> 29) & 1;
ne->busopt.bmc = (busoptions >> 28) & 1;
ne->busopt.pmc = (busoptions >> 27) & 1;
ne->busopt.cyc_clk_acc = (busoptions >> 16) & 0xff;
ne->busopt.max_rec = 1 << (((busoptions >> 12) & 0xf) + 1);
ne->busopt.generation = (busoptions >> 4) & 0xf;
ne->busopt.lnkspd = busoptions & 0x7;
#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
HPSB_DEBUG("NodeMgr: raw=0x%08x irmc=%d cmc=%d isc=%d bmc=%d pmc=%d "
"cyc_clk_acc=%d max_rec=%d gen=%d lspd=%d",
busoptions, ne->busopt.irmc, ne->busopt.cmc,
ne->busopt.isc, ne->busopt.bmc, ne->busopt.pmc,
ne->busopt.cyc_clk_acc, ne->busopt.max_rec,
ne->busopt.generation, ne->busopt.lnkspd);
#endif
device_remove_file(&ne->device, &dev_attr_ne_vendor_oui);
nodemgr_process_root_directory(hi, ne);
if (ne->vendor_oui)
device_create_file(&ne->device, &dev_attr_ne_vendor_oui);
}
/* Searches the list of ud's that match a ne as the parent. If the ud has
* a driver associated with it, we call that driver's update function
* with the ud as the argument. */
static int nodemgr_driver_search_cb(struct device *dev, void *__data)
{
struct node_entry *ne = __data;
struct unit_directory *ud;
if (dev->class_num != DEV_CLASS_UNIT_DIRECTORY)
return 0;
ud = container_of(dev, struct unit_directory, device);
if (&ne->device != ud->device.parent)
return 0;
if (ud->device.driver) {
struct hpsb_protocol_driver *pdrv;
pdrv = container_of(ud->device.driver,
struct hpsb_protocol_driver, driver);
if (pdrv->update)
pdrv->update(ud);
}
return 0;
}
/*
* This function updates nodes that were present on the bus before the
* reset and still are after the reset. The nodeid and the config rom
* may have changed, and the drivers managing this device must be
* informed that this device just went through a bus reset, to allow
* the to take whatever actions required.
*/
static void nodemgr_update_node(struct node_entry *ne, quadlet_t busoptions,
struct host_info *hi, nodeid_t nodeid,
unsigned int generation)
{
int update_ud_names = 0;
if (ne->nodeid != nodeid) {
snprintf(ne->device.name, DEVICE_NAME_SIZE,
"IEEE-1394 device %d-" NODE_BUS_FMT,
hi->id, NODE_BUS_ARGS(ne->nodeid));
HPSB_DEBUG("Node " NODE_BUS_FMT " changed to " NODE_BUS_FMT,
NODE_BUS_ARGS(ne->nodeid), NODE_BUS_ARGS(nodeid));
ne->nodeid = nodeid;
update_ud_names++;
}
if (ne->busopt.generation != ((busoptions >> 4) & 0xf)) {
/* If the node's configrom generation has changed, we
* unregister all the unit directories. */
nodemgr_remove_node_uds(ne);
/* This will re-register our unitdir's */
nodemgr_process_config_rom (hi, ne, busoptions);
update_ud_names++;
}
if (update_ud_names)
nodemgr_update_ud_names(hi, ne);
/* Since that's done, we can declare this record current */
ne->generation = generation;
/* Update unit_dirs with attached drivers */
bus_for_each_dev(&ieee1394_bus_type, NULL, ne,
nodemgr_driver_search_cb);
}
static int read_businfo_block(struct hpsb_host *host, nodeid_t nodeid, unsigned int generation,
quadlet_t *buffer, int buffer_length)
{
octlet_t addr = CSR_REGISTER_BASE + CSR_CONFIG_ROM;
unsigned header_size;
int i;
/* IEEE P1212 says that devices should support 64byte block
* reads, aligned on 64byte boundaries. That doesn't seem to
* work though, and we are forced to doing quadlet sized
* reads. */
#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
HPSB_INFO("Initiating ConfigROM request for node " NODE_BUS_FMT,
NODE_BUS_ARGS(nodeid));
#endif
/*
* Must retry a few times if config rom read returns zero (how long?). Will
* not normally occur, but we should do the right thing. For example, with
* some sbp2 devices, the bridge chipset cannot return valid config rom reads
* immediately after power-on, since they need to detect the type of
* device attached (disk or CD-ROM).
*/
for (i = 0; i < 4; i++) {
if (nodemgr_read_quadlet(host, nodeid, generation,
addr, &buffer[0]) < 0) {
HPSB_ERR("ConfigROM quadlet transaction error for node "
NODE_BUS_FMT, NODE_BUS_ARGS(nodeid));
return -1;
}
if (buffer[0])
break;
set_current_state(TASK_INTERRUPTIBLE);
if (schedule_timeout (HZ/4))
return -1;
}
header_size = buffer[0] >> 24;
addr += 4;
if (header_size == 1) {
HPSB_INFO("Node " NODE_BUS_FMT " has a minimal ROM. "
"Vendor is %08x",
NODE_BUS_ARGS(nodeid), buffer[0] & 0x00ffffff);
return -1;
}
if (header_size < 4) {
HPSB_INFO("Node " NODE_BUS_FMT " has non-standard ROM "
"format (%d quads), cannot parse",
NODE_BUS_ARGS(nodeid), header_size);
return -1;
}
for (i = 1; i < buffer_length; i++, addr += 4) {
if (nodemgr_read_quadlet(host, nodeid, generation,
addr, &buffer[i]) < 0) {
HPSB_ERR("ConfigROM quadlet transaction "
"error for node " NODE_BUS_FMT,
NODE_BUS_ARGS(nodeid));
return -1;
}
}
return 0;
}
/* This is where we probe the nodes for their information and provided
* features. */
static void nodemgr_node_probe_one(struct host_info *hi,
nodeid_t nodeid, int generation)
{
struct hpsb_host *host = hi->host;
struct node_entry *ne;
quadlet_t buffer[5];
octlet_t guid;
/* We need to detect when the ConfigROM's generation has changed,
* so we only update the node's info when it needs to be. */
if (read_businfo_block (host, nodeid, generation,
buffer, sizeof(buffer) >> 2))
return;
if (buffer[1] != IEEE1394_BUSID_MAGIC) {
/* This isn't a 1394 device, but we let it slide. There
* was a report of a device with broken firmware which
* reported '2394' instead of '1394', which is obviously a
* mistake. One would hope that a non-1394 device never
* gets connected to Firewire bus. If someone does, we
* shouldn't be held responsible, so we'll allow it with a
* warning. */
HPSB_WARN("Node " NODE_BUS_FMT " has invalid busID magic [0x%08x]",
NODE_BUS_ARGS(nodeid), buffer[1]);
}
guid = ((u64)buffer[3] << 32) | buffer[4];
ne = find_entry_by_guid(guid);
if (!ne)
nodemgr_create_node(guid, buffer[2], hi, nodeid, generation);
else
nodemgr_update_node(ne, buffer[2], hi, nodeid, generation);
return;
}
struct cleanup_baton {
unsigned int generation;
struct hpsb_host *host;
struct node_entry *ne;
};
static int nodemgr_remove_node(struct device *dev, void *__data)
{
struct cleanup_baton *cleanup = __data;
struct node_entry *ne;
if (dev->class_num != DEV_CLASS_NODE)
return 0;
ne = container_of(dev, struct node_entry, device);
if (ne->host != cleanup->host)
return 0;
if (ne->generation != cleanup->generation) {
cleanup->ne = ne;
return 1;
}
return 0;
}
static void nodemgr_node_probe(struct host_info *hi, int generation)
{
int count;
struct hpsb_host *host = hi->host;
struct selfid *sid = (struct selfid *)host->topology_map;
nodeid_t nodeid = LOCAL_BUS;
/* Scan each node on the bus */
for (count = host->selfid_count; count; count--, sid++) {
if (sid->extended)
continue;
if (!sid->link_active) {
nodeid++;
continue;
}
nodemgr_node_probe_one(hi, nodeid++, generation);
}
/* If we had a bus reset while we were scanning the bus, it is
* possible that we did not probe all nodes. In that case, we
* skip the clean up for now, since we could remove nodes that
* were still on the bus. The bus reset increased
* hi->reset_sem, so there's a bus scan pending which will do
* the clean up eventually. */
if (generation == get_hpsb_generation(host)) {
struct cleanup_baton cleanup;
cleanup.generation = generation;
cleanup.host = host;
/* This will iterate until all devices that do not match
* the generation are removed. */
while (bus_for_each_dev(&ieee1394_bus_type, NULL, &cleanup,
nodemgr_remove_node)) {
struct node_entry *ne = cleanup.ne;
HPSB_DEBUG("Device removed: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
NODE_BUS_ARGS(ne->nodeid), (unsigned long long)ne->guid);
nodemgr_remove_ne(ne);
}
/* Now let's tell the bus to rescan our devices. This may
* seem like overhead, but the driver-model core will only
* scan a device for a driver when either the device is
* added, or when a new driver is added. A bus reset is a
* good reason to rescan devices that were there before.
* For example, an sbp2 device may become available for
* login, if the host that held it was just removed. */
bus_rescan_devices(&ieee1394_bus_type);
}
return;
}
/* Because we are a 1394a-2000 compliant IRM, we need to inform all the other
* nodes of the broadcast channel. (Really we're only setting the validity
* bit). Other IRM responsibilities go in here as well. */
static void nodemgr_do_irm_duties(struct hpsb_host *host)
{
quadlet_t bc;
if (!host->is_irm)
return;
host->csr.broadcast_channel |= 0x40000000; /* set validity bit */
bc = cpu_to_be32(host->csr.broadcast_channel);
hpsb_write(host, LOCAL_BUS | ALL_NODES, get_hpsb_generation(host),
(CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL),
&bc, sizeof(quadlet_t));
/* If there is no bus manager then we should set the root node's
* force_root bit to promote bus stability per the 1394
* spec. (8.4.2.6) */
if(host->busmgr_id == 0x3f && host->node_count > 1)
{
u16 root_node = host->node_count - 1;
struct node_entry *ne = hpsb_nodeid_get_entry(host, root_node);
if(ne->busopt.cmc)
hpsb_send_phy_config(host, root_node, -1);
else {
HPSB_DEBUG("The root node is not cycle master capable; "
"selecting a new root node and resetting...");
hpsb_send_phy_config(host, host->node_id, -1);
hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
}
}
}
/* We need to ensure that if we are not the IRM, that the IRM node is capable of
* everything we can do, otherwise issue a bus reset and try to become the IRM
* ourselves. */
static int nodemgr_check_irm_capability(struct hpsb_host *host)
{
quadlet_t bc;
int status;
if (host->is_irm)
return 1;
status = hpsb_read(host, LOCAL_BUS | (host->irm_id),
get_hpsb_generation(host),
(CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL),
&bc, sizeof(quadlet_t));
if (status < 0 || !(be32_to_cpu(bc) & 0x80000000)) {
/* The current irm node does not have a valid BROADCAST_CHANNEL
* register and we do, so reset the bus with force_root set */
HPSB_DEBUG("Current remote IRM is not 1394a-2000 compliant, resetting...");
hpsb_send_phy_config(host, host->node_id, -1);
hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
return 0;
}
return 1;
}
static int nodemgr_host_thread(void *__hi)
{
struct host_info *hi = (struct host_info *)__hi;
struct hpsb_host *host = hi->host;
/* No userlevel access needed */
daemonize(hi->daemon_name);
allow_signal(SIGTERM);
/* Setup our device-model entries */
device_register(&host->device);
nodemgr_create_host_dev_files(host);
/* Sit and wait for a signal to probe the nodes on the bus. This
* happens when we get a bus reset. */
while (!down_interruptible(&hi->reset_sem) &&
!down_interruptible(&nodemgr_serialize)) {
unsigned int generation;
int i;
/* Pause for 1/4 second, to make sure things settle down. */
for (i = HZ/4; i > 0; i-= HZ/16) {
set_current_state(TASK_INTERRUPTIBLE);
if (schedule_timeout(HZ/16))
goto caught_signal;
/* Now get the generation in which the node ID's we collect
* are valid. During the bus scan we will use this generation
* for the read transactions, so that if another reset occurs
* during the scan the transactions will fail instead of
* returning bogus data. */
generation = get_hpsb_generation(host);
/* If we get a reset before we are done waiting, then
* start the the waiting over again */
while (!down_trylock(&hi->reset_sem))
i = HZ/4;
}
if (!nodemgr_check_irm_capability(host)) {
/* Do nothing, we are resetting */
up(&nodemgr_serialize);
continue;
}
nodemgr_node_probe(hi, generation);
nodemgr_do_irm_duties(host);
/* Update some of our sysfs symlinks */
nodemgr_update_host_dev_links(host);
up(&nodemgr_serialize);
}
caught_signal:
#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
HPSB_DEBUG ("NodeMgr: Exiting thread for %s", hi->host->driver->name);
#endif
complete_and_exit(&hi->exited, 0);
}
struct node_entry *hpsb_guid_get_entry(u64 guid)
{
struct node_entry *ne;
down(&nodemgr_serialize);
ne = find_entry_by_guid(guid);
up(&nodemgr_serialize);
return ne;
}
struct node_entry *hpsb_nodeid_get_entry(struct hpsb_host *host, nodeid_t nodeid)
{
struct node_entry *ne;
down(&nodemgr_serialize);
ne = find_entry_by_nodeid(host, nodeid);
up(&nodemgr_serialize);
return ne;
}
struct node_entry *hpsb_check_nodeid(struct hpsb_host *host, nodeid_t nodeid)
{
struct node_entry *ne;
if (down_trylock(&nodemgr_serialize))
return NULL;
ne = find_entry_by_nodeid(host, nodeid);
up(&nodemgr_serialize);
return ne;
}
/* The following four convenience functions use a struct node_entry
* for addressing a node on the bus. They are intended for use by any
* process context, not just the nodemgr thread, so we need to be a
* little careful when reading out the node ID and generation. The
* thing that can go wrong is that we get the node ID, then a bus
* reset occurs, and then we read the generation. The node ID is
* possibly invalid, but the generation is current, and we end up
* sending a packet to a the wrong node.
*
* The solution is to make sure we read the generation first, so that
* if a reset occurs in the process, we end up with a stale generation
* and the transactions will fail instead of silently using wrong node
* ID's.
*/
void hpsb_node_fill_packet(struct node_entry *ne, struct hpsb_packet *pkt)
{
pkt->host = ne->host;
pkt->generation = ne->generation;
barrier();
pkt->node_id = ne->nodeid;
}
int hpsb_node_read(struct node_entry *ne, u64 addr,
quadlet_t *buffer, size_t length)
{
unsigned int generation = ne->generation;
barrier();
return hpsb_read(ne->host, ne->nodeid, generation,
addr, buffer, length);
}
int hpsb_node_write(struct node_entry *ne, u64 addr,
quadlet_t *buffer, size_t length)
{
unsigned int generation = ne->generation;
barrier();
return hpsb_write(ne->host, ne->nodeid, generation,
addr, buffer, length);
}
int hpsb_node_lock(struct node_entry *ne, u64 addr,
int extcode, quadlet_t *data, quadlet_t arg)
{
unsigned int generation = ne->generation;
barrier();
return hpsb_lock(ne->host, ne->nodeid, generation,
addr, extcode, data, arg);
}
static void nodemgr_add_host(struct hpsb_host *host, struct hpsb_highlevel *hl)
{
struct host_info *hi;
hi = hpsb_create_hostinfo(hl, host, sizeof(*hi));
if (!hi) {
HPSB_ERR ("NodeMgr: out of memory in add host");
return;
}
/* Initialize the hostinfo here and start the thread. The
* thread blocks on the reset semaphore until a bus reset
* happens. */
hi->host = host;
init_completion(&hi->exited);
sema_init(&hi->reset_sem, 0);
hi->id = nodemgr_alloc_host_num();
hpsb_set_hostinfo_key(hl, host, hi->id);
memcpy(&host->device, &nodemgr_dev_template_host,
sizeof(host->device));
host->device.parent = &host->pdev->dev;
snprintf(host->device.bus_id, BUS_ID_SIZE, "fw-host%d", hi->id);
snprintf(host->device.name, DEVICE_NAME_SIZE, "IEEE-1394 Host %s-%d",
host->driver->name, hi->id);
sprintf(hi->daemon_name, "knodemgrd_%d", hi->id);
hi->pid = kernel_thread(nodemgr_host_thread, hi,
CLONE_FS | CLONE_FILES | CLONE_SIGHAND);
if (hi->pid < 0) {
HPSB_ERR ("NodeMgr: failed to start %s thread for %s",
hi->daemon_name, host->driver->name);
hpsb_destroy_hostinfo(hl, host);
return;
}
return;
}
static void nodemgr_host_reset(struct hpsb_host *host)
{
struct host_info *hi = hpsb_get_hostinfo(nodemgr_hl, host);
if (hi != NULL) {
#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
HPSB_DEBUG ("NodeMgr: Processing host reset for %s", host->driver->name);
#endif
up(&hi->reset_sem);
} else
HPSB_ERR ("NodeMgr: could not process reset of unused host");
return;
}
static void nodemgr_remove_host(struct hpsb_host *host)
{
struct host_info *hi = hpsb_get_hostinfo(nodemgr_hl, host);
if (hi) {
if (hi->pid >= 0) {
kill_proc(hi->pid, SIGTERM, 1);
wait_for_completion(&hi->exited);
nodemgr_remove_host_dev(&host->device);
device_unregister(&host->device);
}
} else
HPSB_ERR("NodeMgr: host %s does not exist, cannot remove",
host->driver->name);
return;
}
static struct hpsb_highlevel_ops nodemgr_ops = {
.add_host = nodemgr_add_host,
.host_reset = nodemgr_host_reset,
.remove_host = nodemgr_remove_host,
};
void init_ieee1394_nodemgr(void)
{
bus_register(&ieee1394_bus_type);
nodemgr_hl = hpsb_register_highlevel("Node manager", &nodemgr_ops);
if (!nodemgr_hl) {
HPSB_ERR("NodeMgr: out of memory during ieee1394 initialization");
}
}
void cleanup_ieee1394_nodemgr(void)
{
hpsb_unregister_highlevel(nodemgr_hl);
bus_unregister(&ieee1394_bus_type);
}