blob: 1f69d16aa2b738d732125891d8aff0b50602f45a [file] [log] [blame]
// Main code for handling USB controllers and devices.
//
// Copyright (C) 2009 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "util.h" // dprintf
#include "pci.h" // foreachpci
#include "config.h" // CONFIG_*
#include "pci_regs.h" // PCI_CLASS_REVISION
#include "pci_ids.h" // PCI_CLASS_SERIAL_USB_UHCI
#include "usb-uhci.h" // uhci_init
#include "usb-ohci.h" // ohci_init
#include "usb-ehci.h" // ehci_init
#include "usb-hid.h" // usb_keyboard_setup
#include "usb-hub.h" // usb_hub_init
#include "usb-msc.h" // usb_msc_init
#include "usb.h" // struct usb_s
#include "biosvar.h" // GET_GLOBAL
/****************************************************************
* Controller function wrappers
****************************************************************/
// Free an allocated control or bulk pipe.
void
free_pipe(struct usb_pipe *pipe)
{
ASSERT32FLAT();
if (!pipe)
return;
switch (pipe->type) {
default:
case USB_TYPE_UHCI:
return uhci_free_pipe(pipe);
case USB_TYPE_OHCI:
return ohci_free_pipe(pipe);
case USB_TYPE_EHCI:
return ehci_free_pipe(pipe);
}
}
// Allocate a control pipe to a default endpoint (which can only be
// used by 32bit code)
static struct usb_pipe *
alloc_default_control_pipe(struct usb_pipe *dummy)
{
switch (dummy->type) {
default:
case USB_TYPE_UHCI:
return uhci_alloc_control_pipe(dummy);
case USB_TYPE_OHCI:
return ohci_alloc_control_pipe(dummy);
case USB_TYPE_EHCI:
return ehci_alloc_control_pipe(dummy);
}
}
// Send a message on a control pipe using the default control descriptor.
static int
send_control(struct usb_pipe *pipe, int dir, const void *cmd, int cmdsize
, void *data, int datasize)
{
ASSERT32FLAT();
switch (pipe->type) {
default:
case USB_TYPE_UHCI:
return uhci_control(pipe, dir, cmd, cmdsize, data, datasize);
case USB_TYPE_OHCI:
return ohci_control(pipe, dir, cmd, cmdsize, data, datasize);
case USB_TYPE_EHCI:
return ehci_control(pipe, dir, cmd, cmdsize, data, datasize);
}
}
// Fill "pipe" endpoint info from an endpoint descriptor.
static void
desc2pipe(struct usb_pipe *newpipe, struct usb_pipe *origpipe
, struct usb_endpoint_descriptor *epdesc)
{
memcpy(newpipe, origpipe, sizeof(*newpipe));
newpipe->ep = epdesc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
newpipe->maxpacket = epdesc->wMaxPacketSize;
}
struct usb_pipe *
alloc_bulk_pipe(struct usb_pipe *pipe, struct usb_endpoint_descriptor *epdesc)
{
struct usb_pipe dummy;
desc2pipe(&dummy, pipe, epdesc);
switch (pipe->type) {
default:
case USB_TYPE_UHCI:
return uhci_alloc_bulk_pipe(&dummy);
case USB_TYPE_OHCI:
return ohci_alloc_bulk_pipe(&dummy);
case USB_TYPE_EHCI:
return ehci_alloc_bulk_pipe(&dummy);
}
}
int
usb_send_bulk(struct usb_pipe *pipe_fl, int dir, void *data, int datasize)
{
switch (GET_FLATPTR(pipe_fl->type)) {
default:
case USB_TYPE_UHCI:
return uhci_send_bulk(pipe_fl, dir, data, datasize);
case USB_TYPE_OHCI:
return ohci_send_bulk(pipe_fl, dir, data, datasize);
case USB_TYPE_EHCI:
return ehci_send_bulk(pipe_fl, dir, data, datasize);
}
}
struct usb_pipe *
alloc_intr_pipe(struct usb_pipe *pipe, struct usb_endpoint_descriptor *epdesc)
{
struct usb_pipe dummy;
desc2pipe(&dummy, pipe, epdesc);
// Find the exponential period of the requested time.
int period = epdesc->bInterval;
int frameexp;
if (pipe->speed != USB_HIGHSPEED)
frameexp = (period <= 0) ? 0 : __fls(period);
else
frameexp = (period <= 4) ? 0 : period - 4;
switch (pipe->type) {
default:
case USB_TYPE_UHCI:
return uhci_alloc_intr_pipe(&dummy, frameexp);
case USB_TYPE_OHCI:
return ohci_alloc_intr_pipe(&dummy, frameexp);
case USB_TYPE_EHCI:
return ehci_alloc_intr_pipe(&dummy, frameexp);
}
}
int noinline
usb_poll_intr(struct usb_pipe *pipe_fl, void *data)
{
switch (GET_FLATPTR(pipe_fl->type)) {
default:
case USB_TYPE_UHCI:
return uhci_poll_intr(pipe_fl, data);
case USB_TYPE_OHCI:
return ohci_poll_intr(pipe_fl, data);
case USB_TYPE_EHCI:
return ehci_poll_intr(pipe_fl, data);
}
}
/****************************************************************
* Helper functions
****************************************************************/
// Find the first endpoing of a given type in an interface description.
struct usb_endpoint_descriptor *
findEndPointDesc(struct usb_interface_descriptor *iface, int imax
, int type, int dir)
{
struct usb_endpoint_descriptor *epdesc = (void*)&iface[1];
for (;;) {
if ((void*)epdesc >= (void*)iface + imax
|| epdesc->bDescriptorType == USB_DT_INTERFACE) {
return NULL;
}
if (epdesc->bDescriptorType == USB_DT_ENDPOINT
&& (epdesc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == dir
&& (epdesc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == type)
return epdesc;
epdesc = (void*)epdesc + epdesc->bLength;
}
}
// Send a message to the default control pipe of a device.
int
send_default_control(struct usb_pipe *pipe, const struct usb_ctrlrequest *req
, void *data)
{
return send_control(pipe, req->bRequestType & USB_DIR_IN
, req, sizeof(*req), data, req->wLength);
}
// Get the first 8 bytes of the device descriptor.
static int
get_device_info8(struct usb_pipe *pipe, struct usb_device_descriptor *dinfo)
{
struct usb_ctrlrequest req;
req.bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE;
req.bRequest = USB_REQ_GET_DESCRIPTOR;
req.wValue = USB_DT_DEVICE<<8;
req.wIndex = 0;
req.wLength = 8;
return send_default_control(pipe, &req, dinfo);
}
static struct usb_config_descriptor *
get_device_config(struct usb_pipe *pipe)
{
struct usb_config_descriptor cfg;
struct usb_ctrlrequest req;
req.bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE;
req.bRequest = USB_REQ_GET_DESCRIPTOR;
req.wValue = USB_DT_CONFIG<<8;
req.wIndex = 0;
req.wLength = sizeof(cfg);
int ret = send_default_control(pipe, &req, &cfg);
if (ret)
return NULL;
void *config = malloc_tmphigh(cfg.wTotalLength);
if (!config)
return NULL;
req.wLength = cfg.wTotalLength;
ret = send_default_control(pipe, &req, config);
if (ret)
return NULL;
//hexdump(config, cfg.wTotalLength);
return config;
}
static int
set_configuration(struct usb_pipe *pipe, u16 val)
{
struct usb_ctrlrequest req;
req.bRequestType = USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE;
req.bRequest = USB_REQ_SET_CONFIGURATION;
req.wValue = val;
req.wIndex = 0;
req.wLength = 0;
return send_default_control(pipe, &req, NULL);
}
/****************************************************************
* Initialization and enumeration
****************************************************************/
// Assign an address to a device in the default state on the given
// controller.
static struct usb_pipe *
usb_set_address(struct usbhub_s *hub, int port, int speed)
{
ASSERT32FLAT();
struct usb_s *cntl = hub->cntl;
dprintf(3, "set_address %p\n", cntl);
if (cntl->maxaddr >= USB_MAXADDR)
return NULL;
struct usb_pipe *defpipe = cntl->defaultpipe;
if (!defpipe) {
// Create a pipe for the default address.
struct usb_pipe dummy;
memset(&dummy, 0, sizeof(dummy));
dummy.cntl = cntl;
dummy.type = cntl->type;
dummy.maxpacket = 8;
dummy.path = (u64)-1;
cntl->defaultpipe = defpipe = alloc_default_control_pipe(&dummy);
if (!defpipe)
return NULL;
}
defpipe->speed = speed;
if (hub->pipe) {
if (hub->pipe->speed == USB_HIGHSPEED) {
defpipe->tt_devaddr = hub->pipe->devaddr;
defpipe->tt_port = port;
} else {
defpipe->tt_devaddr = hub->pipe->tt_devaddr;
defpipe->tt_port = hub->pipe->tt_port;
}
} else {
defpipe->tt_devaddr = defpipe->tt_port = 0;
}
msleep(USB_TIME_RSTRCY);
struct usb_ctrlrequest req;
req.bRequestType = USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE;
req.bRequest = USB_REQ_SET_ADDRESS;
req.wValue = cntl->maxaddr + 1;
req.wIndex = 0;
req.wLength = 0;
int ret = send_default_control(defpipe, &req, NULL);
if (ret)
return NULL;
msleep(USB_TIME_SETADDR_RECOVERY);
cntl->maxaddr++;
defpipe->devaddr = cntl->maxaddr;
struct usb_pipe *pipe = alloc_default_control_pipe(defpipe);
defpipe->devaddr = 0;
if (hub->pipe)
pipe->path = hub->pipe->path;
pipe->path = (pipe->path << 8) | port;
return pipe;
}
// Called for every found device - see if a driver is available for
// this device and do setup if so.
static int
configure_usb_device(struct usb_pipe *pipe)
{
ASSERT32FLAT();
dprintf(3, "config_usb: %p\n", pipe);
// Set the max packet size for endpoint 0 of this device.
struct usb_device_descriptor dinfo;
int ret = get_device_info8(pipe, &dinfo);
if (ret)
return 0;
dprintf(3, "device rev=%04x cls=%02x sub=%02x proto=%02x size=%02x\n"
, dinfo.bcdUSB, dinfo.bDeviceClass, dinfo.bDeviceSubClass
, dinfo.bDeviceProtocol, dinfo.bMaxPacketSize0);
if (dinfo.bMaxPacketSize0 < 8 || dinfo.bMaxPacketSize0 > 64)
return 0;
pipe->maxpacket = dinfo.bMaxPacketSize0;
// Get configuration
struct usb_config_descriptor *config = get_device_config(pipe);
if (!config)
return 0;
// Determine if a driver exists for this device - only look at the
// first interface of the first configuration.
struct usb_interface_descriptor *iface = (void*)(&config[1]);
if (iface->bInterfaceClass != USB_CLASS_HID
&& iface->bInterfaceClass != USB_CLASS_MASS_STORAGE
&& iface->bInterfaceClass != USB_CLASS_HUB)
// Not a supported device.
goto fail;
// Set the configuration.
ret = set_configuration(pipe, config->bConfigurationValue);
if (ret)
goto fail;
// Configure driver.
int imax = (void*)config + config->wTotalLength - (void*)iface;
if (iface->bInterfaceClass == USB_CLASS_HUB)
ret = usb_hub_init(pipe);
else if (iface->bInterfaceClass == USB_CLASS_MASS_STORAGE)
ret = usb_msc_init(pipe, iface, imax);
else
ret = usb_hid_init(pipe, iface, imax);
if (ret)
goto fail;
free(config);
return 1;
fail:
free(config);
return 0;
}
static void
usb_init_hub_port(void *data)
{
struct usbhub_s *hub = data;
u32 port = hub->port; // XXX - find better way to pass port
// Detect if device present (and possibly start reset)
int ret = hub->op->detect(hub, port);
if (ret)
// No device present
goto done;
// Reset port and determine device speed
mutex_lock(&hub->cntl->resetlock);
ret = hub->op->reset(hub, port);
if (ret < 0)
// Reset failed
goto resetfail;
// Set address of port
struct usb_pipe *pipe = usb_set_address(hub, port, ret);
if (!pipe) {
hub->op->disconnect(hub, port);
goto resetfail;
}
mutex_unlock(&hub->cntl->resetlock);
// Configure the device
int count = configure_usb_device(pipe);
free_pipe(pipe);
if (!count)
hub->op->disconnect(hub, port);
hub->devcount += count;
done:
hub->threads--;
return;
resetfail:
mutex_unlock(&hub->cntl->resetlock);
goto done;
}
void
usb_enumerate(struct usbhub_s *hub)
{
u32 portcount = hub->portcount;
hub->threads = portcount;
// Launch a thread for every port.
int i;
for (i=0; i<portcount; i++) {
hub->port = i;
run_thread(usb_init_hub_port, hub);
}
// Wait for threads to complete.
while (hub->threads)
yield();
}
void
usb_setup(void)
{
ASSERT32FLAT();
if (! CONFIG_USB)
return;
dprintf(3, "init usb\n");
// Look for USB controllers
int count = 0;
struct pci_device *ehcipci = PCIDevices;
struct pci_device *pci;
foreachpci(pci) {
if (pci->class != PCI_CLASS_SERIAL_USB)
continue;
if (pci->bdf >= ehcipci->bdf) {
// Check to see if this device has an ehci controller
int found = 0;
ehcipci = pci;
for (;;) {
if (pci_classprog(ehcipci) == PCI_CLASS_SERIAL_USB_EHCI) {
// Found an ehci controller.
int ret = ehci_init(ehcipci, count++, pci);
if (ret)
// Error
break;
count += found;
pci = ehcipci;
break;
}
if (ehcipci->class == PCI_CLASS_SERIAL_USB)
found++;
ehcipci = ehcipci->next;
if (!ehcipci || (pci_bdf_to_busdev(ehcipci->bdf)
!= pci_bdf_to_busdev(pci->bdf)))
// No ehci controller found.
break;
}
}
if (pci_classprog(pci) == PCI_CLASS_SERIAL_USB_UHCI)
uhci_init(pci, count++);
else if (pci_classprog(pci) == PCI_CLASS_SERIAL_USB_OHCI)
ohci_init(pci, count++);
}
}