blob: 401c7e12c71cee01826d4bed32a1c99408d7c22c [file] [log] [blame]
#include "config.h"
#include "config-host.h"
#ifdef USE_KVM
#include "exec.h"
#include "qemu-kvm.h"
#include <kvmctl.h>
#include <string.h>
#define MSR_IA32_TSC 0x10
extern void perror(const char *s);
int kvm_allowed = 1;
kvm_context_t kvm_context;
static struct kvm_msr_list *kvm_msr_list;
static int kvm_has_msr_star;
#define NR_CPU 16
static CPUState *saved_env[NR_CPU];
static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
uint64_t data)
{
entry->index = index;
entry->data = data;
}
/* returns 0 on success, non-0 on failure */
static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
{
switch (entry->index) {
case MSR_IA32_SYSENTER_CS:
env->sysenter_cs = entry->data;
break;
case MSR_IA32_SYSENTER_ESP:
env->sysenter_esp = entry->data;
break;
case MSR_IA32_SYSENTER_EIP:
env->sysenter_eip = entry->data;
break;
case MSR_STAR:
env->star = entry->data;
break;
#ifdef TARGET_X86_64
case MSR_CSTAR:
env->cstar = entry->data;
break;
case MSR_KERNELGSBASE:
env->kernelgsbase = entry->data;
break;
case MSR_FMASK:
env->fmask = entry->data;
break;
case MSR_LSTAR:
env->lstar = entry->data;
break;
#endif
case MSR_IA32_TSC:
env->tsc = entry->data;
break;
default:
printf("Warning unknown msr index 0x%x\n", entry->index);
return 1;
}
return 0;
}
#ifdef TARGET_X86_64
#define MSR_COUNT 9
#else
#define MSR_COUNT 5
#endif
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = 3;
lhs->present = 1;
lhs->dpl = 3;
lhs->db = 0;
lhs->s = 1;
lhs->l = 0;
lhs->g = 0;
lhs->avl = 0;
lhs->unusable = 0;
}
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
unsigned flags = rhs->flags;
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
lhs->present = (flags & DESC_P_MASK) != 0;
lhs->dpl = rhs->selector & 3;
lhs->db = (flags >> DESC_B_SHIFT) & 1;
lhs->s = (flags & DESC_S_MASK) != 0;
lhs->l = (flags >> DESC_L_SHIFT) & 1;
lhs->g = (flags & DESC_G_MASK) != 0;
lhs->avl = (flags & DESC_AVL_MASK) != 0;
lhs->unusable = 0;
}
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->flags =
(rhs->type << DESC_TYPE_SHIFT)
| (rhs->present * DESC_P_MASK)
| (rhs->dpl << DESC_DPL_SHIFT)
| (rhs->db << DESC_B_SHIFT)
| (rhs->s * DESC_S_MASK)
| (rhs->l << DESC_L_SHIFT)
| (rhs->g * DESC_G_MASK)
| (rhs->avl * DESC_AVL_MASK);
}
/* the reset values of qemu are not compatible to SVM
* this function is used to fix the segment descriptor values */
static void fix_realmode_dataseg(struct kvm_segment *seg)
{
seg->type = 0x02;
seg->present = 1;
seg->s = 1;
}
static void load_regs(CPUState *env)
{
struct kvm_regs regs;
struct kvm_sregs sregs;
struct kvm_msr_entry msrs[MSR_COUNT];
int rc, n;
/* hack: save env */
if (!saved_env[0])
saved_env[0] = env;
regs.rax = env->regs[R_EAX];
regs.rbx = env->regs[R_EBX];
regs.rcx = env->regs[R_ECX];
regs.rdx = env->regs[R_EDX];
regs.rsi = env->regs[R_ESI];
regs.rdi = env->regs[R_EDI];
regs.rsp = env->regs[R_ESP];
regs.rbp = env->regs[R_EBP];
#ifdef TARGET_X86_64
regs.r8 = env->regs[8];
regs.r9 = env->regs[9];
regs.r10 = env->regs[10];
regs.r11 = env->regs[11];
regs.r12 = env->regs[12];
regs.r13 = env->regs[13];
regs.r14 = env->regs[14];
regs.r15 = env->regs[15];
#endif
regs.rflags = env->eflags;
regs.rip = env->eip;
kvm_set_regs(kvm_context, 0, &regs);
memcpy(sregs.interrupt_bitmap, env->kvm_interrupt_bitmap, sizeof(sregs.interrupt_bitmap));
if ((env->eflags & VM_MASK)) {
set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
set_v8086_seg(&sregs.es, &env->segs[R_ES]);
set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
} else {
set_seg(&sregs.cs, &env->segs[R_CS]);
set_seg(&sregs.ds, &env->segs[R_DS]);
set_seg(&sregs.es, &env->segs[R_ES]);
set_seg(&sregs.fs, &env->segs[R_FS]);
set_seg(&sregs.gs, &env->segs[R_GS]);
set_seg(&sregs.ss, &env->segs[R_SS]);
if (env->cr[0] & CR0_PE_MASK) {
/* force ss cpl to cs cpl */
sregs.ss.selector = (sregs.ss.selector & ~3) |
(sregs.cs.selector & 3);
sregs.ss.dpl = sregs.ss.selector & 3;
}
if (!(env->cr[0] & CR0_PG_MASK)) {
fix_realmode_dataseg(&sregs.ds);
fix_realmode_dataseg(&sregs.es);
fix_realmode_dataseg(&sregs.fs);
fix_realmode_dataseg(&sregs.gs);
fix_realmode_dataseg(&sregs.ss);
}
}
set_seg(&sregs.tr, &env->tr);
set_seg(&sregs.ldt, &env->ldt);
sregs.idt.limit = env->idt.limit;
sregs.idt.base = env->idt.base;
sregs.gdt.limit = env->gdt.limit;
sregs.gdt.base = env->gdt.base;
sregs.cr0 = env->cr[0];
sregs.cr2 = env->cr[2];
sregs.cr3 = env->cr[3];
sregs.cr4 = env->cr[4];
sregs.apic_base = cpu_get_apic_base(env);
sregs.efer = env->efer;
sregs.cr8 = cpu_get_apic_tpr(env);
kvm_set_sregs(kvm_context, 0, &sregs);
/* msrs */
n = 0;
set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
if (kvm_has_msr_star)
set_msr_entry(&msrs[n++], MSR_STAR, env->star);
set_msr_entry(&msrs[n++], MSR_IA32_TSC, env->tsc);
#ifdef TARGET_X86_64
set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
#endif
rc = kvm_set_msrs(kvm_context, 0, msrs, n);
if (rc == -1)
perror("kvm_set_msrs FAILED");
}
static void save_regs(CPUState *env)
{
struct kvm_regs regs;
struct kvm_sregs sregs;
struct kvm_msr_entry msrs[MSR_COUNT];
uint32_t hflags;
uint32_t i, n, rc;
kvm_get_regs(kvm_context, 0, &regs);
env->regs[R_EAX] = regs.rax;
env->regs[R_EBX] = regs.rbx;
env->regs[R_ECX] = regs.rcx;
env->regs[R_EDX] = regs.rdx;
env->regs[R_ESI] = regs.rsi;
env->regs[R_EDI] = regs.rdi;
env->regs[R_ESP] = regs.rsp;
env->regs[R_EBP] = regs.rbp;
#ifdef TARGET_X86_64
env->regs[8] = regs.r8;
env->regs[9] = regs.r9;
env->regs[10] = regs.r10;
env->regs[11] = regs.r11;
env->regs[12] = regs.r12;
env->regs[13] = regs.r13;
env->regs[14] = regs.r14;
env->regs[15] = regs.r15;
#endif
env->eflags = regs.rflags;
env->eip = regs.rip;
kvm_get_sregs(kvm_context, 0, &sregs);
memcpy(env->kvm_interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->kvm_interrupt_bitmap));
get_seg(&env->segs[R_CS], &sregs.cs);
get_seg(&env->segs[R_DS], &sregs.ds);
get_seg(&env->segs[R_ES], &sregs.es);
get_seg(&env->segs[R_FS], &sregs.fs);
get_seg(&env->segs[R_GS], &sregs.gs);
get_seg(&env->segs[R_SS], &sregs.ss);
get_seg(&env->tr, &sregs.tr);
get_seg(&env->ldt, &sregs.ldt);
env->idt.limit = sregs.idt.limit;
env->idt.base = sregs.idt.base;
env->gdt.limit = sregs.gdt.limit;
env->gdt.base = sregs.gdt.base;
env->cr[0] = sregs.cr0;
env->cr[2] = sregs.cr2;
env->cr[3] = sregs.cr3;
env->cr[4] = sregs.cr4;
cpu_set_apic_base(env, sregs.apic_base);
env->efer = sregs.efer;
cpu_set_apic_tpr(env, sregs.cr8);
#define HFLAG_COPY_MASK ~( \
HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
(HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
if (env->efer & MSR_EFER_LMA) {
hflags |= HF_LMA_MASK;
}
if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
} else {
hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_CS32_SHIFT);
hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_SS32_SHIFT);
if (!(env->cr[0] & CR0_PE_MASK) ||
(env->eflags & VM_MASK) ||
!(hflags & HF_CS32_MASK)) {
hflags |= HF_ADDSEG_MASK;
} else {
hflags |= ((env->segs[R_DS].base |
env->segs[R_ES].base |
env->segs[R_SS].base) != 0) <<
HF_ADDSEG_SHIFT;
}
}
env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((env->eflags >> 10) & 1));
CC_OP = CC_OP_EFLAGS;
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
tlb_flush(env, 1);
/* msrs */
n = 0;
msrs[n++].index = MSR_IA32_SYSENTER_CS;
msrs[n++].index = MSR_IA32_SYSENTER_ESP;
msrs[n++].index = MSR_IA32_SYSENTER_EIP;
if (kvm_has_msr_star)
msrs[n++].index = MSR_STAR;
msrs[n++].index = MSR_IA32_TSC;
#ifdef TARGET_X86_64
msrs[n++].index = MSR_CSTAR;
msrs[n++].index = MSR_KERNELGSBASE;
msrs[n++].index = MSR_FMASK;
msrs[n++].index = MSR_LSTAR;
#endif
rc = kvm_get_msrs(kvm_context, 0, msrs, n);
if (rc == -1) {
perror("kvm_get_msrs FAILED");
}
else {
n = rc; /* actual number of MSRs */
for (i=0 ; i<n; i++) {
if (get_msr_entry(&msrs[i], env))
return;
}
}
}
#include <signal.h>
static int try_push_interrupts(void *opaque)
{
CPUState **envs = opaque, *env;
env = envs[0];
if (env->ready_for_interrupt_injection &&
(env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) {
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
// for now using cpu 0
kvm_inject_irq(kvm_context, 0, cpu_get_pic_interrupt(env));
}
return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
}
static void post_kvm_run(void *opaque, struct kvm_run *kvm_run)
{
CPUState **envs = opaque, *env;
env = envs[0];
env->eflags = (kvm_run->if_flag) ? env->eflags | IF_MASK:env->eflags & ~IF_MASK;
env->ready_for_interrupt_injection = kvm_run->ready_for_interrupt_injection;
cpu_set_apic_tpr(env, kvm_run->cr8);
cpu_set_apic_base(env, kvm_run->apic_base);
}
static void pre_kvm_run(void *opaque, struct kvm_run *kvm_run)
{
CPUState **envs = opaque, *env;
env = envs[0];
kvm_run->cr8 = cpu_get_apic_tpr(env);
}
void kvm_load_registers(CPUState *env)
{
load_regs(env);
}
void kvm_save_registers(CPUState *env)
{
save_regs(env);
}
int kvm_cpu_exec(CPUState *env)
{
int r;
int pending = (!env->ready_for_interrupt_injection ||
((env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)));
if (!pending && (env->interrupt_request & CPU_INTERRUPT_EXIT)) {
env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
env->exception_index = EXCP_INTERRUPT;
cpu_loop_exit();
}
if (!saved_env[0])
saved_env[0] = env;
r = kvm_run(kvm_context, 0);
if (r < 0) {
printf("kvm_run returned %d\n", r);
exit(1);
}
return 0;
}
static int kvm_cpuid(void *opaque, uint64_t *rax, uint64_t *rbx,
uint64_t *rcx, uint64_t *rdx)
{
CPUState **envs = opaque;
CPUState *saved_env;
uint32_t eax = *rax;
saved_env = env;
env = envs[0];
env->regs[R_EAX] = *rax;
env->regs[R_EBX] = *rbx;
env->regs[R_ECX] = *rcx;
env->regs[R_EDX] = *rdx;
helper_cpuid();
*rdx = env->regs[R_EDX];
*rcx = env->regs[R_ECX];
*rbx = env->regs[R_EBX];
*rax = env->regs[R_EAX];
// don't report long mode/syscall/nx if no native support
if (eax == 0x80000001) {
unsigned long h_eax = eax, h_edx;
// push/pop hack to workaround gcc 3 register pressure trouble
asm (
#ifdef __x86_64__
"push %%rbx; push %%rcx; cpuid; pop %%rcx; pop %%rbx"
#else
"push %%ebx; push %%ecx; cpuid; pop %%ecx; pop %%ebx"
#endif
: "+a"(h_eax), "=d"(h_edx));
// long mode
if ((h_edx & 0x20000000) == 0)
*rdx &= ~0x20000000ull;
// syscall
if ((h_edx & 0x00000800) == 0)
*rdx &= ~0x00000800ull;
// nx
if ((h_edx & 0x00100000) == 0)
*rdx &= ~0x00100000ull;
}
env = saved_env;
return 0;
}
static int kvm_debug(void *opaque, int vcpu)
{
CPUState **envs = opaque;
env = envs[0];
env->exception_index = EXCP_DEBUG;
return 1;
}
static int kvm_inb(void *opaque, uint16_t addr, uint8_t *data)
{
*data = cpu_inb(0, addr);
return 0;
}
static int kvm_inw(void *opaque, uint16_t addr, uint16_t *data)
{
*data = cpu_inw(0, addr);
return 0;
}
static int kvm_inl(void *opaque, uint16_t addr, uint32_t *data)
{
*data = cpu_inl(0, addr);
return 0;
}
static int kvm_outb(void *opaque, uint16_t addr, uint8_t data)
{
cpu_outb(0, addr, data);
return 0;
}
static int kvm_outw(void *opaque, uint16_t addr, uint16_t data)
{
cpu_outw(0, addr, data);
return 0;
}
static int kvm_outl(void *opaque, uint16_t addr, uint32_t data)
{
cpu_outl(0, addr, data);
return 0;
}
static int kvm_readb(void *opaque, uint64_t addr, uint8_t *data)
{
*data = ldub_phys(addr);
return 0;
}
static int kvm_readw(void *opaque, uint64_t addr, uint16_t *data)
{
*data = lduw_phys(addr);
return 0;
}
static int kvm_readl(void *opaque, uint64_t addr, uint32_t *data)
{
*data = ldl_phys(addr);
return 0;
}
static int kvm_readq(void *opaque, uint64_t addr, uint64_t *data)
{
*data = ldq_phys(addr);
return 0;
}
static int kvm_writeb(void *opaque, uint64_t addr, uint8_t data)
{
stb_phys(addr, data);
return 0;
}
static int kvm_writew(void *opaque, uint64_t addr, uint16_t data)
{
stw_phys(addr, data);
return 0;
}
static int kvm_writel(void *opaque, uint64_t addr, uint32_t data)
{
stl_phys(addr, data);
return 0;
}
static int kvm_writeq(void *opaque, uint64_t addr, uint64_t data)
{
stq_phys(addr, data);
return 0;
}
static int kvm_io_window(void *opaque)
{
return 1;
}
static int kvm_halt(void *opaque, int vcpu)
{
CPUState **envs = opaque, *env;
env = envs[0];
if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK))) {
env->hflags |= HF_HALTED_MASK;
env->exception_index = EXCP_HLT;
}
return 1;
}
static int kvm_shutdown(void *opaque, int vcpu)
{
qemu_system_reset_request();
return 1;
}
static struct kvm_callbacks qemu_kvm_ops = {
.cpuid = kvm_cpuid,
.debug = kvm_debug,
.inb = kvm_inb,
.inw = kvm_inw,
.inl = kvm_inl,
.outb = kvm_outb,
.outw = kvm_outw,
.outl = kvm_outl,
.readb = kvm_readb,
.readw = kvm_readw,
.readl = kvm_readl,
.readq = kvm_readq,
.writeb = kvm_writeb,
.writew = kvm_writew,
.writel = kvm_writel,
.writeq = kvm_writeq,
.halt = kvm_halt,
.shutdown = kvm_shutdown,
.io_window = kvm_io_window,
.try_push_interrupts = try_push_interrupts,
.post_kvm_run = post_kvm_run,
.pre_kvm_run = pre_kvm_run,
};
int kvm_qemu_init()
{
/* Try to initialize kvm */
kvm_context = kvm_init(&qemu_kvm_ops, saved_env);
if (!kvm_context) {
return -1;
}
return 0;
}
int kvm_qemu_create_context(void)
{
int i;
if (kvm_create(kvm_context, phys_ram_size, (void**)&phys_ram_base) < 0) {
kvm_qemu_destroy();
return -1;
}
kvm_msr_list = kvm_get_msr_list(kvm_context);
if (!kvm_msr_list) {
kvm_qemu_destroy();
return -1;
}
for (i = 0; i < kvm_msr_list->nmsrs; ++i)
if (kvm_msr_list->indices[i] == MSR_STAR)
kvm_has_msr_star = 1;
return 0;
}
void kvm_qemu_destroy(void)
{
kvm_finalize(kvm_context);
}
int kvm_update_debugger(CPUState *env)
{
struct kvm_debug_guest dbg;
int i;
dbg.enabled = 0;
if (env->nb_breakpoints || env->singlestep_enabled) {
dbg.enabled = 1;
for (i = 0; i < 4 && i < env->nb_breakpoints; ++i) {
dbg.breakpoints[i].enabled = 1;
dbg.breakpoints[i].address = env->breakpoints[i];
}
dbg.singlestep = env->singlestep_enabled;
}
return kvm_guest_debug(kvm_context, 0, &dbg);
}
#endif