blob: fa4e46719c1461fb6f019fcd9258779e4ffa675a [file] [log] [blame]
/*
* fs/direct-io.c
*
* Copyright (C) 2002, Linus Torvalds.
*
* O_DIRECT
*
* 04Jul2002 akpm@zip.com.au
* Initial version
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/bio.h>
#include <linux/wait.h>
#include <linux/err.h>
#include <linux/buffer_head.h>
#include <linux/rwsem.h>
#include <asm/atomic.h>
/*
* The largest-sized BIO which this code will assemble, in bytes. Set this
* to PAGE_SIZE if your drivers are broken.
*/
#define DIO_BIO_MAX_SIZE BIO_MAX_SIZE
/*
* How many user pages to map in one call to get_user_pages(). This determines
* the size of a structure on the stack.
*/
#define DIO_PAGES 64
struct dio {
/* BIO submission state */
struct bio *bio; /* bio under assembly */
struct bio_vec *bvec; /* current bvec in that bio */
struct inode *inode;
int rw;
unsigned blkbits; /* doesn't change */
sector_t block_in_file; /* changes */
unsigned blocks_available; /* At block_in_file. changes */
sector_t final_block_in_request;/* doesn't change */
unsigned first_block_in_page; /* doesn't change, Used only once */
int boundary; /* prev block is at a boundary */
int reap_counter; /* rate limit reaping */
get_blocks_t *get_blocks; /* block mapping function */
sector_t last_block_in_bio; /* current final block in bio */
sector_t next_block_in_bio; /* next block to be added to bio */
struct buffer_head map_bh; /* last get_blocks() result */
/* Page fetching state */
int curr_page; /* changes */
int total_pages; /* doesn't change */
unsigned long curr_user_address;/* changes */
/* Page queue */
struct page *pages[DIO_PAGES]; /* page buffer */
unsigned head; /* next page to process */
unsigned tail; /* last valid page + 1 */
int page_errors; /* errno from get_user_pages() */
/* BIO completion state */
atomic_t bio_count; /* nr bios in flight */
spinlock_t bio_list_lock; /* protects bio_list */
struct bio *bio_list; /* singly linked via bi_private */
struct task_struct *waiter; /* waiting task (NULL if none) */
};
/*
* How many pages are in the queue?
*/
static inline unsigned dio_pages_present(struct dio *dio)
{
return dio->tail - dio->head;
}
/*
* Go grab and pin some userspace pages. Typically we'll get 64 at a time.
*/
static int dio_refill_pages(struct dio *dio)
{
int ret;
int nr_pages;
nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
down_read(&current->mm->mmap_sem);
ret = get_user_pages(
current, /* Task for fault acounting */
current->mm, /* whose pages? */
dio->curr_user_address, /* Where from? */
nr_pages, /* How many pages? */
dio->rw == READ, /* Write to memory? */
0, /* force (?) */
&dio->pages[0],
NULL); /* vmas */
up_read(&current->mm->mmap_sem);
if (ret < 0 && dio->blocks_available && (dio->rw == WRITE)) {
/*
* A memory fault, but the filesystem has some outstanding
* mapped blocks. We need to use those blocks up to avoid
* leaking stale data in the file.
*/
if (dio->page_errors == 0)
dio->page_errors = ret;
dio->pages[0] = ZERO_PAGE(dio->cur_user_address);
dio->head = 0;
dio->tail = 1;
ret = 0;
goto out;
}
if (ret >= 0) {
dio->curr_user_address += ret * PAGE_SIZE;
dio->curr_page += ret;
dio->head = 0;
dio->tail = ret;
ret = 0;
}
out:
return ret;
}
/*
* Get another userspace page. Returns an ERR_PTR on error. Pages are
* buffered inside the dio so that we can call get_user_pages() against a
* decent number of pages, less frequently. To provide nicer use of the
* L1 cache.
*/
static struct page *dio_get_page(struct dio *dio)
{
if (dio_pages_present(dio) == 0) {
int ret;
ret = dio_refill_pages(dio);
if (ret)
return ERR_PTR(ret);
BUG_ON(dio_pages_present(dio) == 0);
}
return dio->pages[dio->head++];
}
/*
* The BIO completion handler simply queues the BIO up for the process-context
* handler.
*
* During I/O bi_private points at the dio. After I/O, bi_private is used to
* implement a singly-linked list of completed BIOs, at dio->bio_list.
*/
static void dio_bio_end_io(struct bio *bio)
{
struct dio *dio = bio->bi_private;
unsigned long flags;
spin_lock_irqsave(&dio->bio_list_lock, flags);
bio->bi_private = dio->bio_list;
dio->bio_list = bio;
if (dio->waiter)
wake_up_process(dio->waiter);
spin_unlock_irqrestore(&dio->bio_list_lock, flags);
}
static int
dio_bio_alloc(struct dio *dio, struct block_device *bdev,
sector_t first_sector, int nr_vecs)
{
struct bio *bio;
bio = bio_alloc(GFP_KERNEL, nr_vecs);
if (bio == NULL)
return -ENOMEM;
bio->bi_bdev = bdev;
bio->bi_vcnt = nr_vecs;
bio->bi_idx = 0;
bio->bi_size = 0;
bio->bi_sector = first_sector;
bio->bi_io_vec[0].bv_page = NULL;
bio->bi_end_io = dio_bio_end_io;
dio->bio = bio;
dio->bvec = NULL; /* debug */
return 0;
}
static void dio_bio_submit(struct dio *dio)
{
struct bio *bio = dio->bio;
bio->bi_vcnt = bio->bi_idx;
bio->bi_idx = 0;
bio->bi_private = dio;
atomic_inc(&dio->bio_count);
submit_bio(dio->rw, bio);
dio->bio = NULL;
dio->bvec = NULL;
dio->boundary = 0;
}
/*
* Release any resources in case of a failure
*/
static void dio_cleanup(struct dio *dio)
{
while (dio_pages_present(dio))
page_cache_release(dio_get_page(dio));
}
/*
* Wait for the next BIO to complete. Remove it and return it.
*/
static struct bio *dio_await_one(struct dio *dio)
{
unsigned long flags;
struct bio *bio;
spin_lock_irqsave(&dio->bio_list_lock, flags);
while (dio->bio_list == NULL) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (dio->bio_list == NULL) {
dio->waiter = current;
spin_unlock_irqrestore(&dio->bio_list_lock, flags);
blk_run_queues();
schedule();
spin_lock_irqsave(&dio->bio_list_lock, flags);
dio->waiter = NULL;
}
set_current_state(TASK_RUNNING);
}
bio = dio->bio_list;
dio->bio_list = bio->bi_private;
spin_unlock_irqrestore(&dio->bio_list_lock, flags);
return bio;
}
/*
* Process one completed BIO. No locks are held.
*/
static int dio_bio_complete(struct dio *dio, struct bio *bio)
{
const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
struct bio_vec *bvec = bio->bi_io_vec;
int page_no;
for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
struct page *page = bvec[page_no].bv_page;
if (dio->rw == READ)
set_page_dirty(page);
page_cache_release(page);
}
atomic_dec(&dio->bio_count);
bio_put(bio);
return uptodate ? 0 : -EIO;
}
/*
* Wait on and process all in-flight BIOs.
*/
static int dio_await_completion(struct dio *dio)
{
int ret = 0;
if (dio->bio)
dio_bio_submit(dio);
while (atomic_read(&dio->bio_count)) {
struct bio *bio = dio_await_one(dio);
int ret2;
ret2 = dio_bio_complete(dio, bio);
if (ret == 0)
ret = ret2;
}
return ret;
}
/*
* A really large O_DIRECT read or write can generate a lot of BIOs. So
* to keep the memory consumption sane we periodically reap any completed BIOs
* during the BIO generation phase.
*
* This also helps to limit the peak amount of pinned userspace memory.
*/
static int dio_bio_reap(struct dio *dio)
{
int ret = 0;
if (dio->reap_counter++ >= 64) {
while (dio->bio_list) {
unsigned long flags;
struct bio *bio;
spin_lock_irqsave(&dio->bio_list_lock, flags);
bio = dio->bio_list;
dio->bio_list = bio->bi_private;
spin_unlock_irqrestore(&dio->bio_list_lock, flags);
ret = dio_bio_complete(dio, bio);
}
dio->reap_counter = 0;
}
return ret;
}
/*
* Call into the fs to map some more disk blocks. We record the current number
* of available blocks at dio->blocks_available. These are in units of the
* fs blocksize, (1 << inode->i_blkbits).
*
* The fs is allowed to map lots of blocks at once. If it wants to do that,
* it uses the passed inode-relative block number as the file offset, as usual.
*
* get_blocks() is passed the number of i_blkbits-sized blocks which direct_io
* has remaining to do. The fs should not map more than this number of blocks.
*
* If the fs has mapped a lot of blocks, it should populate bh->b_size to
* indicate how much contiguous disk space has been made available at
* bh->b_blocknr.
*
* If *any* of the mapped blocks are new, then the fs must set buffer_new().
* This isn't very efficient...
*
* In the case of filesystem holes: the fs may return an arbitrarily-large
* hole by returning an appropriate value in b_size and by clearing
* buffer_mapped(). This code _should_ handle that case correctly, but it has
* only been tested against single-block holes (b_size == blocksize).
*/
static int get_more_blocks(struct dio *dio)
{
int ret;
struct buffer_head *map_bh = &dio->map_bh;
if (dio->blocks_available)
return 0;
/*
* If there was a memory error and we've overwritten all the
* mapped blocks then we can now return that memory error
*/
if (dio->page_errors) {
ret = dio->page_errors;
goto out;
}
map_bh->b_state = 0;
map_bh->b_size = 0;
BUG_ON(dio->block_in_file >= dio->final_block_in_request);
ret = (*dio->get_blocks)(dio->inode, dio->block_in_file,
dio->final_block_in_request - dio->block_in_file,
map_bh, dio->rw == WRITE);
if (ret)
goto out;
if (buffer_mapped(map_bh)) {
BUG_ON(map_bh->b_size == 0);
BUG_ON((map_bh->b_size & ((1 << dio->blkbits) - 1)) != 0);
dio->blocks_available = map_bh->b_size >> dio->blkbits;
/* blockdevs do not set buffer_new */
if (buffer_new(map_bh)) {
sector_t block = map_bh->b_blocknr;
unsigned i;
for (i = 0; i < dio->blocks_available; i++)
unmap_underlying_metadata(map_bh->b_bdev,
block++);
}
} else {
BUG_ON(dio->rw != READ);
if (dio->bio)
dio_bio_submit(dio);
}
dio->next_block_in_bio = map_bh->b_blocknr;
out:
return ret;
}
/*
* Check to see if we can continue to grow the BIO. If not, then send it.
*/
static void dio_prep_bio(struct dio *dio)
{
if (dio->bio == NULL)
return;
if (dio->bio->bi_idx == dio->bio->bi_vcnt ||
dio->boundary ||
dio->last_block_in_bio != dio->next_block_in_bio - 1)
dio_bio_submit(dio);
}
/*
* There is no bio. Make one now.
*/
static int dio_new_bio(struct dio *dio)
{
sector_t sector;
int ret;
ret = dio_bio_reap(dio);
if (ret)
goto out;
sector = dio->next_block_in_bio << (dio->blkbits - 9);
ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector,
DIO_BIO_MAX_SIZE / PAGE_SIZE);
dio->boundary = 0;
out:
return ret;
}
/*
* Walk the user pages, and the file, mapping blocks to disk and emitting BIOs.
*
* Direct IO against a blockdev is different from a file. Because we can
* happily perform page-sized but 512-byte aligned IOs. It is important that
* blockdev IO be able to have fine alignment and large sizes.
*
* So what we do is to permit the ->get_blocks function to populate bh.b_size
* with the size of IO which is permitted at this offset and this i_blkbits.
*
* For best results, the blockdev should be set up with 512-byte i_blkbits and
* it should set b_size to PAGE_SIZE or more inside get_blocks(). This gives
* fine alignment but still allows this function to work in PAGE_SIZE units.
*/
int do_direct_IO(struct dio *dio)
{
const unsigned blkbits = dio->blkbits;
const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
struct page *page;
unsigned block_in_page;
int ret;
/* The I/O can start at any block offset within the first page */
block_in_page = dio->first_block_in_page;
while (dio->block_in_file < dio->final_block_in_request) {
int new_page; /* Need to insert this page into the BIO? */
page = dio_get_page(dio);
if (IS_ERR(page)) {
ret = PTR_ERR(page);
goto out;
}
new_page = 1;
while (block_in_page < blocks_per_page) {
struct bio *bio;
unsigned this_chunk_bytes; /* # of bytes mapped */
unsigned this_chunk_blocks; /* # of blocks */
unsigned u;
ret = get_more_blocks(dio);
if (ret)
goto fail_release;
/* Handle holes */
if (!buffer_mapped(&dio->map_bh)) {
char *kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr + (block_in_page << blkbits),
0, 1 << blkbits);
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
dio->block_in_file++;
dio->next_block_in_bio++;
block_in_page++;
goto next_block;
}
dio_prep_bio(dio);
if (dio->bio == NULL) {
ret = dio_new_bio(dio);
if (ret)
goto fail_release;
new_page = 1;
}
bio = dio->bio;
if (new_page) {
dio->bvec = &bio->bi_io_vec[bio->bi_idx];
page_cache_get(page);
dio->bvec->bv_page = page;
dio->bvec->bv_len = 0;
dio->bvec->bv_offset = block_in_page << blkbits;
bio->bi_idx++;
new_page = 0;
}
/* Work out how much disk we can add to this page */
this_chunk_blocks = dio->blocks_available;
u = (PAGE_SIZE - (dio->bvec->bv_offset + dio->bvec->bv_len)) >> blkbits;
if (this_chunk_blocks > u)
this_chunk_blocks = u;
u = dio->final_block_in_request - dio->block_in_file;
if (this_chunk_blocks > u)
this_chunk_blocks = u;
this_chunk_bytes = this_chunk_blocks << blkbits;
BUG_ON(this_chunk_bytes == 0);
dio->bvec->bv_len += this_chunk_bytes;
bio->bi_size += this_chunk_bytes;
dio->next_block_in_bio += this_chunk_blocks;
dio->last_block_in_bio = dio->next_block_in_bio - 1;
dio->boundary = buffer_boundary(&dio->map_bh);
dio->block_in_file += this_chunk_blocks;
block_in_page += this_chunk_blocks;
dio->blocks_available -= this_chunk_blocks;
next_block:
if (dio->block_in_file > dio->final_block_in_request)
BUG();
if (dio->block_in_file == dio->final_block_in_request)
break;
}
block_in_page = 0;
page_cache_release(page);
}
ret = 0;
goto out;
fail_release:
page_cache_release(page);
out:
return ret;
}
int
direct_io_worker(int rw, struct inode *inode, const struct iovec *iov,
loff_t offset, unsigned long nr_segs, get_blocks_t get_blocks)
{
const unsigned blkbits = inode->i_blkbits;
unsigned long user_addr;
int seg, ret2, ret = 0;
struct dio dio;
size_t bytes, tot_bytes = 0;
dio.bio = NULL;
dio.bvec = NULL;
dio.inode = inode;
dio.rw = rw;
dio.blkbits = blkbits;
dio.block_in_file = offset >> blkbits;
dio.blocks_available = 0;
dio.boundary = 0;
dio.reap_counter = 0;
dio.get_blocks = get_blocks;
dio.last_block_in_bio = -1;
dio.next_block_in_bio = -1;
dio.page_errors = 0;
/* BIO completion state */
atomic_set(&dio.bio_count, 0);
spin_lock_init(&dio.bio_list_lock);
dio.bio_list = NULL;
dio.waiter = NULL;
for (seg = 0; seg < nr_segs; seg++) {
user_addr = (unsigned long)iov[seg].iov_base;
bytes = iov[seg].iov_len;
/* Index into the first page of the first block */
dio.first_block_in_page = (user_addr & (PAGE_SIZE - 1)) >> blkbits;
dio.final_block_in_request = dio.block_in_file + (bytes >> blkbits);
/* Page fetching state */
dio.head = 0;
dio.tail = 0;
dio.curr_page = 0;
dio.total_pages = 0;
if (user_addr & (PAGE_SIZE-1)) {
dio.total_pages++;
bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
}
dio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
dio.curr_user_address = user_addr;
ret = do_direct_IO(&dio);
if (ret) {
dio_cleanup(&dio);
break;
}
tot_bytes += iov[seg].iov_len - ((dio.final_block_in_request -
dio.block_in_file) << blkbits);
} /* end iovec loop */
ret2 = dio_await_completion(&dio);
if (ret == 0)
ret = ret2;
if (ret == 0)
ret = dio.page_errors;
if (ret == 0)
ret = tot_bytes;
return ret;
}
/*
* This is a library function for use by filesystem drivers.
*/
int
generic_direct_IO(int rw, struct inode *inode, const struct iovec *iov,
loff_t offset, unsigned long nr_segs, get_blocks_t get_blocks)
{
int seg;
size_t size;
unsigned long addr;
struct address_space *mapping = inode->i_mapping;
unsigned blocksize_mask = (1 << inode->i_blkbits) - 1;
ssize_t retval = -EINVAL;
if (offset & blocksize_mask) {
goto out;
}
/* Check the memory alignment. Blocks cannot straddle pages */
for (seg = 0; seg < nr_segs; seg++) {
addr = (unsigned long)iov[seg].iov_base;
size = iov[seg].iov_len;
if ((addr & blocksize_mask) || (size & blocksize_mask))
goto out;
}
if (mapping->nrpages) {
retval = filemap_fdatawrite(mapping);
if (retval == 0)
retval = filemap_fdatawait(mapping);
if (retval)
goto out;
}
retval = direct_io_worker(rw, inode, iov, offset, nr_segs, get_blocks);
out:
return retval;
}
ssize_t
generic_file_direct_IO(int rw, struct inode *inode, const struct iovec *iov,
loff_t offset, unsigned long nr_segs)
{
struct address_space *mapping = inode->i_mapping;
ssize_t retval;
retval = mapping->a_ops->direct_IO(rw, inode, iov, offset, nr_segs);
if (inode->i_mapping->nrpages)
invalidate_inode_pages2(inode->i_mapping);
return retval;
}