blob: 5623d7dc738ef102a4f2c2579b702f82db4c7356 [file] [log] [blame]
/*
* Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007 Matthew W. S. Bell <mentor@madwifi.org>
* Copyright (c) 2007 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
* Copyright (c) 2007 Pavel Roskin <proski@gnu.org>
* Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*
* HW related functions for Atheros Wireless LAN devices.
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include "reg.h"
#include "base.h"
#include "debug.h"
/*Rate tables*/
static const struct ath5k_rate_table ath5k_rt_11a = AR5K_RATES_11A;
static const struct ath5k_rate_table ath5k_rt_11b = AR5K_RATES_11B;
static const struct ath5k_rate_table ath5k_rt_11g = AR5K_RATES_11G;
static const struct ath5k_rate_table ath5k_rt_turbo = AR5K_RATES_TURBO;
static const struct ath5k_rate_table ath5k_rt_xr = AR5K_RATES_XR;
/*Prototypes*/
static int ath5k_hw_nic_reset(struct ath5k_hw *, u32);
static int ath5k_hw_nic_wakeup(struct ath5k_hw *, int, bool);
static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
unsigned int, unsigned int);
static bool ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
unsigned int);
static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *, struct ath5k_desc *);
static int ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
unsigned int, unsigned int);
static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *, struct ath5k_desc *);
static int ath5k_hw_proc_new_rx_status(struct ath5k_hw *, struct ath5k_desc *);
static int ath5k_hw_proc_old_rx_status(struct ath5k_hw *, struct ath5k_desc *);
static int ath5k_hw_get_capabilities(struct ath5k_hw *);
static int ath5k_eeprom_init(struct ath5k_hw *);
static int ath5k_eeprom_read_mac(struct ath5k_hw *, u8 *);
static int ath5k_hw_enable_pspoll(struct ath5k_hw *, u8 *, u16);
static int ath5k_hw_disable_pspoll(struct ath5k_hw *);
/*
* Enable to overwrite the country code (use "00" for debug)
*/
#if 0
#define COUNTRYCODE "00"
#endif
/*******************\
General Functions
\*******************/
/*
* Functions used internaly
*/
static inline unsigned int ath5k_hw_htoclock(unsigned int usec, bool turbo)
{
return turbo == true ? (usec * 80) : (usec * 40);
}
static inline unsigned int ath5k_hw_clocktoh(unsigned int clock, bool turbo)
{
return turbo == true ? (clock / 80) : (clock / 40);
}
/*
* Check if a register write has been completed
*/
int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
bool is_set)
{
int i;
u32 data;
for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
data = ath5k_hw_reg_read(ah, reg);
if ((is_set == true) && (data & flag))
break;
else if ((data & flag) == val)
break;
udelay(15);
}
return (i <= 0) ? -EAGAIN : 0;
}
/***************************************\
Attach/Detach Functions
\***************************************/
/*
* Check if the device is supported and initialize the needed structs
*/
struct ath5k_hw *ath5k_hw_attach(struct ath5k_softc *sc, u8 mac_version)
{
struct ath5k_hw *ah;
u8 mac[ETH_ALEN];
int ret;
u32 srev;
/*If we passed the test malloc a ath5k_hw struct*/
ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
if (ah == NULL) {
ret = -ENOMEM;
ATH5K_ERR(sc, "out of memory\n");
goto err;
}
ah->ah_sc = sc;
ah->ah_iobase = sc->iobase;
/*
* HW information
*/
/* Get reg domain from eeprom */
ath5k_get_regdomain(ah);
ah->ah_op_mode = IEEE80211_IF_TYPE_STA;
ah->ah_radar.r_enabled = AR5K_TUNE_RADAR_ALERT;
ah->ah_turbo = false;
ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
ah->ah_imr = 0;
ah->ah_atim_window = 0;
ah->ah_aifs = AR5K_TUNE_AIFS;
ah->ah_cw_min = AR5K_TUNE_CWMIN;
ah->ah_limit_tx_retries = AR5K_INIT_TX_RETRY;
ah->ah_software_retry = false;
ah->ah_ant_diversity = AR5K_TUNE_ANT_DIVERSITY;
/*
* Set the mac revision based on the pci id
*/
ah->ah_version = mac_version;
/*Fill the ath5k_hw struct with the needed functions*/
if (ah->ah_version == AR5K_AR5212)
ah->ah_magic = AR5K_EEPROM_MAGIC_5212;
else if (ah->ah_version == AR5K_AR5211)
ah->ah_magic = AR5K_EEPROM_MAGIC_5211;
if (ah->ah_version == AR5K_AR5212) {
ah->ah_setup_tx_desc = ath5k_hw_setup_4word_tx_desc;
ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
ah->ah_proc_tx_desc = ath5k_hw_proc_4word_tx_status;
} else {
ah->ah_setup_tx_desc = ath5k_hw_setup_2word_tx_desc;
ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
ah->ah_proc_tx_desc = ath5k_hw_proc_2word_tx_status;
}
if (ah->ah_version == AR5K_AR5212)
ah->ah_proc_rx_desc = ath5k_hw_proc_new_rx_status;
else if (ah->ah_version <= AR5K_AR5211)
ah->ah_proc_rx_desc = ath5k_hw_proc_old_rx_status;
/* Bring device out of sleep and reset it's units */
ret = ath5k_hw_nic_wakeup(ah, AR5K_INIT_MODE, true);
if (ret)
goto err_free;
/* Get MAC, PHY and RADIO revisions */
srev = ath5k_hw_reg_read(ah, AR5K_SREV);
ah->ah_mac_srev = srev;
ah->ah_mac_version = AR5K_REG_MS(srev, AR5K_SREV_VER);
ah->ah_mac_revision = AR5K_REG_MS(srev, AR5K_SREV_REV);
ah->ah_phy_revision = ath5k_hw_reg_read(ah, AR5K_PHY_CHIP_ID) &
0xffffffff;
ah->ah_radio_5ghz_revision = ath5k_hw_radio_revision(ah,
CHANNEL_5GHZ);
if (ah->ah_version == AR5K_AR5210)
ah->ah_radio_2ghz_revision = 0;
else
ah->ah_radio_2ghz_revision = ath5k_hw_radio_revision(ah,
CHANNEL_2GHZ);
/* Return on unsuported chips (unsupported eeprom etc) */
if(srev >= AR5K_SREV_VER_AR5416){
ATH5K_ERR(sc, "Device not yet supported.\n");
ret = -ENODEV;
goto err_free;
}
/* Identify single chip solutions */
if((srev <= AR5K_SREV_VER_AR5414) &&
(srev >= AR5K_SREV_VER_AR2424)) {
ah->ah_single_chip = true;
} else {
ah->ah_single_chip = false;
}
/* Single chip radio */
if (ah->ah_radio_2ghz_revision == ah->ah_radio_5ghz_revision)
ah->ah_radio_2ghz_revision = 0;
/* Identify the radio chip*/
if (ah->ah_version == AR5K_AR5210) {
ah->ah_radio = AR5K_RF5110;
} else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112) {
ah->ah_radio = AR5K_RF5111;
} else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC1) {
ah->ah_radio = AR5K_RF5112;
} else {
ah->ah_radio = AR5K_RF5413;
}
ah->ah_phy = AR5K_PHY(0);
/*
* Get card capabilities, values, ...
*/
ret = ath5k_eeprom_init(ah);
if (ret) {
ATH5K_ERR(sc, "unable to init EEPROM\n");
goto err_free;
}
/* Get misc capabilities */
ret = ath5k_hw_get_capabilities(ah);
if (ret) {
ATH5K_ERR(sc, "unable to get device capabilities: 0x%04x\n",
sc->pdev->device);
goto err_free;
}
/* Get MAC address */
ret = ath5k_eeprom_read_mac(ah, mac);
if (ret) {
ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
sc->pdev->device);
goto err_free;
}
ath5k_hw_set_lladdr(ah, mac);
/* Set BSSID to bcast address: ff:ff:ff:ff:ff:ff for now */
memset(ah->ah_bssid, 0xff, ETH_ALEN);
ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
ath5k_hw_set_opmode(ah);
ath5k_hw_set_rfgain_opt(ah);
return ah;
err_free:
kfree(ah);
err:
return ERR_PTR(ret);
}
/*
* Bring up MAC + PHY Chips
*/
static int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
{
u32 turbo, mode, clock;
int ret;
turbo = 0;
mode = 0;
clock = 0;
ATH5K_TRACE(ah->ah_sc);
/* Wakeup the device */
ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
if (ret) {
ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
return ret;
}
if (ah->ah_version != AR5K_AR5210) {
/*
* Get channel mode flags
*/
if (ah->ah_radio >= AR5K_RF5112) {
mode = AR5K_PHY_MODE_RAD_RF5112;
clock = AR5K_PHY_PLL_RF5112;
} else {
mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
clock = AR5K_PHY_PLL_RF5111; /*Zero*/
}
if (flags & CHANNEL_2GHZ) {
mode |= AR5K_PHY_MODE_FREQ_2GHZ;
clock |= AR5K_PHY_PLL_44MHZ;
if (flags & CHANNEL_CCK) {
mode |= AR5K_PHY_MODE_MOD_CCK;
} else if (flags & CHANNEL_OFDM) {
/* XXX Dynamic OFDM/CCK is not supported by the
* AR5211 so we set MOD_OFDM for plain g (no
* CCK headers) operation. We need to test
* this, 5211 might support ofdm-only g after
* all, there are also initial register values
* in the code for g mode (see initvals.c). */
if (ah->ah_version == AR5K_AR5211)
mode |= AR5K_PHY_MODE_MOD_OFDM;
else
mode |= AR5K_PHY_MODE_MOD_DYN;
} else {
ATH5K_ERR(ah->ah_sc,
"invalid radio modulation mode\n");
return -EINVAL;
}
} else if (flags & CHANNEL_5GHZ) {
mode |= AR5K_PHY_MODE_FREQ_5GHZ;
clock |= AR5K_PHY_PLL_40MHZ;
if (flags & CHANNEL_OFDM)
mode |= AR5K_PHY_MODE_MOD_OFDM;
else {
ATH5K_ERR(ah->ah_sc,
"invalid radio modulation mode\n");
return -EINVAL;
}
} else {
ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
return -EINVAL;
}
if (flags & CHANNEL_TURBO)
turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
} else { /* Reset the device */
/* ...enable Atheros turbo mode if requested */
if (flags & CHANNEL_TURBO)
ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
AR5K_PHY_TURBO);
}
/* ...reset chipset and PCI device */
if (ah->ah_single_chip == false && ath5k_hw_nic_reset(ah,
AR5K_RESET_CTL_CHIP | AR5K_RESET_CTL_PCI)) {
ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip + PCI\n");
return -EIO;
}
if (ah->ah_version == AR5K_AR5210)
udelay(2300);
/* ...wakeup again!*/
ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
if (ret) {
ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
return ret;
}
/* ...final warm reset */
if (ath5k_hw_nic_reset(ah, 0)) {
ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
return -EIO;
}
if (ah->ah_version != AR5K_AR5210) {
/* ...set the PHY operating mode */
ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
udelay(300);
ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
}
return 0;
}
/*
* Get the rate table for a specific operation mode
*/
const struct ath5k_rate_table *ath5k_hw_get_rate_table(struct ath5k_hw *ah,
unsigned int mode)
{
ATH5K_TRACE(ah->ah_sc);
if (!test_bit(mode, ah->ah_capabilities.cap_mode))
return NULL;
/* Get rate tables */
switch (mode) {
case MODE_IEEE80211A:
return &ath5k_rt_11a;
case MODE_ATHEROS_TURBO:
return &ath5k_rt_turbo;
case MODE_IEEE80211B:
return &ath5k_rt_11b;
case MODE_IEEE80211G:
return &ath5k_rt_11g;
case MODE_ATHEROS_TURBOG:
return &ath5k_rt_xr;
}
return NULL;
}
/*
* Free the ath5k_hw struct
*/
void ath5k_hw_detach(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
if (ah->ah_rf_banks != NULL)
kfree(ah->ah_rf_banks);
/* assume interrupts are down */
kfree(ah);
}
/****************************\
Reset function and helpers
\****************************/
/**
* ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
*
* @ah: the &struct ath5k_hw
* @channel: the currently set channel upon reset
*
* Write the OFDM timings for the AR5212 upon reset. This is a helper for
* ath5k_hw_reset(). This seems to tune the PLL a specified frequency
* depending on the bandwidth of the channel.
*
*/
static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
/* Get exponent and mantissa and set it */
u32 coef_scaled, coef_exp, coef_man,
ds_coef_exp, ds_coef_man, clock;
if (!(ah->ah_version == AR5K_AR5212) ||
!(channel->val & CHANNEL_OFDM))
BUG();
/* Seems there are two PLLs, one for baseband sampling and one
* for tuning. Tuning basebands are 40 MHz or 80MHz when in
* turbo. */
clock = channel->val & CHANNEL_TURBO ? 80 : 40;
coef_scaled = ((5 * (clock << 24)) / 2) /
channel->freq;
for (coef_exp = 31; coef_exp > 0; coef_exp--)
if ((coef_scaled >> coef_exp) & 0x1)
break;
if (!coef_exp)
return -EINVAL;
coef_exp = 14 - (coef_exp - 24);
coef_man = coef_scaled +
(1 << (24 - coef_exp - 1));
ds_coef_man = coef_man >> (24 - coef_exp);
ds_coef_exp = coef_exp - 16;
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
return 0;
}
/**
* ath5k_hw_write_rate_duration - set rate duration during hw resets
*
* @ah: the &struct ath5k_hw
* @driver_mode: one of enum ieee80211_phymode or our one of our own
* vendor modes
*
* Write the rate duration table for the current mode upon hw reset. This
* is a helper for ath5k_hw_reset(). It seems all this is doing is setting
* an ACK timeout for the hardware for the current mode for each rate. The
* rates which are capable of short preamble (802.11b rates 2Mbps, 5.5Mbps,
* and 11Mbps) have another register for the short preamble ACK timeout
* calculation.
*
*/
static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
unsigned int driver_mode)
{
struct ath5k_softc *sc = ah->ah_sc;
const struct ath5k_rate_table *rt;
unsigned int i;
/* Get rate table for the current operating mode */
rt = ath5k_hw_get_rate_table(ah,
driver_mode);
/* Write rate duration table */
for (i = 0; i < rt->rate_count; i++) {
const struct ath5k_rate *rate, *control_rate;
u32 reg;
u16 tx_time;
rate = &rt->rates[i];
control_rate = &rt->rates[rate->control_rate];
/* Set ACK timeout */
reg = AR5K_RATE_DUR(rate->rate_code);
/* An ACK frame consists of 10 bytes. If you add the FCS,
* which ieee80211_generic_frame_duration() adds,
* its 14 bytes. Note we use the control rate and not the
* actual rate for this rate. See mac80211 tx.c
* ieee80211_duration() for a brief description of
* what rate we should choose to TX ACKs. */
tx_time = ieee80211_generic_frame_duration(sc->hw,
sc->iface_id, 10, control_rate->rate_kbps/100);
ath5k_hw_reg_write(ah, tx_time, reg);
if (!HAS_SHPREAMBLE(i))
continue;
/*
* We're not distinguishing short preamble here,
* This is true, all we'll get is a longer value here
* which is not necessarilly bad. We could use
* export ieee80211_frame_duration() but that needs to be
* fixed first to be properly used by mac802111 drivers:
*
* - remove erp stuff and let the routine figure ofdm
* erp rates
* - remove passing argument ieee80211_local as
* drivers don't have access to it
* - move drivers using ieee80211_generic_frame_duration()
* to this
*/
ath5k_hw_reg_write(ah, tx_time,
reg + (AR5K_SET_SHORT_PREAMBLE << 2));
}
}
/*
* Main reset function
*/
int ath5k_hw_reset(struct ath5k_hw *ah, enum ieee80211_if_types op_mode,
struct ieee80211_channel *channel, bool change_channel)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 data, s_seq, s_ant, s_led[3];
unsigned int i, mode, freq, ee_mode, ant[2], driver_mode = -1;
int ret;
ATH5K_TRACE(ah->ah_sc);
s_seq = 0;
s_ant = 0;
ee_mode = 0;
freq = 0;
mode = 0;
/*
* Save some registers before a reset
*/
/*DCU/Antenna selection not available on 5210*/
if (ah->ah_version != AR5K_AR5210) {
if (change_channel == true) {
/* Seq number for queue 0 -do this for all queues ? */
s_seq = ath5k_hw_reg_read(ah,
AR5K_QUEUE_DFS_SEQNUM(0));
/*Default antenna*/
s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
}
}
/*GPIOs*/
s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE;
s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
if (change_channel == true && ah->ah_rf_banks != NULL)
ath5k_hw_get_rf_gain(ah);
/*Wakeup the device*/
ret = ath5k_hw_nic_wakeup(ah, channel->val, false);
if (ret)
return ret;
/*
* Initialize operating mode
*/
ah->ah_op_mode = op_mode;
/*
* 5111/5112 Settings
* 5210 only comes with RF5110
*/
if (ah->ah_version != AR5K_AR5210) {
if (ah->ah_radio != AR5K_RF5111 &&
ah->ah_radio != AR5K_RF5112 &&
ah->ah_radio != AR5K_RF5413) {
ATH5K_ERR(ah->ah_sc,
"invalid phy radio: %u\n", ah->ah_radio);
return -EINVAL;
}
switch (channel->val & CHANNEL_MODES) {
case CHANNEL_A:
mode = AR5K_INI_VAL_11A;
freq = AR5K_INI_RFGAIN_5GHZ;
ee_mode = AR5K_EEPROM_MODE_11A;
driver_mode = MODE_IEEE80211A;
break;
case CHANNEL_G:
mode = AR5K_INI_VAL_11G;
freq = AR5K_INI_RFGAIN_2GHZ;
ee_mode = AR5K_EEPROM_MODE_11G;
driver_mode = MODE_IEEE80211G;
break;
case CHANNEL_B:
mode = AR5K_INI_VAL_11B;
freq = AR5K_INI_RFGAIN_2GHZ;
ee_mode = AR5K_EEPROM_MODE_11B;
driver_mode = MODE_IEEE80211B;
break;
case CHANNEL_T:
mode = AR5K_INI_VAL_11A_TURBO;
freq = AR5K_INI_RFGAIN_5GHZ;
ee_mode = AR5K_EEPROM_MODE_11A;
driver_mode = MODE_ATHEROS_TURBO;
break;
/*Is this ok on 5211 too ?*/
case CHANNEL_TG:
mode = AR5K_INI_VAL_11G_TURBO;
freq = AR5K_INI_RFGAIN_2GHZ;
ee_mode = AR5K_EEPROM_MODE_11G;
driver_mode = MODE_ATHEROS_TURBOG;
break;
case CHANNEL_XR:
if (ah->ah_version == AR5K_AR5211) {
ATH5K_ERR(ah->ah_sc,
"XR mode not available on 5211");
return -EINVAL;
}
mode = AR5K_INI_VAL_XR;
freq = AR5K_INI_RFGAIN_5GHZ;
ee_mode = AR5K_EEPROM_MODE_11A;
driver_mode = MODE_IEEE80211A;
break;
default:
ATH5K_ERR(ah->ah_sc,
"invalid channel: %d\n", channel->freq);
return -EINVAL;
}
/* PHY access enable */
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
}
ret = ath5k_hw_write_initvals(ah, mode, change_channel);
if (ret)
return ret;
/*
* 5211/5212 Specific
*/
if (ah->ah_version != AR5K_AR5210) {
/*
* Write initial RF gain settings
* This should work for both 5111/5112
*/
ret = ath5k_hw_rfgain(ah, freq);
if (ret)
return ret;
mdelay(1);
/*
* Write some more initial register settings
*/
if (ah->ah_version > AR5K_AR5211){ /* found on 5213+ */
ath5k_hw_reg_write(ah, 0x0002a002, AR5K_PHY(11));
if (channel->val == CHANNEL_G)
ath5k_hw_reg_write(ah, 0x00f80d80, AR5K_PHY(83)); /* 0x00fc0ec0 */
else
ath5k_hw_reg_write(ah, 0x00000000, AR5K_PHY(83));
ath5k_hw_reg_write(ah, 0x000001b5, 0xa228); /* 0x000009b5 */
ath5k_hw_reg_write(ah, 0x000009b5, 0xa228);
ath5k_hw_reg_write(ah, 0x0000000f, 0x8060);
ath5k_hw_reg_write(ah, 0x00000000, 0xa254);
ath5k_hw_reg_write(ah, 0x0000000e, AR5K_PHY_SCAL);
}
/* Fix for first revision of the RF5112 RF chipset */
if (ah->ah_radio >= AR5K_RF5112 &&
ah->ah_radio_5ghz_revision <
AR5K_SREV_RAD_5112A) {
ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
AR5K_PHY_CCKTXCTL);
if (channel->val & CHANNEL_5GHZ)
data = 0xffb81020;
else
data = 0xffb80d20;
ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
}
/*
* Set TX power (FIXME)
*/
ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER);
if (ret)
return ret;
/* Write rate duration table */
if (ah->ah_version == AR5K_AR5212)
ath5k_hw_write_rate_duration(ah, driver_mode);
/*
* Write RF registers
* TODO:Does this work on 5211 (5111) ?
*/
ret = ath5k_hw_rfregs(ah, channel, mode);
if (ret)
return ret;
/*
* Configure additional registers
*/
/* Write OFDM timings on 5212*/
if (ah->ah_version == AR5K_AR5212 &&
channel->val & CHANNEL_OFDM) {
ret = ath5k_hw_write_ofdm_timings(ah, channel);
if (ret)
return ret;
}
/*Enable/disable 802.11b mode on 5111
(enable 2111 frequency converter + CCK)*/
if (ah->ah_radio == AR5K_RF5111) {
if (driver_mode == MODE_IEEE80211B)
AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
}
/*
* Set channel and calibrate the PHY
*/
ret = ath5k_hw_channel(ah, channel);
if (ret)
return ret;
/* Set antenna mode */
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x44),
ah->ah_antenna[ee_mode][0], 0xfffffc06);
/*
* In case a fixed antenna was set as default
* write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
* registers.
*/
if (s_ant != 0){
if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
ant[0] = ant[1] = AR5K_ANT_FIXED_A;
else /* 2 - Aux */
ant[0] = ant[1] = AR5K_ANT_FIXED_B;
} else {
ant[0] = AR5K_ANT_FIXED_A;
ant[1] = AR5K_ANT_FIXED_B;
}
ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
AR5K_PHY_ANT_SWITCH_TABLE_0);
ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
AR5K_PHY_ANT_SWITCH_TABLE_1);
/* Commit values from EEPROM */
if (ah->ah_radio == AR5K_RF5111)
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
AR5K_PHY_FRAME_CTL_TX_CLIP, ee->ee_tx_clip);
ath5k_hw_reg_write(ah,
AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
AR5K_PHY(0x5a));
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x11),
(ee->ee_switch_settling[ee_mode] << 7) & 0x3f80,
0xffffc07f);
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x12),
(ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000,
0xfffc0fff);
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x14),
(ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00),
0xffff0000);
ath5k_hw_reg_write(ah,
(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY(0x0d));
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x0a),
ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff);
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x19),
(ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff);
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x49), 4, 0xffffff01);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_CORR_ENABLE |
(ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
ee->ee_q_cal[ee_mode]);
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
ee->ee_margin_tx_rx[ee_mode]);
} else {
mdelay(1);
/* Disable phy and wait */
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
mdelay(1);
}
/*
* Restore saved values
*/
/*DCU/Antenna selection not available on 5210*/
if (ah->ah_version != AR5K_AR5210) {
ath5k_hw_reg_write(ah, s_seq, AR5K_QUEUE_DFS_SEQNUM(0));
ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
}
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
/*
* Misc
*/
/* XXX: add ah->aid once mac80211 gives this to us */
ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
ath5k_hw_set_opmode(ah);
/*PISR/SISR Not available on 5210*/
if (ah->ah_version != AR5K_AR5210) {
ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
/* If we later allow tuning for this, store into sc structure */
data = AR5K_TUNE_RSSI_THRES |
AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S;
ath5k_hw_reg_write(ah, data, AR5K_RSSI_THR);
}
/*
* Set Rx/Tx DMA Configuration
*(passing dma size not available on 5210)
*/
if (ah->ah_version != AR5K_AR5210) {
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_SDMAMR,
AR5K_DMASIZE_512B | AR5K_TXCFG_DMASIZE);
AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_SDMAMW,
AR5K_DMASIZE_512B);
}
/*
* Enable the PHY and wait until completion
*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
/*
* 5111/5112 Specific
*/
if (ah->ah_version != AR5K_AR5210) {
data = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
AR5K_PHY_RX_DELAY_M;
data = (channel->val & CHANNEL_CCK) ?
((data << 2) / 22) : (data / 10);
udelay(100 + data);
} else {
mdelay(1);
}
/*
* Enable calibration and wait until completion
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL);
if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL, 0, false)) {
ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
channel->freq);
return -EAGAIN;
}
ret = ath5k_hw_noise_floor_calibration(ah, channel->freq);
if (ret)
return ret;
ah->ah_calibration = false;
/* A and G modes can use QAM modulation which requires enabling
* I and Q calibration. Don't bother in B mode. */
if (!(driver_mode == MODE_IEEE80211B)) {
ah->ah_calibration = true;
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_RUN);
}
/*
* Reset queues and start beacon timers at the end of the reset routine
*/
for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
/*No QCU on 5210*/
if (ah->ah_version != AR5K_AR5210)
AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(i), i);
ret = ath5k_hw_reset_tx_queue(ah, i);
if (ret) {
ATH5K_ERR(ah->ah_sc,
"failed to reset TX queue #%d\n", i);
return ret;
}
}
/* Pre-enable interrupts on 5211/5212*/
if (ah->ah_version != AR5K_AR5210)
ath5k_hw_set_intr(ah, AR5K_INT_RX | AR5K_INT_TX |
AR5K_INT_FATAL);
/*
* Set RF kill flags if supported by the device (read from the EEPROM)
* Disable gpio_intr for now since it results system hang.
* TODO: Handle this in ath5k_intr
*/
#if 0
if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
ath5k_hw_set_gpio_input(ah, 0);
ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
if (ah->ah_gpio[0] == 0)
ath5k_hw_set_gpio_intr(ah, 0, 1);
else
ath5k_hw_set_gpio_intr(ah, 0, 0);
}
#endif
/*
* Set the 32MHz reference clock on 5212 phy clock sleep register
*/
if (ah->ah_version == AR5K_AR5212) {
ath5k_hw_reg_write(ah, AR5K_PHY_SCR_32MHZ, AR5K_PHY_SCR);
ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
ath5k_hw_reg_write(ah, ah->ah_radio == AR5K_RF5111 ?
AR5K_PHY_SPENDING_RF5111 : AR5K_PHY_SPENDING_RF5112,
AR5K_PHY_SPENDING);
}
/*
* Disable beacons and reset the register
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
AR5K_BEACON_RESET_TSF);
return 0;
}
/*
* Reset chipset
*/
static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
{
int ret;
u32 mask = val ? val : ~0U;
ATH5K_TRACE(ah->ah_sc);
/* Read-and-clear RX Descriptor Pointer*/
ath5k_hw_reg_read(ah, AR5K_RXDP);
/*
* Reset the device and wait until success
*/
ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
/* Wait at least 128 PCI clocks */
udelay(15);
if (ah->ah_version == AR5K_AR5210) {
val &= AR5K_RESET_CTL_CHIP;
mask &= AR5K_RESET_CTL_CHIP;
} else {
val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
}
ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
/*
* Reset configuration register (for hw byte-swap). Note that this
* is only set for big endian. We do the necessary magic in
* AR5K_INIT_CFG.
*/
if ((val & AR5K_RESET_CTL_PCU) == 0)
ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
return ret;
}
/*
* Power management functions
*/
/*
* Sleep control
*/
int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
bool set_chip, u16 sleep_duration)
{
unsigned int i;
u32 staid;
ATH5K_TRACE(ah->ah_sc);
staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
switch (mode) {
case AR5K_PM_AUTO:
staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
/* fallthrough */
case AR5K_PM_NETWORK_SLEEP:
if (set_chip == true)
ath5k_hw_reg_write(ah,
AR5K_SLEEP_CTL_SLE | sleep_duration,
AR5K_SLEEP_CTL);
staid |= AR5K_STA_ID1_PWR_SV;
break;
case AR5K_PM_FULL_SLEEP:
if (set_chip == true)
ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
AR5K_SLEEP_CTL);
staid |= AR5K_STA_ID1_PWR_SV;
break;
case AR5K_PM_AWAKE:
if (set_chip == false)
goto commit;
ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
AR5K_SLEEP_CTL);
for (i = 5000; i > 0; i--) {
/* Check if the chip did wake up */
if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
AR5K_PCICFG_SPWR_DN) == 0)
break;
/* Wait a bit and retry */
udelay(200);
ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
AR5K_SLEEP_CTL);
}
/* Fail if the chip didn't wake up */
if (i <= 0)
return -EIO;
staid &= ~AR5K_STA_ID1_PWR_SV;
break;
default:
return -EINVAL;
}
commit:
ah->ah_power_mode = mode;
ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
return 0;
}
/***********************\
DMA Related Functions
\***********************/
/*
* Receive functions
*/
/*
* Start DMA receive
*/
void ath5k_hw_start_rx(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
}
/*
* Stop DMA receive
*/
int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
{
unsigned int i;
ATH5K_TRACE(ah->ah_sc);
ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
/*
* It may take some time to disable the DMA receive unit
*/
for (i = 2000; i > 0 &&
(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
i--)
udelay(10);
return i ? 0 : -EBUSY;
}
/*
* Get the address of the RX Descriptor
*/
u32 ath5k_hw_get_rx_buf(struct ath5k_hw *ah)
{
return ath5k_hw_reg_read(ah, AR5K_RXDP);
}
/*
* Set the address of the RX Descriptor
*/
void ath5k_hw_put_rx_buf(struct ath5k_hw *ah, u32 phys_addr)
{
ATH5K_TRACE(ah->ah_sc);
/*TODO:Shouldn't we check if RX is enabled first ?*/
ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
}
/*
* Transmit functions
*/
/*
* Start DMA transmit for a specific queue
* (see also QCU/DCU functions)
*/
int ath5k_hw_tx_start(struct ath5k_hw *ah, unsigned int queue)
{
u32 tx_queue;
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/* Return if queue is declared inactive */
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return -EIO;
if (ah->ah_version == AR5K_AR5210) {
tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
/*
* Set the queue by type on 5210
*/
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
break;
case AR5K_TX_QUEUE_BEACON:
tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
AR5K_BSR);
break;
case AR5K_TX_QUEUE_CAB:
tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1FV | AR5K_BCR_TQ1V |
AR5K_BCR_BDMAE, AR5K_BSR);
break;
default:
return -EINVAL;
}
/* Start queue */
ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
} else {
/* Return if queue is disabled */
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
return -EIO;
/* Start queue */
AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
}
return 0;
}
/*
* Stop DMA transmit for a specific queue
* (see also QCU/DCU functions)
*/
int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
{
unsigned int i = 100;
u32 tx_queue, pending;
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/* Return if queue is declared inactive */
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return -EIO;
if (ah->ah_version == AR5K_AR5210) {
tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
/*
* Set by queue type
*/
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
/* XXX Fix me... */
tx_queue |= AR5K_CR_TXD1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, 0, AR5K_BSR);
break;
default:
return -EINVAL;
}
/* Stop queue */
ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
} else {
/*
* Schedule TX disable and wait until queue is empty
*/
AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
/*Check for pending frames*/
do {
pending = ath5k_hw_reg_read(ah,
AR5K_QUEUE_STATUS(queue)) &
AR5K_QCU_STS_FRMPENDCNT;
udelay(100);
} while (--i && pending);
/* Clear register */
ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
}
/* TODO: Check for success else return error */
return 0;
}
/*
* Get the address of the TX Descriptor for a specific queue
* (see also QCU/DCU functions)
*/
u32 ath5k_hw_get_tx_buf(struct ath5k_hw *ah, unsigned int queue)
{
u16 tx_reg;
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/*
* Get the transmit queue descriptor pointer from the selected queue
*/
/*5210 doesn't have QCU*/
if (ah->ah_version == AR5K_AR5210) {
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_reg = AR5K_NOQCU_TXDP0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
tx_reg = AR5K_NOQCU_TXDP1;
break;
default:
return 0xffffffff;
}
} else {
tx_reg = AR5K_QUEUE_TXDP(queue);
}
return ath5k_hw_reg_read(ah, tx_reg);
}
/*
* Set the address of the TX Descriptor for a specific queue
* (see also QCU/DCU functions)
*/
int ath5k_hw_put_tx_buf(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
{
u16 tx_reg;
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/*
* Set the transmit queue descriptor pointer register by type
* on 5210
*/
if (ah->ah_version == AR5K_AR5210) {
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_reg = AR5K_NOQCU_TXDP0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
tx_reg = AR5K_NOQCU_TXDP1;
break;
default:
return -EINVAL;
}
} else {
/*
* Set the transmit queue descriptor pointer for
* the selected queue on QCU for 5211+
* (this won't work if the queue is still active)
*/
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
return -EIO;
tx_reg = AR5K_QUEUE_TXDP(queue);
}
/* Set descriptor pointer */
ath5k_hw_reg_write(ah, phys_addr, tx_reg);
return 0;
}
/*
* Update tx trigger level
*/
int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
{
u32 trigger_level, imr;
int ret = -EIO;
ATH5K_TRACE(ah->ah_sc);
/*
* Disable interrupts by setting the mask
*/
imr = ath5k_hw_set_intr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
/*TODO: Boundary check on trigger_level*/
trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
AR5K_TXCFG_TXFULL);
if (increase == false) {
if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
goto done;
} else
trigger_level +=
((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
/*
* Update trigger level on success
*/
if (ah->ah_version == AR5K_AR5210)
ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
else
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_TXFULL, trigger_level);
ret = 0;
done:
/*
* Restore interrupt mask
*/
ath5k_hw_set_intr(ah, imr);
return ret;
}
/*
* Interrupt handling
*/
/*
* Check if we have pending interrupts
*/
bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
return ath5k_hw_reg_read(ah, AR5K_INTPEND);
}
/*
* Get interrupt mask (ISR)
*/
int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
{
u32 data;
ATH5K_TRACE(ah->ah_sc);
/*
* Read interrupt status from the Interrupt Status register
* on 5210
*/
if (ah->ah_version == AR5K_AR5210) {
data = ath5k_hw_reg_read(ah, AR5K_ISR);
if (unlikely(data == AR5K_INT_NOCARD)) {
*interrupt_mask = data;
return -ENODEV;
}
} else {
/*
* Read interrupt status from the Read-And-Clear shadow register
* Note: PISR/SISR Not available on 5210
*/
data = ath5k_hw_reg_read(ah, AR5K_RAC_PISR);
}
/*
* Get abstract interrupt mask (driver-compatible)
*/
*interrupt_mask = (data & AR5K_INT_COMMON) & ah->ah_imr;
if (unlikely(data == AR5K_INT_NOCARD))
return -ENODEV;
if (data & (AR5K_ISR_RXOK | AR5K_ISR_RXERR))
*interrupt_mask |= AR5K_INT_RX;
if (data & (AR5K_ISR_TXOK | AR5K_ISR_TXERR
| AR5K_ISR_TXDESC | AR5K_ISR_TXEOL))
*interrupt_mask |= AR5K_INT_TX;
if (ah->ah_version != AR5K_AR5210) {
/*HIU = Host Interface Unit (PCI etc)*/
if (unlikely(data & (AR5K_ISR_HIUERR)))
*interrupt_mask |= AR5K_INT_FATAL;
/*Beacon Not Ready*/
if (unlikely(data & (AR5K_ISR_BNR)))
*interrupt_mask |= AR5K_INT_BNR;
}
/*
* XXX: BMISS interrupts may occur after association.
* I found this on 5210 code but it needs testing. If this is
* true we should disable them before assoc and re-enable them
* after a successfull assoc + some jiffies.
*/
#if 0
interrupt_mask &= ~AR5K_INT_BMISS;
#endif
/*
* In case we didn't handle anything,
* print the register value.
*/
if (unlikely(*interrupt_mask == 0 && net_ratelimit()))
ATH5K_PRINTF("0x%08x\n", data);
return 0;
}
/*
* Set interrupt mask
*/
enum ath5k_int ath5k_hw_set_intr(struct ath5k_hw *ah, enum ath5k_int new_mask)
{
enum ath5k_int old_mask, int_mask;
/*
* Disable card interrupts to prevent any race conditions
* (they will be re-enabled afterwards).
*/
ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
old_mask = ah->ah_imr;
/*
* Add additional, chipset-dependent interrupt mask flags
* and write them to the IMR (interrupt mask register).
*/
int_mask = new_mask & AR5K_INT_COMMON;
if (new_mask & AR5K_INT_RX)
int_mask |= AR5K_IMR_RXOK | AR5K_IMR_RXERR | AR5K_IMR_RXORN |
AR5K_IMR_RXDESC;
if (new_mask & AR5K_INT_TX)
int_mask |= AR5K_IMR_TXOK | AR5K_IMR_TXERR | AR5K_IMR_TXDESC |
AR5K_IMR_TXURN;
if (ah->ah_version != AR5K_AR5210) {
if (new_mask & AR5K_INT_FATAL) {
int_mask |= AR5K_IMR_HIUERR;
AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_MCABT |
AR5K_SIMR2_SSERR | AR5K_SIMR2_DPERR);
}
}
ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
/* Store new interrupt mask */
ah->ah_imr = new_mask;
/* ..re-enable interrupts */
ath5k_hw_reg_write(ah, AR5K_IER_ENABLE, AR5K_IER);
return old_mask;
}
/*************************\
EEPROM access functions
\*************************/
/*
* Read from eeprom
*/
static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
{
u32 status, timeout;
ATH5K_TRACE(ah->ah_sc);
/*
* Initialize EEPROM access
*/
if (ah->ah_version == AR5K_AR5210) {
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
(void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
} else {
ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
AR5K_EEPROM_CMD_READ);
}
for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
if (status & AR5K_EEPROM_STAT_RDDONE) {
if (status & AR5K_EEPROM_STAT_RDERR)
return -EIO;
*data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
0xffff);
return 0;
}
udelay(15);
}
return -ETIMEDOUT;
}
/*
* Write to eeprom - currently disabled, use at your own risk
*/
static int ath5k_hw_eeprom_write(struct ath5k_hw *ah, u32 offset, u16 data)
{
#if 0
u32 status, timeout;
ATH5K_TRACE(ah->ah_sc);
/*
* Initialize eeprom access
*/
if (ah->ah_version == AR5K_AR5210) {
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
} else {
AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
AR5K_EEPROM_CMD_RESET);
}
/*
* Write data to data register
*/
if (ah->ah_version == AR5K_AR5210) {
ath5k_hw_reg_write(ah, data, AR5K_EEPROM_BASE + (4 * offset));
} else {
ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
ath5k_hw_reg_write(ah, data, AR5K_EEPROM_DATA);
AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
AR5K_EEPROM_CMD_WRITE);
}
/*
* Check status
*/
for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
if (status & AR5K_EEPROM_STAT_WRDONE) {
if (status & AR5K_EEPROM_STAT_WRERR)
return EIO;
return 0;
}
udelay(15);
}
#endif
ATH5K_ERR(ah->ah_sc, "EEPROM Write is disabled!");
return -EIO;
}
/*
* Translate binary channel representation in EEPROM to frequency
*/
static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin, unsigned int mode)
{
u16 val;
if (bin == AR5K_EEPROM_CHANNEL_DIS)
return bin;
if (mode == AR5K_EEPROM_MODE_11A) {
if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
val = (5 * bin) + 4800;
else
val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
(bin * 10) + 5100;
} else {
if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
val = bin + 2300;
else
val = bin + 2400;
}
return val;
}
/*
* Read antenna infos from eeprom
*/
static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
unsigned int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 o = *offset;
u16 val;
int ret, i = 0;
AR5K_EEPROM_READ(o++, val);
ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
ee->ee_ant_tx_rx[mode] = (val >> 2) & 0x3f;
ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
ee->ee_ant_control[mode][i++] = val & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
ee->ee_ant_control[mode][i++] = val & 0x3f;
/* Get antenna modes */
ah->ah_antenna[mode][0] =
(ee->ee_ant_control[mode][0] << 4) | 0x1;
ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
ee->ee_ant_control[mode][1] |
(ee->ee_ant_control[mode][2] << 6) |
(ee->ee_ant_control[mode][3] << 12) |
(ee->ee_ant_control[mode][4] << 18) |
(ee->ee_ant_control[mode][5] << 24);
ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
ee->ee_ant_control[mode][6] |
(ee->ee_ant_control[mode][7] << 6) |
(ee->ee_ant_control[mode][8] << 12) |
(ee->ee_ant_control[mode][9] << 18) |
(ee->ee_ant_control[mode][10] << 24);
/* return new offset */
*offset = o;
return 0;
}
/*
* Read supported modes from eeprom
*/
static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
unsigned int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 o = *offset;
u16 val;
int ret;
AR5K_EEPROM_READ(o++, val);
ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
ee->ee_thr_62[mode] = val & 0xff;
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
AR5K_EEPROM_READ(o++, val);
ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
AR5K_EEPROM_READ(o++, val);
ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
if ((val & 0xff) & 0x80)
ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
else
ee->ee_noise_floor_thr[mode] = val & 0xff;
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
ee->ee_noise_floor_thr[mode] =
mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
AR5K_EEPROM_READ(o++, val);
ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
ee->ee_x_gain[mode] = (val >> 1) & 0xf;
ee->ee_xpd[mode] = val & 0x1;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
AR5K_EEPROM_READ(o++, val);
ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
if (mode == AR5K_EEPROM_MODE_11A)
ee->ee_xr_power[mode] = val & 0x3f;
else {
ee->ee_ob[mode][0] = val & 0x7;
ee->ee_db[mode][0] = (val >> 3) & 0x7;
}
}
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
} else {
ee->ee_i_gain[mode] = (val >> 13) & 0x7;
AR5K_EEPROM_READ(o++, val);
ee->ee_i_gain[mode] |= (val << 3) & 0x38;
if (mode == AR5K_EEPROM_MODE_11G)
ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
}
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
mode == AR5K_EEPROM_MODE_11A) {
ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
}
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6 &&
mode == AR5K_EEPROM_MODE_11G)
ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
/* return new offset */
*offset = o;
return 0;
}
/*
* Initialize eeprom & capabilities structs
*/
static int ath5k_eeprom_init(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
unsigned int mode, i;
int ret;
u32 offset;
u16 val;
/* Initial TX thermal adjustment values */
ee->ee_tx_clip = 4;
ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
ee->ee_gain_select = 1;
/*
* Read values from EEPROM and store them in the capability structure
*/
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
/* Return if we have an old EEPROM */
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
return 0;
#ifdef notyet
/*
* Validate the checksum of the EEPROM date. There are some
* devices with invalid EEPROMs.
*/
for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
cksum ^= val;
}
if (cksum != AR5K_EEPROM_INFO_CKSUM) {
ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
return -EIO;
}
#endif
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
ee_ant_gain);
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
}
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
}
/*
* Get conformance test limit values
*/
offset = AR5K_EEPROM_CTL(ah->ah_ee_version);
ee->ee_ctls = AR5K_EEPROM_N_CTLS(ah->ah_ee_version);
for (i = 0; i < ee->ee_ctls; i++) {
AR5K_EEPROM_READ(offset++, val);
ee->ee_ctl[i] = (val >> 8) & 0xff;
ee->ee_ctl[i + 1] = val & 0xff;
}
/*
* Get values for 802.11a (5GHz)
*/
mode = AR5K_EEPROM_MODE_11A;
ee->ee_turbo_max_power[mode] =
AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
offset = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
if (ret)
return ret;
AR5K_EEPROM_READ(offset++, val);
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
ee->ee_ob[mode][3] = (val >> 5) & 0x7;
ee->ee_db[mode][3] = (val >> 2) & 0x7;
ee->ee_ob[mode][2] = (val << 1) & 0x7;
AR5K_EEPROM_READ(offset++, val);
ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
ee->ee_db[mode][2] = (val >> 12) & 0x7;
ee->ee_ob[mode][1] = (val >> 9) & 0x7;
ee->ee_db[mode][1] = (val >> 6) & 0x7;
ee->ee_ob[mode][0] = (val >> 3) & 0x7;
ee->ee_db[mode][0] = val & 0x7;
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
if (ret)
return ret;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) {
AR5K_EEPROM_READ(offset++, val);
ee->ee_margin_tx_rx[mode] = val & 0x3f;
}
/*
* Get values for 802.11b (2.4GHz)
*/
mode = AR5K_EEPROM_MODE_11B;
offset = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
if (ret)
return ret;
AR5K_EEPROM_READ(offset++, val);
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
ee->ee_ob[mode][1] = (val >> 4) & 0x7;
ee->ee_db[mode][1] = val & 0x7;
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
if (ret)
return ret;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][0] =
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
ee->ee_cal_pier[mode][1] =
ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][2] =
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
}
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
/*
* Get values for 802.11g (2.4GHz)
*/
mode = AR5K_EEPROM_MODE_11G;
offset = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
if (ret)
return ret;
AR5K_EEPROM_READ(offset++, val);
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
ee->ee_ob[mode][1] = (val >> 4) & 0x7;
ee->ee_db[mode][1] = val & 0x7;
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
if (ret)
return ret;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][0] =
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
ee->ee_cal_pier[mode][1] =
ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
AR5K_EEPROM_READ(offset++, val);
ee->ee_turbo_max_power[mode] = val & 0x7f;
ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][2] =
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
AR5K_EEPROM_READ(offset++, val);
ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
AR5K_EEPROM_READ(offset++, val);
ee->ee_cck_ofdm_gain_delta = val & 0xff;
}
}
/*
* Read 5GHz EEPROM channels
*/
return 0;
}
/*
* Read the MAC address from eeprom
*/
static int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
{
u8 mac_d[ETH_ALEN];
u32 total, offset;
u16 data;
int octet, ret;
memset(mac, 0, ETH_ALEN);
memset(mac_d, 0, ETH_ALEN);
ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
if (ret)
return ret;
for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
ret = ath5k_hw_eeprom_read(ah, offset, &data);
if (ret)
return ret;
total += data;
mac_d[octet + 1] = data & 0xff;
mac_d[octet] = data >> 8;
octet += 2;
}
memcpy(mac, mac_d, ETH_ALEN);
if (!total || total == 3 * 0xffff)
return -EINVAL;
return 0;
}
/*
* Read/Write regulatory domain
*/
static bool ath5k_eeprom_regulation_domain(struct ath5k_hw *ah, bool write,
enum ath5k_regdom *regdomain)
{
u16 ee_regdomain;
/* Read current value */
if (write != true) {
ee_regdomain = ah->ah_capabilities.cap_eeprom.ee_regdomain;
*regdomain = ath5k_regdom_to_ieee(ee_regdomain);
return true;
}
ee_regdomain = ath5k_regdom_from_ieee(*regdomain);
/* Try to write a new value */
if (ah->ah_capabilities.cap_eeprom.ee_protect &
AR5K_EEPROM_PROTECT_WR_128_191)
return false;
if (ath5k_hw_eeprom_write(ah, AR5K_EEPROM_REG_DOMAIN, ee_regdomain)!=0)
return false;
ah->ah_capabilities.cap_eeprom.ee_regdomain = ee_regdomain;
return true;
}
/*
* Use the above to write a new regulatory domain
*/
int ath5k_hw_set_regdomain(struct ath5k_hw *ah, u16 regdomain)
{
enum ath5k_regdom ieee_regdomain;
ieee_regdomain = ath5k_regdom_to_ieee(regdomain);
if (ath5k_eeprom_regulation_domain(ah, true, &ieee_regdomain) == true)
return 0;
return -EIO;
}
/*
* Fill the capabilities struct
*/
static int ath5k_hw_get_capabilities(struct ath5k_hw *ah)
{
u16 ee_header;
ATH5K_TRACE(ah->ah_sc);
/* Capabilities stored in the EEPROM */
ee_header = ah->ah_capabilities.cap_eeprom.ee_header;
if (ah->ah_version == AR5K_AR5210) {
/*
* Set radio capabilities
* (The AR5110 only supports the middle 5GHz band)
*/
ah->ah_capabilities.cap_range.range_5ghz_min = 5120;
ah->ah_capabilities.cap_range.range_5ghz_max = 5430;
ah->ah_capabilities.cap_range.range_2ghz_min = 0;
ah->ah_capabilities.cap_range.range_2ghz_max = 0;
/* Set supported modes */
__set_bit(MODE_IEEE80211A, ah->ah_capabilities.cap_mode);
__set_bit(MODE_ATHEROS_TURBO, ah->ah_capabilities.cap_mode);
} else {
/*
* XXX The tranceiver supports frequencies from 4920 to 6100GHz
* XXX and from 2312 to 2732GHz. There are problems with the
* XXX current ieee80211 implementation because the IEEE
* XXX channel mapping does not support negative channel
* XXX numbers (2312MHz is channel -19). Of course, this
* XXX doesn't matter because these channels are out of range
* XXX but some regulation domains like MKK (Japan) will
* XXX support frequencies somewhere around 4.8GHz.
*/
/*
* Set radio capabilities
*/
if (AR5K_EEPROM_HDR_11A(ee_header)) {
ah->ah_capabilities.cap_range.range_5ghz_min = 5005; /* 4920 */
ah->ah_capabilities.cap_range.range_5ghz_max = 6100;
/* Set supported modes */
__set_bit(MODE_IEEE80211A,
ah->ah_capabilities.cap_mode);
__set_bit(MODE_ATHEROS_TURBO,
ah->ah_capabilities.cap_mode);
if (ah->ah_version == AR5K_AR5212)
__set_bit(MODE_ATHEROS_TURBOG,
ah->ah_capabilities.cap_mode);
}
/* Enable 802.11b if a 2GHz capable radio (2111/5112) is
* connected */
if (AR5K_EEPROM_HDR_11B(ee_header) ||
AR5K_EEPROM_HDR_11G(ee_header)) {
ah->ah_capabilities.cap_range.range_2ghz_min = 2412; /* 2312 */
ah->ah_capabilities.cap_range.range_2ghz_max = 2732;
if (AR5K_EEPROM_HDR_11B(ee_header))
__set_bit(MODE_IEEE80211B,
ah->ah_capabilities.cap_mode);
if (AR5K_EEPROM_HDR_11G(ee_header))
__set_bit(MODE_IEEE80211G,
ah->ah_capabilities.cap_mode);
}
}
/* GPIO */
ah->ah_gpio_npins = AR5K_NUM_GPIO;
/* Set number of supported TX queues */
if (ah->ah_version == AR5K_AR5210)
ah->ah_capabilities.cap_queues.q_tx_num =
AR5K_NUM_TX_QUEUES_NOQCU;
else
ah->ah_capabilities.cap_queues.q_tx_num = AR5K_NUM_TX_QUEUES;
return 0;
}
/*********************************\
Protocol Control Unit Functions
\*********************************/
/*
* Set Operation mode
*/
int ath5k_hw_set_opmode(struct ath5k_hw *ah)
{
u32 pcu_reg, beacon_reg, low_id, high_id;
pcu_reg = 0;
beacon_reg = 0;
ATH5K_TRACE(ah->ah_sc);
switch (ah->ah_op_mode) {
case IEEE80211_IF_TYPE_IBSS:
pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_DESC_ANTENNA |
(ah->ah_version == AR5K_AR5210 ?
AR5K_STA_ID1_NO_PSPOLL : 0);
beacon_reg |= AR5K_BCR_ADHOC;
break;
case IEEE80211_IF_TYPE_AP:
pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_RTS_DEF_ANTENNA |
(ah->ah_version == AR5K_AR5210 ?
AR5K_STA_ID1_NO_PSPOLL : 0);
beacon_reg |= AR5K_BCR_AP;
break;
case IEEE80211_IF_TYPE_STA:
pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
(ah->ah_version == AR5K_AR5210 ?
AR5K_STA_ID1_PWR_SV : 0);
case IEEE80211_IF_TYPE_MNTR:
pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
(ah->ah_version == AR5K_AR5210 ?
AR5K_STA_ID1_NO_PSPOLL : 0);
break;
default:
return -EINVAL;
}
/*
* Set PCU registers
*/
low_id = AR5K_LOW_ID(ah->ah_sta_id);
high_id = AR5K_HIGH_ID(ah->ah_sta_id);
ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
/*
* Set Beacon Control Register on 5210
*/
if (ah->ah_version == AR5K_AR5210)
ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
return 0;
}
/*
* BSSID Functions
*/
/*
* Get station id
*/
void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
{
ATH5K_TRACE(ah->ah_sc);
memcpy(mac, ah->ah_sta_id, ETH_ALEN);
}
/*
* Set station id
*/
int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
{
u32 low_id, high_id;
ATH5K_TRACE(ah->ah_sc);
/* Set new station ID */
memcpy(ah->ah_sta_id, mac, ETH_ALEN);
low_id = AR5K_LOW_ID(mac);
high_id = AR5K_HIGH_ID(mac);
ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
ath5k_hw_reg_write(ah, high_id, AR5K_STA_ID1);
return 0;
}
/*
* Set BSSID
*/
void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
{
u32 low_id, high_id;
u16 tim_offset = 0;
/*
* Set simple BSSID mask on 5212
*/
if (ah->ah_version == AR5K_AR5212) {
ath5k_hw_reg_write(ah, 0xfffffff, AR5K_BSS_IDM0);
ath5k_hw_reg_write(ah, 0xfffffff, AR5K_BSS_IDM1);
}
/*
* Set BSSID which triggers the "SME Join" operation
*/
low_id = AR5K_LOW_ID(bssid);
high_id = AR5K_HIGH_ID(bssid);
ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
if (assoc_id == 0) {
ath5k_hw_disable_pspoll(ah);
return;
}
AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
tim_offset ? tim_offset + 4 : 0);
ath5k_hw_enable_pspoll(ah, NULL, 0);
}
/**
* ath5k_hw_set_bssid_mask - set common bits we should listen to
*
* The bssid_mask is a utility used by AR5212 hardware to inform the hardware
* which bits of the interface's MAC address should be looked at when trying
* to decide which packets to ACK. In station mode every bit matters. In AP
* mode with a single BSS every bit matters as well. In AP mode with
* multiple BSSes not every bit matters.
*
* @ah: the &struct ath5k_hw
* @mask: the bssid_mask, a u8 array of size ETH_ALEN
*
* Note that this is a simple filter and *does* not filter out all
* relevant frames. Some non-relevant frames will get through, probability
* jocks are welcomed to compute.
*
* When handling multiple BSSes (or VAPs) you can get the BSSID mask by
* computing the set of:
*
* ~ ( MAC XOR BSSID )
*
* When you do this you are essentially computing the common bits. Later it
* is assumed the harware will "and" (&) the BSSID mask with the MAC address
* to obtain the relevant bits which should match on the destination frame.
*
* Simple example: on your card you have have two BSSes you have created with
* BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
* There is another BSSID-03 but you are not part of it. For simplicity's sake,
* assuming only 4 bits for a mac address and for BSSIDs you can then have:
*
* \
* MAC: 0001 |
* BSSID-01: 0100 | --> Belongs to us
* BSSID-02: 1001 |
* /
* -------------------
* BSSID-03: 0110 | --> External
* -------------------
*
* Our bssid_mask would then be:
*
* On loop iteration for BSSID-01:
* ~(0001 ^ 0100) -> ~(0101)
* -> 1010
* bssid_mask = 1010
*
* On loop iteration for BSSID-02:
* bssid_mask &= ~(0001 ^ 1001)
* bssid_mask = (1010) & ~(0001 ^ 1001)
* bssid_mask = (1010) & ~(1001)
* bssid_mask = (1010) & (0110)
* bssid_mask = 0010
*
* A bssid_mask of 0010 means "only pay attention to the second least
* significant bit". This is because its the only bit common
* amongst the MAC and all BSSIDs we support. To findout what the real
* common bit is we can simply "&" the bssid_mask now with any BSSID we have
* or our MAC address (we assume the hardware uses the MAC address).
*
* Now, suppose there's an incoming frame for BSSID-03:
*
* IFRAME-01: 0110
*
* An easy eye-inspeciton of this already should tell you that this frame
* will not pass our check. This is beacuse the bssid_mask tells the
* hardware to only look at the second least significant bit and the
* common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
* as 1, which does not match 0.
*
* So with IFRAME-01 we *assume* the hardware will do:
*
* allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
* --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
* --> allow = (0010) == 0000 ? 1 : 0;
* --> allow = 0
*
* Lets now test a frame that should work:
*
* IFRAME-02: 0001 (we should allow)
*
* allow = (0001 & 1010) == 1010
*
* allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
* --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
* --> allow = (0010) == (0010)
* --> allow = 1
*
* Other examples:
*
* IFRAME-03: 0100 --> allowed
* IFRAME-04: 1001 --> allowed
* IFRAME-05: 1101 --> allowed but its not for us!!!
*
*/
int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
{
u32 low_id, high_id;
ATH5K_TRACE(ah->ah_sc);
if (ah->ah_version == AR5K_AR5212) {
low_id = AR5K_LOW_ID(mask);
high_id = AR5K_HIGH_ID(mask);
ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
return 0;
}
return -EIO;
}
/*
* Receive start/stop functions
*/
/*
* Start receive on PCU
*/
void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
}
/*
* Stop receive on PCU
*/
void ath5k_hw_stop_pcu_recv(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
}
/*
* RX Filter functions
*/
/*
* Set multicast filter
*/
void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
{
ATH5K_TRACE(ah->ah_sc);
/* Set the multicat filter */
ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
}
/*
* Set multicast filter by index
*/
int ath5k_hw_set_mcast_filterindex(struct ath5k_hw *ah, u32 index)
{
ATH5K_TRACE(ah->ah_sc);
if (index >= 64)
return -EINVAL;
else if (index >= 32)
AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
(1 << (index - 32)));
else
AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
return 0;
}
/*
* Clear Multicast filter by index
*/
int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
{
ATH5K_TRACE(ah->ah_sc);
if (index >= 64)
return -EINVAL;
else if (index >= 32)
AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
(1 << (index - 32)));
else
AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
return 0;
}
/*
* Get current rx filter
*/
u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
{
u32 data, filter = 0;
ATH5K_TRACE(ah->ah_sc);
filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
/*Radar detection for 5212*/
if (ah->ah_version == AR5K_AR5212) {
data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
if (data & AR5K_PHY_ERR_FIL_RADAR)
filter |= AR5K_RX_FILTER_RADARERR;
if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
filter |= AR5K_RX_FILTER_PHYERR;
}
return filter;
}
/*
* Set rx filter
*/
void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
{
u32 data = 0;
ATH5K_TRACE(ah->ah_sc);
/* Set PHY error filter register on 5212*/
if (ah->ah_version == AR5K_AR5212) {
if (filter & AR5K_RX_FILTER_RADARERR)
data |= AR5K_PHY_ERR_FIL_RADAR;
if (filter & AR5K_RX_FILTER_PHYERR)
data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
}
/*
* The AR5210 uses promiscous mode to detect radar activity
*/
if (ah->ah_version == AR5K_AR5210 &&
(filter & AR5K_RX_FILTER_RADARERR)) {
filter &= ~AR5K_RX_FILTER_RADARERR;
filter |= AR5K_RX_FILTER_PROM;
}
/*Zero length DMA*/
if (data)
AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
/*Write RX Filter register*/
ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
/*Write PHY error filter register on 5212*/
if (ah->ah_version == AR5K_AR5212)
ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
}
/*
* Beacon related functions
*/
/*
* Get a 32bit TSF
*/
u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
}
/*
* Get the full 64bit TSF
*/
u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
{
u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
ATH5K_TRACE(ah->ah_sc);
return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
}
/*
* Force a TSF reset
*/
void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
AR5K_REG_ENABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_RESET_TSF);
}
/*
* Initialize beacon timers
*/
void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
{
u32 timer1, timer2, timer3;
ATH5K_TRACE(ah->ah_sc);
/*
* Set the additional timers by mode
*/
switch (ah->ah_op_mode) {
case IEEE80211_IF_TYPE_STA:
if (ah->ah_version == AR5K_AR5210) {
timer1 = 0xffffffff;
timer2 = 0xffffffff;
} else {
timer1 = 0x0000ffff;
timer2 = 0x0007ffff;
}
break;
default:
timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) <<
0x00000003;
timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) <<
0x00000003;
}
timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
/*
* Set the beacon register and enable all timers.
* (next beacon, DMA beacon, software beacon, ATIM window time)
*/
ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
AR5K_BEACON_RESET_TSF | AR5K_BEACON_ENABLE),
AR5K_BEACON);
}
#if 0
/*
* Set beacon timers
*/
int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
const struct ath5k_beacon_state *state)
{
u32 cfp_period, next_cfp, dtim, interval, next_beacon;
/*
* TODO: should be changed through *state
* review struct ath5k_beacon_state struct
*
* XXX: These are used for cfp period bellow, are they
* ok ? Is it O.K. for tsf here to be 0 or should we use
* get_tsf ?
*/
u32 dtim_count = 0; /* XXX */
u32 cfp_count = 0; /* XXX */
u32 tsf = 0; /* XXX */
ATH5K_TRACE(ah->ah_sc);
/* Return on an invalid beacon state */
if (state->bs_interval < 1)
return -EINVAL;
interval = state->bs_interval;
dtim = state->bs_dtim_period;
/*
* PCF support?
*/
if (state->bs_cfp_period > 0) {
/*
* Enable PCF mode and set the CFP
* (Contention Free Period) and timer registers
*/
cfp_period = state->bs_cfp_period * state->bs_dtim_period *
state->bs_interval;
next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
state->bs_interval;
AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
AR5K_STA_ID1_DEFAULT_ANTENNA |
AR5K_STA_ID1_PCF);
ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
AR5K_CFP_DUR);
ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
next_cfp)) << 3, AR5K_TIMER2);
} else {
/* Disable PCF mode */
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
AR5K_STA_ID1_DEFAULT_ANTENNA |
AR5K_STA_ID1_PCF);
}
/*
* Enable the beacon timer register
*/
ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
/*
* Start the beacon timers
*/
ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &~
(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
AR5K_BEACON_PERIOD), AR5K_BEACON);
/*
* Write new beacon miss threshold, if it appears to be valid
* XXX: Figure out right values for min <= bs_bmiss_threshold <= max
* and return if its not in range. We can test this by reading value and
* setting value to a largest value and seeing which values register.
*/
AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
state->bs_bmiss_threshold);
/*
* Set sleep control register
* XXX: Didn't find this in 5210 code but since this register
* exists also in ar5k's 5210 headers i leave it as common code.
*/
AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
(state->bs_sleep_duration - 3) << 3);
/*
* Set enhanced sleep registers on 5212
*/
if (ah->ah_version == AR5K_AR5212) {
if (state->bs_sleep_duration > state->bs_interval &&
roundup(state->bs_sleep_duration, interval) ==
state->bs_sleep_duration)
interval = state->bs_sleep_duration;
if (state->bs_sleep_duration > dtim && (dtim == 0 ||
roundup(state->bs_sleep_duration, dtim) ==
state->bs_sleep_duration))
dtim = state->bs_sleep_duration;
if (interval > dtim)
return -EINVAL;
next_beacon = interval == dtim ? state->bs_next_dtim :
state->bs_next_beacon;
ath5k_hw_reg_write(ah,
AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
AR5K_SLEEP0_NEXT_DTIM) |
AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
AR5K_SLEEP0_ENH_SLEEP_EN |
AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
AR5K_SLEEP1_NEXT_TIM) |
AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
ath5k_hw_reg_write(ah,
AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
}
return 0;
}
/*
* Reset beacon timers
*/
void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
/*
* Disable beacon timer
*/
ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
/*
* Disable some beacon register values
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
}
/*
* Wait for beacon queue to finish
*/
int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
{
unsigned int i;
int ret;
ATH5K_TRACE(ah->ah_sc);
/* 5210 doesn't have QCU*/
if (ah->ah_version == AR5K_AR5210) {
/*
* Wait for beaconn queue to finish by checking
* Control Register and Beacon Status Register.
*/
for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
||
!(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
break;
udelay(10);
}
/* Timeout... */
if (i <= 0) {
/*
* Re-schedule the beacon queue
*/
ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
AR5K_BCR);
return -EIO;
}
ret = 0;
} else {
/*5211/5212*/
ret = ath5k_hw_register_timeout(ah,
AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
AR5K_QCU_STS_FRMPENDCNT, 0, false);
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
return -EIO;
}
return ret;
}
#endif
/*
* Update mib counters (statistics)
*/
void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
struct ath5k_mib_stats *statistics)
{
ATH5K_TRACE(ah->ah_sc);
/* Read-And-Clear */
statistics->ackrcv_bad += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
statistics->rts_bad += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
statistics->rts_good += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
statistics->fcs_bad += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
statistics->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
/* Reset profile count registers on 5212*/
if (ah->ah_version == AR5K_AR5212) {
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
}
}
/** ath5k_hw_set_ack_bitrate - set bitrate for ACKs
*
* @ah: the &struct ath5k_hw
* @high: determines if to use low bit rate or now
*/
void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
{
if (ah->ah_version != AR5K_AR5212)
return;
else {
u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
if (high)
AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
}
}
/*
* ACK/CTS Timeouts
*/
/*
* Set ACK timeout on PCU
*/
int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
{
ATH5K_TRACE(ah->ah_sc);
if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
ah->ah_turbo) <= timeout)
return -EINVAL;
AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
ath5k_hw_htoclock(timeout, ah->ah_turbo));
return 0;
}
/*
* Read the ACK timeout from PCU
*/
unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
}
/*
* Set CTS timeout on PCU
*/
int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
{
ATH5K_TRACE(ah->ah_sc);
if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
ah->ah_turbo) <= timeout)
return -EINVAL;
AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
ath5k_hw_htoclock(timeout, ah->ah_turbo));
return 0;
}
/*
* Read CTS timeout from PCU
*/
unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
}
/*
* Key table (WEP) functions
*/
int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
{
unsigned int i;
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
/* Set NULL encryption on non-5210*/
if (ah->ah_version != AR5K_AR5210)
ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
AR5K_KEYTABLE_TYPE(entry));
return 0;
}
int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
{
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
/* Check the validation flag at the end of the entry */
return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
AR5K_KEYTABLE_VALID;
}
int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
const struct ieee80211_key_conf *key, const u8 *mac)
{
unsigned int i;
__le32 key_v[5] = {};
u32 keytype;
ATH5K_TRACE(ah->ah_sc);
/* key->keylen comes in from mac80211 in bytes */
if (key->keylen > AR5K_KEYTABLE_SIZE / 8)
return -EOPNOTSUPP;
switch (key->keylen) {
/* WEP 40-bit = 40-bit entered key + 24 bit IV = 64-bit */
case 40 / 8:
memcpy(&key_v[0], key->key, 5);
keytype = AR5K_KEYTABLE_TYPE_40;
break;
/* WEP 104-bit = 104-bit entered key + 24-bit IV = 128-bit */
case 104 / 8:
memcpy(&key_v[0], &key->key[0], 6);
memcpy(&key_v[2], &key->key[6], 6);
memcpy(&key_v[4], &key->key[12], 1);
keytype = AR5K_KEYTABLE_TYPE_104;
break;
/* WEP 128-bit = 128-bit entered key + 24 bit IV = 152-bit */
case 128 / 8:
memcpy(&key_v[0], &key->key[0], 6);
memcpy(&key_v[2], &key->key[6], 6);
memcpy(&key_v[4], &key->key[12], 4);
keytype = AR5K_KEYTABLE_TYPE_128;
break;
default:
return -EINVAL; /* shouldn't happen */
}
for (i = 0; i < ARRAY_SIZE(key_v); i++)
ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
AR5K_KEYTABLE_OFF(entry, i));
ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
return ath5k_hw_set_key_lladdr(ah, entry, mac);
}
int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
{
u32 low_id, high_id;
ATH5K_TRACE(ah->ah_sc);
/* Invalid entry (key table overflow) */
AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
/* MAC may be NULL if it's a broadcast key. In this case no need to
* to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
if (unlikely(mac == NULL)) {
low_id = 0xffffffff;
high_id = 0xffff | AR5K_KEYTABLE_VALID;
} else {
low_id = AR5K_LOW_ID(mac);
high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
}
ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
return 0;
}
/********************************************\
Queue Control Unit, DFS Control Unit Functions
\********************************************/
/*
* Initialize a transmit queue
*/
int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type,
struct ath5k_txq_info *queue_info)
{
unsigned int queue;
int ret;
ATH5K_TRACE(ah->ah_sc);
/*
* Get queue by type
*/
/*5210 only has 2 queues*/
if (ah->ah_version == AR5K_AR5210) {
switch (queue_type) {
case AR5K_TX_QUEUE_DATA:
queue = AR5K_TX_QUEUE_ID_NOQCU_DATA;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
queue = AR5K_TX_QUEUE_ID_NOQCU_BEACON;
break;
default:
return -EINVAL;
}
} else {
switch (queue_type) {
case AR5K_TX_QUEUE_DATA:
for (queue = AR5K_TX_QUEUE_ID_DATA_MIN;
ah->ah_txq[queue].tqi_type !=
AR5K_TX_QUEUE_INACTIVE; queue++) {
if (queue > AR5K_TX_QUEUE_ID_DATA_MAX)
return -EINVAL;
}
break;
case AR5K_TX_QUEUE_UAPSD:
queue = AR5K_TX_QUEUE_ID_UAPSD;
break;
case AR5K_TX_QUEUE_BEACON:
queue = AR5K_TX_QUEUE_ID_BEACON;
break;
case AR5K_TX_QUEUE_CAB:
queue = AR5K_TX_QUEUE_ID_CAB;
break;
case AR5K_TX_QUEUE_XR_DATA:
if (ah->ah_version != AR5K_AR5212)
ATH5K_ERR(ah->ah_sc,
"XR data queues only supported in"
" 5212!\n");
queue = AR5K_TX_QUEUE_ID_XR_DATA;
break;
default:
return -EINVAL;
}
}
/*
* Setup internal queue structure
*/
memset(&ah->ah_txq[queue], 0, sizeof(struct ath5k_txq_info));
ah->ah_txq[queue].tqi_type = queue_type;
if (queue_info != NULL) {
queue_info->tqi_type = queue_type;
ret = ath5k_hw_setup_tx_queueprops(ah, queue, queue_info);
if (ret)
return ret;
}
/*
* We use ah_txq_status to hold a temp value for
* the Secondary interrupt mask registers on 5211+
* check out ath5k_hw_reset_tx_queue
*/
AR5K_Q_ENABLE_BITS(ah->ah_txq_status, queue);
return queue;
}
/*
* Setup a transmit queue
*/
int ath5k_hw_setup_tx_queueprops(struct ath5k_hw *ah, int queue,
const struct ath5k_txq_info *queue_info)
{
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return -EIO;
memcpy(&ah->ah_txq[queue], queue_info, sizeof(struct ath5k_txq_info));
/*XXX: Is this supported on 5210 ?*/
if ((queue_info->tqi_type == AR5K_TX_QUEUE_DATA &&
((queue_info->tqi_subtype == AR5K_WME_AC_VI) ||
(queue_info->tqi_subtype == AR5K_WME_AC_VO))) ||
queue_info->tqi_type == AR5K_TX_QUEUE_UAPSD)
ah->ah_txq[queue].tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
return 0;
}
/*
* Get properties for a specific transmit queue
*/
int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
struct ath5k_txq_info *queue_info)
{
ATH5K_TRACE(ah->ah_sc);
memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info));
return 0;
}
/*
* Set a transmit queue inactive
*/
void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
{
ATH5K_TRACE(ah->ah_sc);
if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
return;
/* This queue will be skipped in further operations */
ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
/*For SIMR setup*/
AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
}
/*
* Set DFS params for a transmit queue
*/
int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue)
{
u32 cw_min, cw_max, retry_lg, retry_sh;
struct ath5k_txq_info *tq = &ah->ah_txq[queue];
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
tq = &ah->ah_txq[queue];
if (tq->tqi_type == AR5K_TX_QUEUE_INACTIVE)
return 0;
if (ah->ah_version == AR5K_AR5210) {
/* Only handle data queues, others will be ignored */
if (tq->tqi_type != AR5K_TX_QUEUE_DATA)
return 0;
/* Set Slot time */
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
AR5K_INIT_SLOT_TIME_TURBO : AR5K_INIT_SLOT_TIME,
AR5K_SLOT_TIME);
/* Set ACK_CTS timeout */
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
AR5K_INIT_ACK_CTS_TIMEOUT_TURBO :
AR5K_INIT_ACK_CTS_TIMEOUT, AR5K_SLOT_TIME);
/* Set Transmit Latency */
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
AR5K_INIT_TRANSMIT_LATENCY_TURBO :
AR5K_INIT_TRANSMIT_LATENCY, AR5K_USEC_5210);
/* Set IFS0 */
if (ah->ah_turbo == true)
ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS_TURBO +
(ah->ah_aifs + tq->tqi_aifs) *
AR5K_INIT_SLOT_TIME_TURBO) <<
AR5K_IFS0_DIFS_S) | AR5K_INIT_SIFS_TURBO,
AR5K_IFS0);
else
ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS +
(ah->ah_aifs + tq->tqi_aifs) *
AR5K_INIT_SLOT_TIME) << AR5K_IFS0_DIFS_S) |
AR5K_INIT_SIFS, AR5K_IFS0);
/* Set IFS1 */
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
AR5K_INIT_PROTO_TIME_CNTRL_TURBO :
AR5K_INIT_PROTO_TIME_CNTRL, AR5K_IFS1);
/* Set PHY register 0x9844 (??) */
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
(ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x38 :
(ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x1C,
AR5K_PHY(17));
/* Set Frame Control Register */
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
(AR5K_PHY_FRAME_CTL_INI | AR5K_PHY_TURBO_MODE |
AR5K_PHY_TURBO_SHORT | 0x2020) :
(AR5K_PHY_FRAME_CTL_INI | 0x1020),
AR5K_PHY_FRAME_CTL_5210);
}
/*
* Calculate cwmin/max by channel mode
*/
cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN;
cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX;
ah->ah_aifs = AR5K_TUNE_AIFS;
/*XR is only supported on 5212*/
if (IS_CHAN_XR(ah->ah_current_channel) &&
ah->ah_version == AR5K_AR5212) {
cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_XR;
cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_XR;
ah->ah_aifs = AR5K_TUNE_AIFS_XR;
/*B mode is not supported on 5210*/
} else if (IS_CHAN_B(ah->ah_current_channel) &&
ah->ah_version != AR5K_AR5210) {
cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_11B;
cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_11B;
ah->ah_aifs = AR5K_TUNE_AIFS_11B;
}
cw_min = 1;
while (cw_min < ah->ah_cw_min)
cw_min = (cw_min << 1) | 1;
cw_min = tq->tqi_cw_min < 0 ? (cw_min >> (-tq->tqi_cw_min)) :
((cw_min << tq->tqi_cw_min) + (1 << tq->tqi_cw_min) - 1);
cw_max = tq->tqi_cw_max < 0 ? (cw_max >> (-tq->tqi_cw_max)) :
((cw_max << tq->tqi_cw_max) + (1 << tq->tqi_cw_max) - 1);
/*
* Calculate and set retry limits
*/
if (ah->ah_software_retry == true) {
/* XXX Need to test this */
retry_lg = ah->ah_limit_tx_retries;
retry_sh = retry_lg = retry_lg > AR5K_DCU_RETRY_LMT_SH_RETRY ?
AR5K_DCU_RETRY_LMT_SH_RETRY : retry_lg;
} else {
retry_lg = AR5K_INIT_LG_RETRY;
retry_sh = AR5K_INIT_SH_RETRY;
}
/*No QCU/DCU [5210]*/
if (ah->ah_version == AR5K_AR5210) {
ath5k_hw_reg_write(ah,
(cw_min << AR5K_NODCU_RETRY_LMT_CW_MIN_S)
| AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
AR5K_NODCU_RETRY_LMT_SLG_RETRY)
| AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
AR5K_NODCU_RETRY_LMT_SSH_RETRY)
| AR5K_REG_SM(retry_lg, AR5K_NODCU_RETRY_LMT_LG_RETRY)
| AR5K_REG_SM(retry_sh, AR5K_NODCU_RETRY_LMT_SH_RETRY),
AR5K_NODCU_RETRY_LMT);
} else {
/*QCU/DCU [5211+]*/
ath5k_hw_reg_write(ah,
AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
AR5K_DCU_RETRY_LMT_SLG_RETRY) |
AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
AR5K_DCU_RETRY_LMT_SSH_RETRY) |
AR5K_REG_SM(retry_lg, AR5K_DCU_RETRY_LMT_LG_RETRY) |
AR5K_REG_SM(retry_sh, AR5K_DCU_RETRY_LMT_SH_RETRY),
AR5K_QUEUE_DFS_RETRY_LIMIT(queue));
/*===Rest is also for QCU/DCU only [5211+]===*/
/*
* Set initial content window (cw_min/cw_max)
* and arbitrated interframe space (aifs)...
*/
ath5k_hw_reg_write(ah,
AR5K_REG_SM(cw_min, AR5K_DCU_LCL_IFS_CW_MIN) |
AR5K_REG_SM(cw_max, AR5K_DCU_LCL_IFS_CW_MAX) |
AR5K_REG_SM(ah->ah_aifs + tq->tqi_aifs,
AR5K_DCU_LCL_IFS_AIFS),
AR5K_QUEUE_DFS_LOCAL_IFS(queue));
/*
* Set misc registers
*/
ath5k_hw_reg_write(ah, AR5K_QCU_MISC_DCU_EARLY,
AR5K_QUEUE_MISC(queue));
if (tq->tqi_cbr_period) {
ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cbr_period,
AR5K_QCU_CBRCFG_INTVAL) |
AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
AR5K_QCU_CBRCFG_ORN_THRES),
AR5K_QUEUE_CBRCFG(queue));
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
AR5K_QCU_MISC_FRSHED_CBR);
if (tq->tqi_cbr_overflow_limit)
AR5K_REG_ENABLE_BITS(ah,
AR5K_QUEUE_MISC(queue),
AR5K_QCU_MISC_CBR_THRES_ENABLE);
}
if (tq->tqi_ready_time)
ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_ready_time,
AR5K_QCU_RDYTIMECFG_INTVAL) |
AR5K_QCU_RDYTIMECFG_ENABLE,
AR5K_QUEUE_RDYTIMECFG(queue));
if (tq->tqi_burst_time) {
ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_burst_time,
AR5K_DCU_CHAN_TIME_DUR) |
AR5K_DCU_CHAN_TIME_ENABLE,
AR5K_QUEUE_DFS_CHANNEL_TIME(queue));
if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)
AR5K_REG_ENABLE_BITS(ah,
AR5K_QUEUE_MISC(queue),
AR5K_QCU_MISC_TXE);
}
if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE)
ath5k_hw_reg_write(ah, AR5K_DCU_MISC_POST_FR_BKOFF_DIS,
AR5K_QUEUE_DFS_MISC(queue));
if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
ath5k_hw_reg_write(ah, AR5K_DCU_MISC_BACKOFF_FRAG,
AR5K_QUEUE_DFS_MISC(queue));
/*
* Set registers by queue type
*/
switch (tq->tqi_type) {
case AR5K_TX_QUEUE_BEACON:
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
AR5K_QCU_MISC_FRSHED_DBA_GT |
AR5K_QCU_MISC_CBREXP_BCN |
AR5K_QCU_MISC_BCN_ENABLE);
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
(AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
AR5K_DCU_MISC_ARBLOCK_CTL_S) |
AR5K_DCU_MISC_POST_FR_BKOFF_DIS |
AR5K_DCU_MISC_BCN_ENABLE);
ath5k_hw_reg_write(ah, ((AR5K_TUNE_BEACON_INTERVAL -
(AR5K_TUNE_SW_BEACON_RESP -
AR5K_TUNE_DMA_BEACON_RESP) -
AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
AR5K_QCU_RDYTIMECFG_ENABLE,
AR5K_QUEUE_RDYTIMECFG(queue));
break;
case AR5K_TX_QUEUE_CAB:
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
AR5K_QCU_MISC_FRSHED_DBA_GT |
AR5K_QCU_MISC_CBREXP |
AR5K_QCU_MISC_CBREXP_BCN);
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
(AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
AR5K_DCU_MISC_ARBLOCK_CTL_S));
break;
case AR5K_TX_QUEUE_UAPSD:
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
AR5K_QCU_MISC_CBREXP);
break;
case AR5K_TX_QUEUE_DATA:
default:
break;
}
/*
* Enable interrupts for this tx queue
* in the secondary interrupt mask registers
*/
if (tq->tqi_flags & AR5K_TXQ_FLAG_TXOKINT_ENABLE)
AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txok, queue);
if (tq->tqi_flags & AR5K_TXQ_FLAG_TXERRINT_ENABLE)
AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txerr, queue);
if (tq->tqi_flags & AR5K_TXQ_FLAG_TXURNINT_ENABLE)
AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txurn, queue);
if (tq->tqi_flags & AR5K_TXQ_FLAG_TXDESCINT_ENABLE)
AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txdesc, queue);
if (tq->tqi_flags & AR5K_TXQ_FLAG_TXEOLINT_ENABLE)
AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txeol, queue);
/* Update secondary interrupt mask registers */
ah->ah_txq_imr_txok &= ah->ah_txq_status;
ah->ah_txq_imr_txerr &= ah->ah_txq_status;
ah->ah_txq_imr_txurn &= ah->ah_txq_status;
ah->ah_txq_imr_txdesc &= ah->ah_txq_status;
ah->ah_txq_imr_txeol &= ah->ah_txq_status;
ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txok,
AR5K_SIMR0_QCU_TXOK) |
AR5K_REG_SM(ah->ah_txq_imr_txdesc,
AR5K_SIMR0_QCU_TXDESC), AR5K_SIMR0);
ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txerr,
AR5K_SIMR1_QCU_TXERR) |
AR5K_REG_SM(ah->ah_txq_imr_txeol,
AR5K_SIMR1_QCU_TXEOL), AR5K_SIMR1);
ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txurn,
AR5K_SIMR2_QCU_TXURN), AR5K_SIMR2);
}
return 0;
}
/*
* Get number of pending frames
* for a specific queue [5211+]
*/
u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue) {
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/* Return if queue is declared inactive */
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return false;
/* XXX: How about AR5K_CFG_TXCNT ? */
if (ah->ah_version == AR5K_AR5210)
return false;
return AR5K_QUEUE_STATUS(queue) & AR5K_QCU_STS_FRMPENDCNT;
}
/*
* Set slot time
*/
int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time)
{
ATH5K_TRACE(ah->ah_sc);
if (slot_time < AR5K_SLOT_TIME_9 || slot_time > AR5K_SLOT_TIME_MAX)
return -EINVAL;
if (ah->ah_version == AR5K_AR5210)
ath5k_hw_reg_write(ah, ath5k_hw_htoclock(slot_time,
ah->ah_turbo), AR5K_SLOT_TIME);
else
ath5k_hw_reg_write(ah, slot_time, AR5K_DCU_GBL_IFS_SLOT);
return 0;
}
/*
* Get slot time
*/
unsigned int ath5k_hw_get_slot_time(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
if (ah->ah_version == AR5K_AR5210)
return ath5k_hw_clocktoh(ath5k_hw_reg_read(ah,
AR5K_SLOT_TIME) & 0xffff, ah->ah_turbo);
else
return ath5k_hw_reg_read(ah, AR5K_DCU_GBL_IFS_SLOT) & 0xffff;
}
/******************************\
Hardware Descriptor Functions
\******************************/
/*
* TX Descriptor
*/
/*
* Initialize the 2-word tx descriptor on 5210/5211
*/
static int
ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
unsigned int pkt_len, unsigned int hdr_len, enum ath5k_pkt_type type,
unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0,
unsigned int key_index, unsigned int antenna_mode, unsigned int flags,
unsigned int rtscts_rate, unsigned int rtscts_duration)
{
u32 frame_type;
struct ath5k_hw_2w_tx_desc *tx_desc;
unsigned int buff_len;
tx_desc = (struct ath5k_hw_2w_tx_desc *)&desc->ds_ctl0;
/*
* Validate input
* - Zero retries don't make sense.
* - A zero rate will put the HW into a mode where it continously sends
* noise on the channel, so it is important to avoid this.
*/
if (unlikely(tx_tries0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero retries\n");
WARN_ON(1);
return -EINVAL;
}
if (unlikely(tx_rate0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero rate\n");
WARN_ON(1);
return -EINVAL;
}
/* Clear status descriptor */
memset(desc->ds_hw, 0, sizeof(struct ath5k_hw_tx_status));
/* Initialize control descriptor */
tx_desc->tx_control_0 = 0;
tx_desc->tx_control_1 = 0;
/* Setup control descriptor */
/* Verify and set frame length */
if (pkt_len & ~AR5K_2W_TX_DESC_CTL0_FRAME_LEN)
return -EINVAL;
tx_desc->tx_control_0 = pkt_len & AR5K_2W_TX_DESC_CTL0_FRAME_LEN;
/* Verify and set buffer length */
buff_len = pkt_len - FCS_LEN;
/* NB: beacon's BufLen must be a multiple of 4 bytes */
if(type == AR5K_PKT_TYPE_BEACON)
buff_len = roundup(buff_len, 4);
if (buff_len & ~AR5K_2W_TX_DESC_CTL1_BUF_LEN)
return -EINVAL;
tx_desc->tx_control_1 = buff_len & AR5K_2W_TX_DESC_CTL1_BUF_LEN;
/*
* Verify and set header length
* XXX: I only found that on 5210 code, does it work on 5211 ?
*/
if (ah->ah_version == AR5K_AR5210) {
if (hdr_len & ~AR5K_2W_TX_DESC_CTL0_HEADER_LEN)
return -EINVAL;
tx_desc->tx_control_0 |=
AR5K_REG_SM(hdr_len, AR5K_2W_TX_DESC_CTL0_HEADER_LEN);
}
/*Diferences between 5210-5211*/
if (ah->ah_version == AR5K_AR5210) {
switch (type) {
case AR5K_PKT_TYPE_BEACON:
case AR5K_PKT_TYPE_PROBE_RESP:
frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_NO_DELAY;
case AR5K_PKT_TYPE_PIFS:
frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_PIFS;
default:
frame_type = type /*<< 2 ?*/;
}
tx_desc->tx_control_0 |=
AR5K_REG_SM(frame_type, AR5K_2W_TX_DESC_CTL0_FRAME_TYPE) |
AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
} else {
tx_desc->tx_control_0 |=
AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE) |
AR5K_REG_SM(antenna_mode, AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT);
tx_desc->tx_control_1 |=
AR5K_REG_SM(type, AR5K_2W_TX_DESC_CTL1_FRAME_TYPE);
}
#define _TX_FLAGS(_c, _flag) \
if (flags & AR5K_TXDESC_##_flag) \
tx_desc->tx_control_##_c |= \
AR5K_2W_TX_DESC_CTL##_c##_##_flag
_TX_FLAGS(0, CLRDMASK);
_TX_FLAGS(0, VEOL);
_TX_FLAGS(0, INTREQ);
_TX_FLAGS(0, RTSENA);
_TX_FLAGS(1, NOACK);
#undef _TX_FLAGS
/*
* WEP crap
*/
if (key_index != AR5K_TXKEYIX_INVALID) {
tx_desc->tx_control_0 |=
AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
tx_desc->tx_control_1 |=
AR5K_REG_SM(key_index,
AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
}
/*
* RTS/CTS Duration [5210 ?]
*/
if ((ah->ah_version == AR5K_AR5210) &&
(flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)))
tx_desc->tx_control_1 |= rtscts_duration &
AR5K_2W_TX_DESC_CTL1_RTS_DURATION;
return 0;
}
/*
* Initialize the 4-word tx descriptor on 5212
*/
static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah,
struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len,
enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0,
unsigned int tx_tries0, unsigned int key_index,
unsigned int antenna_mode, unsigned int flags, unsigned int rtscts_rate,
unsigned int rtscts_duration)
{
struct ath5k_hw_4w_tx_desc *tx_desc;
struct ath5k_hw_tx_status *tx_status;
unsigned int buff_len;
ATH5K_TRACE(ah->ah_sc);
tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[2];
/*
* Validate input
* - Zero retries don't make sense.
* - A zero rate will put the HW into a mode where it continously sends
* noise on the channel, so it is important to avoid this.
*/
if (unlikely(tx_tries0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero retries\n");
WARN_ON(1);
return -EINVAL;
}
if (unlikely(tx_rate0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero rate\n");
WARN_ON(1);
return -EINVAL;
}
/* Clear status descriptor */
memset(tx_status, 0, sizeof(struct ath5k_hw_tx_status));
/* Initialize control descriptor */
tx_desc->tx_control_0 = 0;
tx_desc->tx_control_1 = 0;
tx_desc->tx_control_2 = 0;
tx_desc->tx_control_3 = 0;
/* Setup control descriptor */
/* Verify and set frame length */
if (pkt_len & ~AR5K_4W_TX_DESC_CTL0_FRAME_LEN)
return -EINVAL;
tx_desc->tx_control_0 = pkt_len & AR5K_4W_TX_DESC_CTL0_FRAME_LEN;
/* Verify and set buffer length */
buff_len = pkt_len - FCS_LEN;
/* NB: beacon's BufLen must be a multiple of 4 bytes */
if(type == AR5K_PKT_TYPE_BEACON)
buff_len = roundup(buff_len, 4);
if (buff_len & ~AR5K_4W_TX_DESC_CTL1_BUF_LEN)
return -EINVAL;
tx_desc->tx_control_1 = buff_len & AR5K_4W_TX_DESC_CTL1_BUF_LEN;
tx_desc->tx_control_0 |=
AR5K_REG_SM(tx_power, AR5K_4W_TX_DESC_CTL0_XMIT_POWER) |
AR5K_REG_SM(antenna_mode, AR5K_4W_TX_DESC_CTL0_ANT_MODE_XMIT);
tx_desc->tx_control_1 |= AR5K_REG_SM(type,
AR5K_4W_TX_DESC_CTL1_FRAME_TYPE);
tx_desc->tx_control_2 = AR5K_REG_SM(tx_tries0 + AR5K_TUNE_HWTXTRIES,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES0);
tx_desc->tx_control_3 = tx_rate0 & AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
#define _TX_FLAGS(_c, _flag) \
if (flags & AR5K_TXDESC_##_flag) \
tx_desc->tx_control_##_c |= \
AR5K_4W_TX_DESC_CTL##_c##_##_flag
_TX_FLAGS(0, CLRDMASK);
_TX_FLAGS(0, VEOL);
_TX_FLAGS(0, INTREQ);
_TX_FLAGS(0, RTSENA);
_TX_FLAGS(0, CTSENA);
_TX_FLAGS(1, NOACK);
#undef _TX_FLAGS
/*
* WEP crap
*/
if (key_index != AR5K_TXKEYIX_INVALID) {
tx_desc->tx_control_0 |= AR5K_4W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
tx_desc->tx_control_1 |= AR5K_REG_SM(key_index,
AR5K_4W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
}
/*
* RTS/CTS
*/
if (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)) {
if ((flags & AR5K_TXDESC_RTSENA) &&
(flags & AR5K_TXDESC_CTSENA))
return -EINVAL;
tx_desc->tx_control_2 |= rtscts_duration &
AR5K_4W_TX_DESC_CTL2_RTS_DURATION;
tx_desc->tx_control_3 |= AR5K_REG_SM(rtscts_rate,
AR5K_4W_TX_DESC_CTL3_RTS_CTS_RATE);
}
return 0;
}
/*
* Initialize a 4-word multirate tx descriptor on 5212
*/
static bool
ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2, u_int tx_tries2,
unsigned int tx_rate3, u_int tx_tries3)
{
struct ath5k_hw_4w_tx_desc *tx_desc;
/*
* Rates can be 0 as long as the retry count is 0 too.
* A zero rate and nonzero retry count will put the HW into a mode where
* it continously sends noise on the channel, so it is important to
* avoid this.
*/
if (unlikely((tx_rate1 == 0 && tx_tries1 != 0) ||
(tx_rate2 == 0 && tx_tries2 != 0) ||
(tx_rate3 == 0 && tx_tries3 != 0))) {
ATH5K_ERR(ah->ah_sc, "zero rate\n");
WARN_ON(1);
return -EINVAL;
}
if (ah->ah_version == AR5K_AR5212) {
tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
#define _XTX_TRIES(_n) \
if (tx_tries##_n) { \
tx_desc->tx_control_2 |= \
AR5K_REG_SM(tx_tries##_n, \
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES##_n); \
tx_desc->tx_control_3 |= \
AR5K_REG_SM(tx_rate##_n, \
AR5K_4W_TX_DESC_CTL3_XMIT_RATE##_n); \
}
_XTX_TRIES(1);
_XTX_TRIES(2);
_XTX_TRIES(3);
#undef _XTX_TRIES
return true;
}
return false;
}
/*
* Proccess the tx status descriptor on 5210/5211
*/
static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc)
{
struct ath5k_hw_tx_status *tx_status;
struct ath5k_hw_2w_tx_desc *tx_desc;
tx_desc = (struct ath5k_hw_2w_tx_desc *)&desc->ds_ctl0;
tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[0];
/* No frame has been send or error */
if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
return -EINPROGRESS;
/*
* Get descriptor status
*/
desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
desc->ds_us.tx.ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
desc->ds_us.tx.ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
/*TODO: desc->ds_us.tx.ts_virtcol + test*/
desc->ds_us.tx.ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_SEQ_NUM);
desc->ds_us.tx.ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
desc->ds_us.tx.ts_antenna = 1;
desc->ds_us.tx.ts_status = 0;
desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_0,
AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
if (tx_status->tx_status_0 &
AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
desc->ds_us.tx.ts_status |= AR5K_TXERR_XRETRY;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
desc->ds_us.tx.ts_status |= AR5K_TXERR_FIFO;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
desc->ds_us.tx.ts_status |= AR5K_TXERR_FILT;
}
return 0;
}
/*
* Proccess a tx descriptor on 5212
*/
static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc)
{
struct ath5k_hw_tx_status *tx_status;
struct ath5k_hw_4w_tx_desc *tx_desc;
ATH5K_TRACE(ah->ah_sc);
tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[2];
/* No frame has been send or error */
if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
return -EINPROGRESS;
/*
* Get descriptor status
*/
desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
desc->ds_us.tx.ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
desc->ds_us.tx.ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
desc->ds_us.tx.ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_SEQ_NUM);
desc->ds_us.tx.ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
desc->ds_us.tx.ts_antenna = (tx_status->tx_status_1 &
AR5K_DESC_TX_STATUS1_XMIT_ANTENNA) ? 2 : 1;
desc->ds_us.tx.ts_status = 0;
switch (AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX)) {
case 0:
desc->ds_us.tx.ts_rate = tx_desc->tx_control_3 &
AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
break;
case 1:
desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
AR5K_4W_TX_DESC_CTL3_XMIT_RATE1);
desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES1);
break;
case 2:
desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
AR5K_4W_TX_DESC_CTL3_XMIT_RATE2);
desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES2);
break;
case 3:
desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
AR5K_4W_TX_DESC_CTL3_XMIT_RATE3);
desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES3);
break;
}
if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
if (tx_status->tx_status_0 &
AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
desc->ds_us.tx.ts_status |= AR5K_TXERR_XRETRY;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
desc->ds_us.tx.ts_status |= AR5K_TXERR_FIFO;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
desc->ds_us.tx.ts_status |= AR5K_TXERR_FILT;
}
return 0;
}
/*
* RX Descriptor
*/
/*
* Initialize an rx descriptor
*/
int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
u32 size, unsigned int flags)
{
struct ath5k_rx_desc *rx_desc;
ATH5K_TRACE(ah->ah_sc);
rx_desc = (struct ath5k_rx_desc *)&desc->ds_ctl0;
/*
*Clear ds_hw
* If we don't clean the status descriptor,
* while scanning we get too many results,
* most of them virtual, after some secs
* of scanning system hangs. M.F.
*/
memset(desc->ds_hw, 0, sizeof(desc->ds_hw));
/*Initialize rx descriptor*/
rx_desc->rx_control_0 = 0;
rx_desc->rx_control_1 = 0;
/* Setup descriptor */
rx_desc->rx_control_1 = size & AR5K_DESC_RX_CTL1_BUF_LEN;
if (unlikely(rx_desc->rx_control_1 != size))
return -EINVAL;
if (flags & AR5K_RXDESC_INTREQ)
rx_desc->rx_control_1 |= AR5K_DESC_RX_CTL1_INTREQ;
return 0;
}
/*
* Proccess the rx status descriptor on 5210/5211
*/
static int ath5k_hw_proc_old_rx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc)
{
struct ath5k_hw_old_rx_status *rx_status;
rx_status = (struct ath5k_hw_old_rx_status *)&desc->ds_hw[0];
/* No frame received / not ready */
if (unlikely((rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_DONE)
== 0))
return -EINPROGRESS;
/*
* Frame receive status
*/
desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
AR5K_OLD_RX_DESC_STATUS0_DATA_LEN;
desc->ds_us.rx.rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_OLD_RX_DESC_STATUS0_RECEIVE_SIGNAL);
desc->ds_us.rx.rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_OLD_RX_DESC_STATUS0_RECEIVE_RATE);
desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
AR5K_OLD_RX_DESC_STATUS0_RECEIVE_ANTENNA;
desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
AR5K_OLD_RX_DESC_STATUS0_MORE;
desc->ds_us.rx.rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_OLD_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
desc->ds_us.rx.rs_status = 0;
/*
* Key table status
*/
if (rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_KEY_INDEX_VALID)
desc->ds_us.rx.rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_OLD_RX_DESC_STATUS1_KEY_INDEX);
else
desc->ds_us.rx.rs_keyix = AR5K_RXKEYIX_INVALID;
/*
* Receive/descriptor errors
*/
if ((rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_FRAME_RECEIVE_OK)
== 0) {
if (rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_CRC_ERROR)
desc->ds_us.rx.rs_status |= AR5K_RXERR_CRC;
if (rx_status->rx_status_1 &
AR5K_OLD_RX_DESC_STATUS1_FIFO_OVERRUN)
desc->ds_us.rx.rs_status |= AR5K_RXERR_FIFO;
if (rx_status->rx_status_1 &
AR5K_OLD_RX_DESC_STATUS1_PHY_ERROR) {
desc->ds_us.rx.rs_status |= AR5K_RXERR_PHY;
desc->ds_us.rx.rs_phyerr =
AR5K_REG_MS(rx_status->rx_status_1,
AR5K_OLD_RX_DESC_STATUS1_PHY_ERROR);
}
if (rx_status->rx_status_1 &
AR5K_OLD_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
desc->ds_us.rx.rs_status |= AR5K_RXERR_DECRYPT;
}
return 0;
}
/*
* Proccess the rx status descriptor on 5212
*/
static int ath5k_hw_proc_new_rx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc)
{
struct ath5k_hw_new_rx_status *rx_status;
struct ath5k_hw_rx_error *rx_err;
ATH5K_TRACE(ah->ah_sc);
rx_status = (struct ath5k_hw_new_rx_status *)&desc->ds_hw[0];
/* Overlay on error */
rx_err = (struct ath5k_hw_rx_error *)&desc->ds_hw[0];
/* No frame received / not ready */
if (unlikely((rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_DONE)
== 0))
return -EINPROGRESS;
/*
* Frame receive status
*/
desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
AR5K_NEW_RX_DESC_STATUS0_DATA_LEN;
desc->ds_us.rx.rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_NEW_RX_DESC_STATUS0_RECEIVE_SIGNAL);
desc->ds_us.rx.rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_NEW_RX_DESC_STATUS0_RECEIVE_RATE);
desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
AR5K_NEW_RX_DESC_STATUS0_RECEIVE_ANTENNA;
desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
AR5K_NEW_RX_DESC_STATUS0_MORE;
desc->ds_us.rx.rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_NEW_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
desc->ds_us.rx.rs_status = 0;
/*
* Key table status
*/
if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_KEY_INDEX_VALID)
desc->ds_us.rx.rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_NEW_RX_DESC_STATUS1_KEY_INDEX);
else
desc->ds_us.rx.rs_keyix = AR5K_RXKEYIX_INVALID;
/*
* Receive/descriptor errors
*/
if ((rx_status->rx_status_1 &
AR5K_NEW_RX_DESC_STATUS1_FRAME_RECEIVE_OK) == 0) {
if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_CRC_ERROR)
desc->ds_us.rx.rs_status |= AR5K_RXERR_CRC;
if (rx_status->rx_status_1 &
AR5K_NEW_RX_DESC_STATUS1_PHY_ERROR) {
desc->ds_us.rx.rs_status |= AR5K_RXERR_PHY;
desc->ds_us.rx.rs_phyerr =
AR5K_REG_MS(rx_err->rx_error_1,
AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE);
}
if (rx_status->rx_status_1 &
AR5K_NEW_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
desc->ds_us.rx.rs_status |= AR5K_RXERR_DECRYPT;
if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_MIC_ERROR)
desc->ds_us.rx.rs_status |= AR5K_RXERR_MIC;
}
return 0;
}
/****************\
GPIO Functions
\****************/
/*
* Set led state
*/
void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state)
{
u32 led;
/*5210 has different led mode handling*/
u32 led_5210;
ATH5K_TRACE(ah->ah_sc);
/*Reset led status*/
if (ah->ah_version != AR5K_AR5210)
AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_LEDMODE | AR5K_PCICFG_LED);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_LED);
/*
* Some blinking values, define at your wish
*/
switch (state) {
case AR5K_LED_SCAN:
case AR5K_LED_AUTH:
led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_PEND;
led_5210 = AR5K_PCICFG_LED_PEND | AR5K_PCICFG_LED_BCTL;
break;
case AR5K_LED_INIT:
led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_NONE;
led_5210 = AR5K_PCICFG_LED_PEND;
break;
case AR5K_LED_ASSOC:
case AR5K_LED_RUN:
led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_ASSOC;
led_5210 = AR5K_PCICFG_LED_ASSOC;
break;
default:
led = AR5K_PCICFG_LEDMODE_PROM | AR5K_PCICFG_LED_NONE;
led_5210 = AR5K_PCICFG_LED_PEND;
break;
}
/*Write new status to the register*/
if (ah->ah_version != AR5K_AR5210)
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led);
else
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led_5210);
}
/*
* Set GPIO outputs
*/
int ath5k_hw_set_gpio_output(struct ath5k_hw *ah, u32 gpio)
{
ATH5K_TRACE(ah->ah_sc);
if (gpio > AR5K_NUM_GPIO)
return -EINVAL;
ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_OUT(gpio), AR5K_GPIOCR);
return 0;
}
/*
* Set GPIO inputs
*/
int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio)
{
ATH5K_TRACE(ah->ah_sc);
if (gpio > AR5K_NUM_GPIO)
return -EINVAL;
ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_IN(gpio), AR5K_GPIOCR);
return 0;
}
/*
* Get GPIO state
*/
u32 ath5k_hw_get_gpio(struct ath5k_hw *ah, u32 gpio)
{
ATH5K_TRACE(ah->ah_sc);
if (gpio > AR5K_NUM_GPIO)
return 0xffffffff;
/* GPIO input magic */
return ((ath5k_hw_reg_read(ah, AR5K_GPIODI) & AR5K_GPIODI_M) >> gpio) &
0x1;
}
/*
* Set GPIO state
*/
int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val)
{
u32 data;
ATH5K_TRACE(ah->ah_sc);
if (gpio > AR5K_NUM_GPIO)
return -EINVAL;
/* GPIO output magic */
data = ath5k_hw_reg_read(ah, AR5K_GPIODO);
data &= ~(1 << gpio);
data |= (val & 1) << gpio;
ath5k_hw_reg_write(ah, data, AR5K_GPIODO);
return 0;
}
/*
* Initialize the GPIO interrupt (RFKill switch)
*/
void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio,
u32 interrupt_level)
{
u32 data;
ATH5K_TRACE(ah->ah_sc);
if (gpio > AR5K_NUM_GPIO)
return;
/*
* Set the GPIO interrupt
*/
data = (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &
~(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_SELH |
AR5K_GPIOCR_INT_ENA | AR5K_GPIOCR_OUT(gpio))) |
(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_ENA);
ath5k_hw_reg_write(ah, interrupt_level ? data :
(data | AR5K_GPIOCR_INT_SELH), AR5K_GPIOCR);
ah->ah_imr |= AR5K_IMR_GPIO;
/* Enable GPIO interrupts */
AR5K_REG_ENABLE_BITS(ah, AR5K_PIMR, AR5K_IMR_GPIO);
}
/*********************************\
Regulatory Domain/Channels Setup
\*********************************/
u16 ath5k_get_regdomain(struct ath5k_hw *ah)
{
u16 regdomain;
enum ath5k_regdom ieee_regdomain;
#ifdef COUNTRYCODE
u16 code;
#endif
ath5k_eeprom_regulation_domain(ah, false, &ieee_regdomain);
ah->ah_capabilities.cap_regdomain.reg_hw = ieee_regdomain;
#ifdef COUNTRYCODE
/*
* Get the regulation domain by country code. This will ignore
* the settings found in the EEPROM.
*/
code = ieee80211_name2countrycode(COUNTRYCODE);
ieee_regdomain = ieee80211_countrycode2regdomain(code);
#endif
regdomain = ath5k_regdom_from_ieee(ieee_regdomain);
ah->ah_capabilities.cap_regdomain.reg_current = regdomain;
return regdomain;
}
/****************\
Misc functions
\****************/
int ath5k_hw_get_capability(struct ath5k_hw *ah,
enum ath5k_capability_type cap_type,
u32 capability, u32 *result)
{
ATH5K_TRACE(ah->ah_sc);
switch (cap_type) {
case AR5K_CAP_NUM_TXQUEUES:
if (result) {
if (ah->ah_version == AR5K_AR5210)
*result = AR5K_NUM_TX_QUEUES_NOQCU;
else
*result = AR5K_NUM_TX_QUEUES;
goto yes;
}
case AR5K_CAP_VEOL:
goto yes;
case AR5K_CAP_COMPRESSION:
if (ah->ah_version == AR5K_AR5212)
goto yes;
else
goto no;
case AR5K_CAP_BURST:
goto yes;
case AR5K_CAP_TPC:
goto yes;
case AR5K_CAP_BSSIDMASK:
if (ah->ah_version == AR5K_AR5212)
goto yes;
else
goto no;
case AR5K_CAP_XR:
if (ah->ah_version == AR5K_AR5212)
goto yes;
else
goto no;
default:
goto no;
}
no:
return -EINVAL;
yes:
return 0;
}
static int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid,
u16 assoc_id)
{
ATH5K_TRACE(ah->ah_sc);
if (ah->ah_version == AR5K_AR5210) {
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
return 0;
}
return -EIO;
}
static int ath5k_hw_disable_pspoll(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
if (ah->ah_version == AR5K_AR5210) {
AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
return 0;
}
return -EIO;
}