blob: 70f659bbf7554f86b7bcf8f9f2044a3b72d8c2a0 [file] [log] [blame]
/*
* MSI-X device support
*
* This module includes support for MSI-X in pci devices.
*
* Author: Michael S. Tsirkin <mst@redhat.com>
*
* Copyright (c) 2009, Red Hat Inc, Michael S. Tsirkin (mst@redhat.com)
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*/
#include "hw.h"
#include "msix.h"
#include "pci.h"
#include "range.h"
#include "kvm.h"
#define MSIX_CAP_LENGTH 12
/* MSI enable bit and maskall bit are in byte 1 in FLAGS register */
#define MSIX_CONTROL_OFFSET (PCI_MSIX_FLAGS + 1)
#define MSIX_ENABLE_MASK (PCI_MSIX_FLAGS_ENABLE >> 8)
#define MSIX_MASKALL_MASK (PCI_MSIX_FLAGS_MASKALL >> 8)
/* How much space does an MSIX table need. */
/* The spec requires giving the table structure
* a 4K aligned region all by itself. */
#define MSIX_PAGE_SIZE 0x1000
/* Reserve second half of the page for pending bits */
#define MSIX_PAGE_PENDING (MSIX_PAGE_SIZE / 2)
#define MSIX_MAX_ENTRIES 32
/* Flag for interrupt controller to declare MSI-X support */
int msix_supported;
/* KVM specific MSIX helpers */
static void kvm_msix_free(PCIDevice *dev)
{
int vector, changed = 0;
for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
if (dev->msix_entry_used[vector]) {
kvm_msi_message_del(&dev->msix_irq_entries[vector]);
changed = 1;
}
}
if (changed) {
kvm_commit_irq_routes();
}
}
static void kvm_msix_message_from_vector(PCIDevice *dev, unsigned vector,
KVMMsiMessage *kmm)
{
uint8_t *table_entry = dev->msix_table_page + vector * PCI_MSIX_ENTRY_SIZE;
kmm->addr_lo = pci_get_long(table_entry + PCI_MSIX_ENTRY_LOWER_ADDR);
kmm->addr_hi = pci_get_long(table_entry + PCI_MSIX_ENTRY_UPPER_ADDR);
kmm->data = pci_get_long(table_entry + PCI_MSIX_ENTRY_DATA);
}
static void kvm_msix_update(PCIDevice *dev, int vector,
int was_masked, int is_masked)
{
KVMMsiMessage new_entry, *entry;
int mask_cleared = was_masked && !is_masked;
int r;
/* It is only legal to change an entry when it is masked. Therefore, it is
* enough to update the routing in kernel when mask is being cleared. */
if (!mask_cleared) {
return;
}
if (!dev->msix_entry_used[vector]) {
return;
}
entry = dev->msix_irq_entries + vector;
kvm_msix_message_from_vector(dev, vector, &new_entry);
r = kvm_msi_message_update(entry, &new_entry);
if (r < 0) {
fprintf(stderr, "%s: kvm_update_msix failed: %s\n", __func__,
strerror(-r));
exit(1);
}
if (r > 0) {
*entry = new_entry;
r = kvm_commit_irq_routes();
if (r) {
fprintf(stderr, "%s: kvm_commit_irq_routes failed: %s\n", __func__,
strerror(-r));
exit(1);
}
}
}
static int kvm_msix_vector_add(PCIDevice *dev, unsigned vector)
{
KVMMsiMessage *kmm = dev->msix_irq_entries + vector;
int r;
kvm_msix_message_from_vector(dev, vector, kmm);
r = kvm_msi_message_add(kmm);
if (r < 0) {
fprintf(stderr, "%s: kvm_add_msix failed: %s\n", __func__, strerror(-r));
return r;
}
r = kvm_commit_irq_routes();
if (r < 0) {
fprintf(stderr, "%s: kvm_commit_irq_routes failed: %s\n", __func__, strerror(-r));
return r;
}
return 0;
}
static void kvm_msix_vector_del(PCIDevice *dev, unsigned vector)
{
kvm_msi_message_del(&dev->msix_irq_entries[vector]);
kvm_commit_irq_routes();
}
/* Add MSI-X capability to the config space for the device. */
/* Given a bar and its size, add MSI-X table on top of it
* and fill MSI-X capability in the config space.
* Original bar size must be a power of 2 or 0.
* New bar size is returned. */
static int msix_add_config(struct PCIDevice *pdev, unsigned short nentries,
unsigned bar_nr, unsigned bar_size)
{
int config_offset;
uint8_t *config;
pdev->msix_bar_size = bar_size;
config_offset = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
if (!config_offset) {
uint32_t new_size;
if (nentries < 1 || nentries > PCI_MSIX_FLAGS_QSIZE + 1)
return -EINVAL;
if (bar_size > 0x80000000)
return -ENOSPC;
/* Add space for MSI-X structures */
if (!bar_size) {
new_size = MSIX_PAGE_SIZE;
} else if (bar_size < MSIX_PAGE_SIZE) {
bar_size = MSIX_PAGE_SIZE;
new_size = MSIX_PAGE_SIZE * 2;
} else {
new_size = bar_size * 2;
}
pdev->msix_bar_size = new_size;
config_offset = pci_add_capability(pdev, PCI_CAP_ID_MSIX,
0, MSIX_CAP_LENGTH);
if (config_offset < 0)
return config_offset;
config = pdev->config + config_offset;
pci_set_word(config + PCI_MSIX_FLAGS, nentries - 1);
/* Table on top of BAR */
pci_set_long(config + PCI_MSIX_TABLE, bar_size | bar_nr);
/* Pending bits on top of that */
pci_set_long(config + PCI_MSIX_PBA, (bar_size + MSIX_PAGE_PENDING) |
bar_nr);
}
pdev->msix_cap = config_offset;
/* Make flags bit writable. */
pdev->wmask[config_offset + MSIX_CONTROL_OFFSET] |= MSIX_ENABLE_MASK |
MSIX_MASKALL_MASK;
return 0;
}
static uint32_t msix_mmio_readl(void *opaque, target_phys_addr_t addr)
{
PCIDevice *dev = opaque;
unsigned int offset = addr & (MSIX_PAGE_SIZE - 1) & ~0x3;
void *page = dev->msix_table_page;
return pci_get_long(page + offset);
}
static uint32_t msix_mmio_read_unallowed(void *opaque, target_phys_addr_t addr)
{
fprintf(stderr, "MSI-X: only dword read is allowed!\n");
return 0;
}
static uint8_t msix_pending_mask(int vector)
{
return 1 << (vector % 8);
}
static uint8_t *msix_pending_byte(PCIDevice *dev, int vector)
{
return dev->msix_table_page + MSIX_PAGE_PENDING + vector / 8;
}
static int msix_is_pending(PCIDevice *dev, int vector)
{
return *msix_pending_byte(dev, vector) & msix_pending_mask(vector);
}
static void msix_set_pending(PCIDevice *dev, int vector)
{
*msix_pending_byte(dev, vector) |= msix_pending_mask(vector);
}
static void msix_clr_pending(PCIDevice *dev, int vector)
{
*msix_pending_byte(dev, vector) &= ~msix_pending_mask(vector);
}
static int msix_function_masked(PCIDevice *dev)
{
return dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] & MSIX_MASKALL_MASK;
}
static int msix_is_masked(PCIDevice *dev, int vector)
{
unsigned offset =
vector * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL;
return msix_function_masked(dev) ||
dev->msix_table_page[offset] & PCI_MSIX_ENTRY_CTRL_MASKBIT;
}
static void msix_handle_mask_update(PCIDevice *dev, int vector)
{
if (!msix_is_masked(dev, vector) && msix_is_pending(dev, vector)) {
msix_clr_pending(dev, vector);
msix_notify(dev, vector);
}
}
/* Handle MSI-X capability config write. */
void msix_write_config(PCIDevice *dev, uint32_t addr,
uint32_t val, int len)
{
unsigned enable_pos = dev->msix_cap + MSIX_CONTROL_OFFSET;
int vector;
if (!range_covers_byte(addr, len, enable_pos)) {
return;
}
if (!msix_enabled(dev)) {
return;
}
pci_device_deassert_intx(dev);
if (msix_function_masked(dev)) {
return;
}
for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
msix_handle_mask_update(dev, vector);
}
}
static void msix_mmio_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIDevice *dev = opaque;
unsigned int offset = addr & (MSIX_PAGE_SIZE - 1) & ~0x3;
int vector = offset / PCI_MSIX_ENTRY_SIZE;
int was_masked = msix_is_masked(dev, vector);
pci_set_long(dev->msix_table_page + offset, val);
if (kvm_enabled() && kvm_irqchip_in_kernel()) {
kvm_msix_update(dev, vector, was_masked, msix_is_masked(dev, vector));
}
if (was_masked != msix_is_masked(dev, vector) && dev->msix_mask_notifier) {
int r = dev->msix_mask_notifier(dev, vector,
msix_is_masked(dev, vector));
assert(r >= 0);
}
msix_handle_mask_update(dev, vector);
}
static void msix_mmio_write_unallowed(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
fprintf(stderr, "MSI-X: only dword write is allowed!\n");
}
static CPUWriteMemoryFunc * const msix_mmio_write[] = {
msix_mmio_write_unallowed, msix_mmio_write_unallowed, msix_mmio_writel
};
static CPUReadMemoryFunc * const msix_mmio_read[] = {
msix_mmio_read_unallowed, msix_mmio_read_unallowed, msix_mmio_readl
};
/* Should be called from device's map method. */
void msix_mmio_map(PCIDevice *d, int region_num,
pcibus_t addr, pcibus_t size, int type)
{
uint8_t *config = d->config + d->msix_cap;
uint32_t table = pci_get_long(config + PCI_MSIX_TABLE);
uint32_t offset = table & ~(MSIX_PAGE_SIZE - 1);
/* TODO: for assigned devices, we'll want to make it possible to map
* pending bits separately in case they are in a separate bar. */
int table_bir = table & PCI_MSIX_FLAGS_BIRMASK;
if (table_bir != region_num)
return;
if (size <= offset)
return;
cpu_register_physical_memory(addr + offset,
MIN(size - offset, MSIX_PAGE_SIZE),
d->msix_mmio_index);
}
static void msix_mask_all(struct PCIDevice *dev, unsigned nentries)
{
int vector, r;
for (vector = 0; vector < nentries; ++vector) {
unsigned offset =
vector * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL;
int was_masked = msix_is_masked(dev, vector);
dev->msix_table_page[offset] |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
if (was_masked != msix_is_masked(dev, vector) &&
dev->msix_mask_notifier) {
r = dev->msix_mask_notifier(dev, vector,
msix_is_masked(dev, vector));
assert(r >= 0);
}
}
}
/* Initialize the MSI-X structures. Note: if MSI-X is supported, BAR size is
* modified, it should be retrieved with msix_bar_size. */
int msix_init(struct PCIDevice *dev, unsigned short nentries,
unsigned bar_nr, unsigned bar_size)
{
int ret;
/* Nothing to do if MSI is not supported by interrupt controller */
if (!msix_supported ||
(kvm_enabled() && kvm_irqchip_in_kernel() && !kvm_has_gsi_routing())) {
return -ENOTSUP;
}
if (nentries > MSIX_MAX_ENTRIES)
return -EINVAL;
dev->msix_mask_notifier = NULL;
dev->msix_entry_used = qemu_mallocz(MSIX_MAX_ENTRIES *
sizeof *dev->msix_entry_used);
dev->msix_table_page = qemu_mallocz(MSIX_PAGE_SIZE);
msix_mask_all(dev, nentries);
dev->msix_mmio_index = cpu_register_io_memory(msix_mmio_read,
msix_mmio_write, dev,
DEVICE_NATIVE_ENDIAN);
if (dev->msix_mmio_index == -1) {
ret = -EBUSY;
goto err_index;
}
dev->msix_entries_nr = nentries;
ret = msix_add_config(dev, nentries, bar_nr, bar_size);
if (ret)
goto err_config;
if (kvm_enabled() && kvm_irqchip_in_kernel()) {
dev->msix_irq_entries = qemu_malloc(nentries *
sizeof *dev->msix_irq_entries);
}
dev->cap_present |= QEMU_PCI_CAP_MSIX;
return 0;
err_config:
dev->msix_entries_nr = 0;
cpu_unregister_io_memory(dev->msix_mmio_index);
err_index:
qemu_free(dev->msix_table_page);
dev->msix_table_page = NULL;
qemu_free(dev->msix_entry_used);
dev->msix_entry_used = NULL;
return ret;
}
static void msix_free_irq_entries(PCIDevice *dev)
{
int vector;
if (kvm_enabled() && kvm_irqchip_in_kernel()) {
kvm_msix_free(dev);
}
for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
dev->msix_entry_used[vector] = 0;
msix_clr_pending(dev, vector);
}
}
/* Clean up resources for the device. */
int msix_uninit(PCIDevice *dev)
{
if (!(dev->cap_present & QEMU_PCI_CAP_MSIX))
return 0;
pci_del_capability(dev, PCI_CAP_ID_MSIX, MSIX_CAP_LENGTH);
dev->msix_cap = 0;
msix_free_irq_entries(dev);
dev->msix_entries_nr = 0;
cpu_unregister_io_memory(dev->msix_mmio_index);
qemu_free(dev->msix_table_page);
dev->msix_table_page = NULL;
qemu_free(dev->msix_entry_used);
dev->msix_entry_used = NULL;
qemu_free(dev->msix_irq_entries);
dev->msix_irq_entries = NULL;
dev->cap_present &= ~QEMU_PCI_CAP_MSIX;
return 0;
}
void msix_save(PCIDevice *dev, QEMUFile *f)
{
unsigned n = dev->msix_entries_nr;
if (!msix_supported) {
return;
}
if (!(dev->cap_present & QEMU_PCI_CAP_MSIX)) {
return;
}
qemu_put_buffer(f, dev->msix_table_page, n * PCI_MSIX_ENTRY_SIZE);
qemu_put_buffer(f, dev->msix_table_page + MSIX_PAGE_PENDING, (n + 7) / 8);
}
/* Should be called after restoring the config space. */
void msix_load(PCIDevice *dev, QEMUFile *f)
{
unsigned n = dev->msix_entries_nr;
if (!msix_supported)
return;
if (!(dev->cap_present & QEMU_PCI_CAP_MSIX)) {
return;
}
msix_free_irq_entries(dev);
qemu_get_buffer(f, dev->msix_table_page, n * PCI_MSIX_ENTRY_SIZE);
qemu_get_buffer(f, dev->msix_table_page + MSIX_PAGE_PENDING, (n + 7) / 8);
}
/* Does device support MSI-X? */
int msix_present(PCIDevice *dev)
{
return dev->cap_present & QEMU_PCI_CAP_MSIX;
}
/* Is MSI-X enabled? */
int msix_enabled(PCIDevice *dev)
{
return (dev->cap_present & QEMU_PCI_CAP_MSIX) &&
(dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &
MSIX_ENABLE_MASK);
}
/* Size of bar where MSI-X table resides, or 0 if MSI-X not supported. */
uint32_t msix_bar_size(PCIDevice *dev)
{
return (dev->cap_present & QEMU_PCI_CAP_MSIX) ?
dev->msix_bar_size : 0;
}
/* Send an MSI-X message */
void msix_notify(PCIDevice *dev, unsigned vector)
{
uint8_t *table_entry = dev->msix_table_page + vector * PCI_MSIX_ENTRY_SIZE;
uint64_t address;
uint32_t data;
if (vector >= dev->msix_entries_nr || !dev->msix_entry_used[vector])
return;
if (msix_is_masked(dev, vector)) {
msix_set_pending(dev, vector);
return;
}
if (kvm_enabled() && kvm_irqchip_in_kernel()) {
kvm_set_irq(dev->msix_irq_entries[vector].gsi, 1, NULL);
return;
}
address = pci_get_quad(table_entry + PCI_MSIX_ENTRY_LOWER_ADDR);
data = pci_get_long(table_entry + PCI_MSIX_ENTRY_DATA);
stl_le_phys(address, data);
}
void msix_reset(PCIDevice *dev)
{
if (!(dev->cap_present & QEMU_PCI_CAP_MSIX))
return;
msix_free_irq_entries(dev);
dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &=
~dev->wmask[dev->msix_cap + MSIX_CONTROL_OFFSET];
memset(dev->msix_table_page, 0, MSIX_PAGE_SIZE);
msix_mask_all(dev, dev->msix_entries_nr);
}
/* PCI spec suggests that devices make it possible for software to configure
* less vectors than supported by the device, but does not specify a standard
* mechanism for devices to do so.
*
* We support this by asking devices to declare vectors software is going to
* actually use, and checking this on the notification path. Devices that
* don't want to follow the spec suggestion can declare all vectors as used. */
/* Mark vector as used. */
int msix_vector_use(PCIDevice *dev, unsigned vector)
{
int ret;
if (vector >= dev->msix_entries_nr)
return -EINVAL;
if (kvm_enabled() && kvm_irqchip_in_kernel() &&
!dev->msix_entry_used[vector]) {
ret = kvm_msix_vector_add(dev, vector);
if (ret) {
return ret;
}
}
++dev->msix_entry_used[vector];
return 0;
}
/* Mark vector as unused. */
void msix_vector_unuse(PCIDevice *dev, unsigned vector)
{
if (vector >= dev->msix_entries_nr || !dev->msix_entry_used[vector]) {
return;
}
if (--dev->msix_entry_used[vector]) {
return;
}
if (kvm_enabled() && kvm_irqchip_in_kernel()) {
kvm_msix_vector_del(dev, vector);
}
msix_clr_pending(dev, vector);
}
void msix_unuse_all_vectors(PCIDevice *dev)
{
if (!(dev->cap_present & QEMU_PCI_CAP_MSIX))
return;
msix_free_irq_entries(dev);
}
/* Invoke the notifier if vector entry is used and unmasked. */
static int msix_notify_if_unmasked(PCIDevice *dev, unsigned vector, int masked)
{
assert(dev->msix_mask_notifier);
if (!dev->msix_entry_used[vector] || msix_is_masked(dev, vector)) {
return 0;
}
return dev->msix_mask_notifier(dev, vector, masked);
}
static int msix_set_mask_notifier_for_vector(PCIDevice *dev, unsigned vector)
{
/* Notifier has been set. Invoke it on unmasked vectors. */
return msix_notify_if_unmasked(dev, vector, 0);
}
static int msix_unset_mask_notifier_for_vector(PCIDevice *dev, unsigned vector)
{
/* Notifier will be unset. Invoke it to mask unmasked entries. */
return msix_notify_if_unmasked(dev, vector, 1);
}
int msix_set_mask_notifier(PCIDevice *dev, msix_mask_notifier_func f)
{
int r, n;
assert(!dev->msix_mask_notifier);
dev->msix_mask_notifier = f;
for (n = 0; n < dev->msix_entries_nr; ++n) {
r = msix_set_mask_notifier_for_vector(dev, n);
if (r < 0) {
goto undo;
}
}
return 0;
undo:
while (--n >= 0) {
msix_unset_mask_notifier_for_vector(dev, n);
}
dev->msix_mask_notifier = NULL;
return r;
}
int msix_unset_mask_notifier(PCIDevice *dev)
{
int r, n;
assert(dev->msix_mask_notifier);
for (n = 0; n < dev->msix_entries_nr; ++n) {
r = msix_unset_mask_notifier_for_vector(dev, n);
if (r < 0) {
goto undo;
}
}
dev->msix_mask_notifier = NULL;
return 0;
undo:
while (--n >= 0) {
msix_set_mask_notifier_for_vector(dev, n);
}
return r;
}