blob: c62ae016675d11f0fdea8ba2fc322fd04fb3cbab [file] [log] [blame]
/* CPU control.
* (C) 2001, 2002, 2003, 2004 Rusty Russell
*
* This code is licenced under the GPL.
*/
#include <linux/proc_fs.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/notifier.h>
#include <linux/sched.h>
#include <linux/unistd.h>
#include <linux/cpu.h>
#include <linux/oom.h>
#include <linux/rcupdate.h>
#include <linux/export.h>
#include <linux/bug.h>
#include <linux/kthread.h>
#include <linux/stop_machine.h>
#include <linux/mutex.h>
#include <linux/gfp.h>
#include <linux/suspend.h>
#include "smpboot.h"
#ifdef CONFIG_SMP
/* Serializes the updates to cpu_online_mask, cpu_present_mask */
static DEFINE_MUTEX(cpu_add_remove_lock);
/*
* The following two API's must be used when attempting
* to serialize the updates to cpu_online_mask, cpu_present_mask.
*/
void cpu_maps_update_begin(void)
{
mutex_lock(&cpu_add_remove_lock);
}
void cpu_maps_update_done(void)
{
mutex_unlock(&cpu_add_remove_lock);
}
static RAW_NOTIFIER_HEAD(cpu_chain);
/* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
* Should always be manipulated under cpu_add_remove_lock
*/
static int cpu_hotplug_disabled;
#ifdef CONFIG_HOTPLUG_CPU
static struct {
struct task_struct *active_writer;
struct mutex lock; /* Synchronizes accesses to refcount, */
/*
* Also blocks the new readers during
* an ongoing cpu hotplug operation.
*/
int refcount;
} cpu_hotplug = {
.active_writer = NULL,
.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
.refcount = 0,
};
/**
* hotplug_pcp - per cpu hotplug descriptor
* @unplug: set when pin_current_cpu() needs to sync tasks
* @sync_tsk: the task that waits for tasks to finish pinned sections
* @refcount: counter of tasks in pinned sections
* @grab_lock: set when the tasks entering pinned sections should wait
* @synced: notifier for @sync_tsk to tell cpu_down it's finished
* @mutex: the mutex to make tasks wait (used when @grab_lock is true)
* @mutex_init: zero if the mutex hasn't been initialized yet.
*
* Although @unplug and @sync_tsk may point to the same task, the @unplug
* is used as a flag and still exists after @sync_tsk has exited and
* @sync_tsk set to NULL.
*/
struct hotplug_pcp {
struct task_struct *unplug;
struct task_struct *sync_tsk;
int refcount;
int grab_lock;
struct completion synced;
struct completion unplug_wait;
#ifdef CONFIG_PREEMPT_RT_FULL
spinlock_t lock;
#else
struct mutex mutex;
#endif
int mutex_init;
};
#ifdef CONFIG_PREEMPT_RT_FULL
# define hotplug_lock(hp) rt_spin_lock(&(hp)->lock)
# define hotplug_unlock(hp) rt_spin_unlock(&(hp)->lock)
#else
# define hotplug_lock(hp) mutex_lock(&(hp)->mutex)
# define hotplug_unlock(hp) mutex_unlock(&(hp)->mutex)
#endif
static DEFINE_PER_CPU(struct hotplug_pcp, hotplug_pcp);
/**
* pin_current_cpu - Prevent the current cpu from being unplugged
*
* Lightweight version of get_online_cpus() to prevent cpu from being
* unplugged when code runs in a migration disabled region.
*
* Must be called with preemption disabled (preempt_count = 1)!
*/
void pin_current_cpu(void)
{
struct hotplug_pcp *hp;
int force = 0;
retry:
hp = &__get_cpu_var(hotplug_pcp);
if (!hp->unplug || hp->refcount || force || preempt_count() > 1 ||
hp->unplug == current) {
hp->refcount++;
return;
}
if (hp->grab_lock) {
preempt_enable();
hotplug_lock(hp);
hotplug_unlock(hp);
} else {
preempt_enable();
/*
* Try to push this task off of this CPU.
*/
if (!migrate_me()) {
preempt_disable();
hp = &__get_cpu_var(hotplug_pcp);
if (!hp->grab_lock) {
/*
* Just let it continue it's already pinned
* or about to sleep.
*/
force = 1;
goto retry;
}
preempt_enable();
}
}
preempt_disable();
goto retry;
}
/**
* unpin_current_cpu - Allow unplug of current cpu
*
* Must be called with preemption or interrupts disabled!
*/
void unpin_current_cpu(void)
{
struct hotplug_pcp *hp = &__get_cpu_var(hotplug_pcp);
WARN_ON(hp->refcount <= 0);
/* This is safe. sync_unplug_thread is pinned to this cpu */
if (!--hp->refcount && hp->unplug && hp->unplug != current)
wake_up_process(hp->unplug);
}
static void wait_for_pinned_cpus(struct hotplug_pcp *hp)
{
set_current_state(TASK_UNINTERRUPTIBLE);
while (hp->refcount) {
schedule_preempt_disabled();
set_current_state(TASK_UNINTERRUPTIBLE);
}
}
static int sync_unplug_thread(void *data)
{
struct hotplug_pcp *hp = data;
wait_for_completion(&hp->unplug_wait);
preempt_disable();
hp->unplug = current;
wait_for_pinned_cpus(hp);
/*
* This thread will synchronize the cpu_down() with threads
* that have pinned the CPU. When the pinned CPU count reaches
* zero, we inform the cpu_down code to continue to the next step.
*/
set_current_state(TASK_UNINTERRUPTIBLE);
preempt_enable();
complete(&hp->synced);
/*
* If all succeeds, the next step will need tasks to wait till
* the CPU is offline before continuing. To do this, the grab_lock
* is set and tasks going into pin_current_cpu() will block on the
* mutex. But we still need to wait for those that are already in
* pinned CPU sections. If the cpu_down() failed, the kthread_should_stop()
* will kick this thread out.
*/
while (!hp->grab_lock && !kthread_should_stop()) {
schedule();
set_current_state(TASK_UNINTERRUPTIBLE);
}
/* Make sure grab_lock is seen before we see a stale completion */
smp_mb();
/*
* Now just before cpu_down() enters stop machine, we need to make
* sure all tasks that are in pinned CPU sections are out, and new
* tasks will now grab the lock, keeping them from entering pinned
* CPU sections.
*/
if (!kthread_should_stop()) {
preempt_disable();
wait_for_pinned_cpus(hp);
preempt_enable();
complete(&hp->synced);
}
set_current_state(TASK_UNINTERRUPTIBLE);
while (!kthread_should_stop()) {
schedule();
set_current_state(TASK_UNINTERRUPTIBLE);
}
set_current_state(TASK_RUNNING);
/*
* Force this thread off this CPU as it's going down and
* we don't want any more work on this CPU.
*/
current->flags &= ~PF_NO_SETAFFINITY;
do_set_cpus_allowed(current, cpu_present_mask);
migrate_me();
return 0;
}
static void __cpu_unplug_sync(struct hotplug_pcp *hp)
{
wake_up_process(hp->sync_tsk);
wait_for_completion(&hp->synced);
}
static void __cpu_unplug_wait(unsigned int cpu)
{
struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu);
complete(&hp->unplug_wait);
wait_for_completion(&hp->synced);
}
/*
* Start the sync_unplug_thread on the target cpu and wait for it to
* complete.
*/
static int cpu_unplug_begin(unsigned int cpu)
{
struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu);
int err;
/* Protected by cpu_hotplug.lock */
if (!hp->mutex_init) {
#ifdef CONFIG_PREEMPT_RT_FULL
spin_lock_init(&hp->lock);
#else
mutex_init(&hp->mutex);
#endif
hp->mutex_init = 1;
}
/* Inform the scheduler to migrate tasks off this CPU */
tell_sched_cpu_down_begin(cpu);
init_completion(&hp->synced);
init_completion(&hp->unplug_wait);
hp->sync_tsk = kthread_create(sync_unplug_thread, hp, "sync_unplug/%d", cpu);
if (IS_ERR(hp->sync_tsk)) {
err = PTR_ERR(hp->sync_tsk);
hp->sync_tsk = NULL;
return err;
}
kthread_bind(hp->sync_tsk, cpu);
/*
* Wait for tasks to get out of the pinned sections,
* it's still OK if new tasks enter. Some CPU notifiers will
* wait for tasks that are going to enter these sections and
* we must not have them block.
*/
wake_up_process(hp->sync_tsk);
return 0;
}
static void cpu_unplug_sync(unsigned int cpu)
{
struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu);
init_completion(&hp->synced);
/* The completion needs to be initialzied before setting grab_lock */
smp_wmb();
/* Grab the mutex before setting grab_lock */
hotplug_lock(hp);
hp->grab_lock = 1;
/*
* The CPU notifiers have been completed.
* Wait for tasks to get out of pinned CPU sections and have new
* tasks block until the CPU is completely down.
*/
__cpu_unplug_sync(hp);
/* All done with the sync thread */
kthread_stop(hp->sync_tsk);
hp->sync_tsk = NULL;
}
static void cpu_unplug_done(unsigned int cpu)
{
struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu);
hp->unplug = NULL;
/* Let all tasks know cpu unplug is finished before cleaning up */
smp_wmb();
if (hp->sync_tsk)
kthread_stop(hp->sync_tsk);
if (hp->grab_lock) {
hotplug_unlock(hp);
/* protected by cpu_hotplug.lock */
hp->grab_lock = 0;
}
tell_sched_cpu_down_done(cpu);
}
void get_online_cpus(void)
{
might_sleep();
if (cpu_hotplug.active_writer == current)
return;
mutex_lock(&cpu_hotplug.lock);
cpu_hotplug.refcount++;
mutex_unlock(&cpu_hotplug.lock);
}
EXPORT_SYMBOL_GPL(get_online_cpus);
void put_online_cpus(void)
{
if (cpu_hotplug.active_writer == current)
return;
mutex_lock(&cpu_hotplug.lock);
if (WARN_ON(!cpu_hotplug.refcount))
cpu_hotplug.refcount++; /* try to fix things up */
if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
wake_up_process(cpu_hotplug.active_writer);
mutex_unlock(&cpu_hotplug.lock);
}
EXPORT_SYMBOL_GPL(put_online_cpus);
/*
* This ensures that the hotplug operation can begin only when the
* refcount goes to zero.
*
* Note that during a cpu-hotplug operation, the new readers, if any,
* will be blocked by the cpu_hotplug.lock
*
* Since cpu_hotplug_begin() is always called after invoking
* cpu_maps_update_begin(), we can be sure that only one writer is active.
*
* Note that theoretically, there is a possibility of a livelock:
* - Refcount goes to zero, last reader wakes up the sleeping
* writer.
* - Last reader unlocks the cpu_hotplug.lock.
* - A new reader arrives at this moment, bumps up the refcount.
* - The writer acquires the cpu_hotplug.lock finds the refcount
* non zero and goes to sleep again.
*
* However, this is very difficult to achieve in practice since
* get_online_cpus() not an api which is called all that often.
*
*/
static void cpu_hotplug_begin(void)
{
cpu_hotplug.active_writer = current;
for (;;) {
mutex_lock(&cpu_hotplug.lock);
if (likely(!cpu_hotplug.refcount))
break;
__set_current_state(TASK_UNINTERRUPTIBLE);
mutex_unlock(&cpu_hotplug.lock);
schedule();
}
}
static void cpu_hotplug_done(void)
{
cpu_hotplug.active_writer = NULL;
mutex_unlock(&cpu_hotplug.lock);
}
/*
* Wait for currently running CPU hotplug operations to complete (if any) and
* disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
* the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
* hotplug path before performing hotplug operations. So acquiring that lock
* guarantees mutual exclusion from any currently running hotplug operations.
*/
void cpu_hotplug_disable(void)
{
cpu_maps_update_begin();
cpu_hotplug_disabled = 1;
cpu_maps_update_done();
}
void cpu_hotplug_enable(void)
{
cpu_maps_update_begin();
cpu_hotplug_disabled = 0;
cpu_maps_update_done();
}
#else /* #if CONFIG_HOTPLUG_CPU */
static void cpu_hotplug_begin(void) {}
static void cpu_hotplug_done(void) {}
#endif /* #else #if CONFIG_HOTPLUG_CPU */
/* Need to know about CPUs going up/down? */
int __ref register_cpu_notifier(struct notifier_block *nb)
{
int ret;
cpu_maps_update_begin();
ret = raw_notifier_chain_register(&cpu_chain, nb);
cpu_maps_update_done();
return ret;
}
static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
int *nr_calls)
{
int ret;
ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
nr_calls);
return notifier_to_errno(ret);
}
static int cpu_notify(unsigned long val, void *v)
{
return __cpu_notify(val, v, -1, NULL);
}
#ifdef CONFIG_HOTPLUG_CPU
static void cpu_notify_nofail(unsigned long val, void *v)
{
BUG_ON(cpu_notify(val, v));
}
EXPORT_SYMBOL(register_cpu_notifier);
void __ref unregister_cpu_notifier(struct notifier_block *nb)
{
cpu_maps_update_begin();
raw_notifier_chain_unregister(&cpu_chain, nb);
cpu_maps_update_done();
}
EXPORT_SYMBOL(unregister_cpu_notifier);
/**
* clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
* @cpu: a CPU id
*
* This function walks all processes, finds a valid mm struct for each one and
* then clears a corresponding bit in mm's cpumask. While this all sounds
* trivial, there are various non-obvious corner cases, which this function
* tries to solve in a safe manner.
*
* Also note that the function uses a somewhat relaxed locking scheme, so it may
* be called only for an already offlined CPU.
*/
void clear_tasks_mm_cpumask(int cpu)
{
struct task_struct *p;
/*
* This function is called after the cpu is taken down and marked
* offline, so its not like new tasks will ever get this cpu set in
* their mm mask. -- Peter Zijlstra
* Thus, we may use rcu_read_lock() here, instead of grabbing
* full-fledged tasklist_lock.
*/
WARN_ON(cpu_online(cpu));
rcu_read_lock();
for_each_process(p) {
struct task_struct *t;
/*
* Main thread might exit, but other threads may still have
* a valid mm. Find one.
*/
t = find_lock_task_mm(p);
if (!t)
continue;
cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
task_unlock(t);
}
rcu_read_unlock();
}
static inline void check_for_tasks(int cpu)
{
struct task_struct *p;
cputime_t utime, stime;
write_lock_irq(&tasklist_lock);
for_each_process(p) {
task_cputime(p, &utime, &stime);
if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
(utime || stime))
printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
"(state = %ld, flags = %x)\n",
p->comm, task_pid_nr(p), cpu,
p->state, p->flags);
}
write_unlock_irq(&tasklist_lock);
}
struct take_cpu_down_param {
unsigned long mod;
void *hcpu;
};
/* Take this CPU down. */
static int __ref take_cpu_down(void *_param)
{
struct take_cpu_down_param *param = _param;
int err;
/* Ensure this CPU doesn't handle any more interrupts. */
err = __cpu_disable();
if (err < 0)
return err;
cpu_notify(CPU_DYING | param->mod, param->hcpu);
/* Park the stopper thread */
kthread_park(current);
return 0;
}
/* Requires cpu_add_remove_lock to be held */
static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
{
int mycpu, err, nr_calls = 0;
void *hcpu = (void *)(long)cpu;
unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
struct take_cpu_down_param tcd_param = {
.mod = mod,
.hcpu = hcpu,
};
cpumask_var_t cpumask;
cpumask_var_t cpumask_org;
if (num_online_cpus() == 1)
return -EBUSY;
if (!cpu_online(cpu))
return -EINVAL;
/* Move the downtaker off the unplug cpu */
if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
return -ENOMEM;
if (!alloc_cpumask_var(&cpumask_org, GFP_KERNEL)) {
free_cpumask_var(cpumask);
return -ENOMEM;
}
cpumask_copy(cpumask_org, tsk_cpus_allowed(current));
cpumask_andnot(cpumask, cpu_online_mask, cpumask_of(cpu));
set_cpus_allowed_ptr(current, cpumask);
free_cpumask_var(cpumask);
migrate_disable();
mycpu = smp_processor_id();
if (mycpu == cpu) {
printk(KERN_ERR "Yuck! Still on unplug CPU\n!");
migrate_enable();
err = -EBUSY;
goto restore_cpus;
}
migrate_enable();
cpu_hotplug_begin();
err = cpu_unplug_begin(cpu);
if (err) {
printk("cpu_unplug_begin(%d) failed\n", cpu);
goto out_cancel;
}
err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
if (err) {
nr_calls--;
__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
printk("%s: attempt to take down CPU %u failed\n",
__func__, cpu);
goto out_release;
}
__cpu_unplug_wait(cpu);
smpboot_park_threads(cpu);
/* Notifiers are done. Don't let any more tasks pin this CPU. */
cpu_unplug_sync(cpu);
err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
if (err) {
/* CPU didn't die: tell everyone. Can't complain. */
smpboot_unpark_threads(cpu);
cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
goto out_release;
}
BUG_ON(cpu_online(cpu));
/*
* The migration_call() CPU_DYING callback will have removed all
* runnable tasks from the cpu, there's only the idle task left now
* that the migration thread is done doing the stop_machine thing.
*
* Wait for the stop thread to go away.
*/
while (!idle_cpu(cpu))
cpu_relax();
/* This actually kills the CPU. */
__cpu_die(cpu);
/* CPU is completely dead: tell everyone. Too late to complain. */
cpu_notify_nofail(CPU_DEAD | mod, hcpu);
check_for_tasks(cpu);
out_release:
cpu_unplug_done(cpu);
out_cancel:
cpu_hotplug_done();
if (!err)
cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
restore_cpus:
set_cpus_allowed_ptr(current, cpumask_org);
free_cpumask_var(cpumask_org);
return err;
}
int __ref cpu_down(unsigned int cpu)
{
int err;
cpu_maps_update_begin();
if (cpu_hotplug_disabled) {
err = -EBUSY;
goto out;
}
err = _cpu_down(cpu, 0);
out:
cpu_maps_update_done();
return err;
}
EXPORT_SYMBOL(cpu_down);
#endif /*CONFIG_HOTPLUG_CPU*/
/* Requires cpu_add_remove_lock to be held */
static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
{
int ret, nr_calls = 0;
void *hcpu = (void *)(long)cpu;
unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
struct task_struct *idle;
cpu_hotplug_begin();
if (cpu_online(cpu) || !cpu_present(cpu)) {
ret = -EINVAL;
goto out;
}
idle = idle_thread_get(cpu);
if (IS_ERR(idle)) {
ret = PTR_ERR(idle);
goto out;
}
ret = smpboot_create_threads(cpu);
if (ret)
goto out;
ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
if (ret) {
nr_calls--;
printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
__func__, cpu);
goto out_notify;
}
/* Arch-specific enabling code. */
ret = __cpu_up(cpu, idle);
if (ret != 0)
goto out_notify;
BUG_ON(!cpu_online(cpu));
/* Wake the per cpu threads */
smpboot_unpark_threads(cpu);
/* Now call notifier in preparation. */
cpu_notify(CPU_ONLINE | mod, hcpu);
out_notify:
if (ret != 0)
__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
out:
cpu_hotplug_done();
return ret;
}
int __cpuinit cpu_up(unsigned int cpu)
{
int err = 0;
#ifdef CONFIG_MEMORY_HOTPLUG
int nid;
pg_data_t *pgdat;
#endif
if (!cpu_possible(cpu)) {
printk(KERN_ERR "can't online cpu %d because it is not "
"configured as may-hotadd at boot time\n", cpu);
#if defined(CONFIG_IA64)
printk(KERN_ERR "please check additional_cpus= boot "
"parameter\n");
#endif
return -EINVAL;
}
#ifdef CONFIG_MEMORY_HOTPLUG
nid = cpu_to_node(cpu);
if (!node_online(nid)) {
err = mem_online_node(nid);
if (err)
return err;
}
pgdat = NODE_DATA(nid);
if (!pgdat) {
printk(KERN_ERR
"Can't online cpu %d due to NULL pgdat\n", cpu);
return -ENOMEM;
}
if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
mutex_lock(&zonelists_mutex);
build_all_zonelists(NULL, NULL);
mutex_unlock(&zonelists_mutex);
}
#endif
cpu_maps_update_begin();
if (cpu_hotplug_disabled) {
err = -EBUSY;
goto out;
}
err = _cpu_up(cpu, 0);
out:
cpu_maps_update_done();
return err;
}
EXPORT_SYMBOL_GPL(cpu_up);
#ifdef CONFIG_PM_SLEEP_SMP
static cpumask_var_t frozen_cpus;
int disable_nonboot_cpus(void)
{
int cpu, first_cpu, error = 0;
cpu_maps_update_begin();
first_cpu = cpumask_first(cpu_online_mask);
/*
* We take down all of the non-boot CPUs in one shot to avoid races
* with the userspace trying to use the CPU hotplug at the same time
*/
cpumask_clear(frozen_cpus);
printk("Disabling non-boot CPUs ...\n");
for_each_online_cpu(cpu) {
if (cpu == first_cpu)
continue;
error = _cpu_down(cpu, 1);
if (!error)
cpumask_set_cpu(cpu, frozen_cpus);
else {
printk(KERN_ERR "Error taking CPU%d down: %d\n",
cpu, error);
break;
}
}
if (!error) {
BUG_ON(num_online_cpus() > 1);
/* Make sure the CPUs won't be enabled by someone else */
cpu_hotplug_disabled = 1;
} else {
printk(KERN_ERR "Non-boot CPUs are not disabled\n");
}
cpu_maps_update_done();
return error;
}
void __weak arch_enable_nonboot_cpus_begin(void)
{
}
void __weak arch_enable_nonboot_cpus_end(void)
{
}
void __ref enable_nonboot_cpus(void)
{
int cpu, error;
/* Allow everyone to use the CPU hotplug again */
cpu_maps_update_begin();
cpu_hotplug_disabled = 0;
if (cpumask_empty(frozen_cpus))
goto out;
printk(KERN_INFO "Enabling non-boot CPUs ...\n");
arch_enable_nonboot_cpus_begin();
for_each_cpu(cpu, frozen_cpus) {
error = _cpu_up(cpu, 1);
if (!error) {
printk(KERN_INFO "CPU%d is up\n", cpu);
continue;
}
printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
}
arch_enable_nonboot_cpus_end();
cpumask_clear(frozen_cpus);
out:
cpu_maps_update_done();
}
static int __init alloc_frozen_cpus(void)
{
if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
return -ENOMEM;
return 0;
}
core_initcall(alloc_frozen_cpus);
/*
* When callbacks for CPU hotplug notifications are being executed, we must
* ensure that the state of the system with respect to the tasks being frozen
* or not, as reported by the notification, remains unchanged *throughout the
* duration* of the execution of the callbacks.
* Hence we need to prevent the freezer from racing with regular CPU hotplug.
*
* This synchronization is implemented by mutually excluding regular CPU
* hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
* Hibernate notifications.
*/
static int
cpu_hotplug_pm_callback(struct notifier_block *nb,
unsigned long action, void *ptr)
{
switch (action) {
case PM_SUSPEND_PREPARE:
case PM_HIBERNATION_PREPARE:
cpu_hotplug_disable();
break;
case PM_POST_SUSPEND:
case PM_POST_HIBERNATION:
cpu_hotplug_enable();
break;
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
static int __init cpu_hotplug_pm_sync_init(void)
{
/*
* cpu_hotplug_pm_callback has higher priority than x86
* bsp_pm_callback which depends on cpu_hotplug_pm_callback
* to disable cpu hotplug to avoid cpu hotplug race.
*/
pm_notifier(cpu_hotplug_pm_callback, 0);
return 0;
}
core_initcall(cpu_hotplug_pm_sync_init);
#endif /* CONFIG_PM_SLEEP_SMP */
/**
* notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
* @cpu: cpu that just started
*
* This function calls the cpu_chain notifiers with CPU_STARTING.
* It must be called by the arch code on the new cpu, before the new cpu
* enables interrupts and before the "boot" cpu returns from __cpu_up().
*/
void __cpuinit notify_cpu_starting(unsigned int cpu)
{
unsigned long val = CPU_STARTING;
#ifdef CONFIG_PM_SLEEP_SMP
if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
val = CPU_STARTING_FROZEN;
#endif /* CONFIG_PM_SLEEP_SMP */
cpu_notify(val, (void *)(long)cpu);
}
#endif /* CONFIG_SMP */
/*
* cpu_bit_bitmap[] is a special, "compressed" data structure that
* represents all NR_CPUS bits binary values of 1<<nr.
*
* It is used by cpumask_of() to get a constant address to a CPU
* mask value that has a single bit set only.
*/
/* cpu_bit_bitmap[0] is empty - so we can back into it */
#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
MASK_DECLARE_8(0), MASK_DECLARE_8(8),
MASK_DECLARE_8(16), MASK_DECLARE_8(24),
#if BITS_PER_LONG > 32
MASK_DECLARE_8(32), MASK_DECLARE_8(40),
MASK_DECLARE_8(48), MASK_DECLARE_8(56),
#endif
};
EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
EXPORT_SYMBOL(cpu_all_bits);
#ifdef CONFIG_INIT_ALL_POSSIBLE
static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
= CPU_BITS_ALL;
#else
static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
#endif
const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
EXPORT_SYMBOL(cpu_possible_mask);
static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
EXPORT_SYMBOL(cpu_online_mask);
static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
EXPORT_SYMBOL(cpu_present_mask);
static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
EXPORT_SYMBOL(cpu_active_mask);
void set_cpu_possible(unsigned int cpu, bool possible)
{
if (possible)
cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
else
cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
}
void set_cpu_present(unsigned int cpu, bool present)
{
if (present)
cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
else
cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
}
void set_cpu_online(unsigned int cpu, bool online)
{
if (online)
cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
else
cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
}
void set_cpu_active(unsigned int cpu, bool active)
{
if (active)
cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
else
cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
}
void init_cpu_present(const struct cpumask *src)
{
cpumask_copy(to_cpumask(cpu_present_bits), src);
}
void init_cpu_possible(const struct cpumask *src)
{
cpumask_copy(to_cpumask(cpu_possible_bits), src);
}
void init_cpu_online(const struct cpumask *src)
{
cpumask_copy(to_cpumask(cpu_online_bits), src);
}