blob: 5f0c49cbc9ceb2e600027a44e28dd948ad038498 [file] [log] [blame]
/*
* QEMU PowerPC 4xx embedded processors shared devices emulation
*
* Copyright (c) 2007 Jocelyn Mayer
*
* Copyright 2008 IBM Corp.
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "ppc.h"
#include "ppc4xx.h"
#include "sysemu.h"
#include "qemu-log.h"
#include "pci.h"
#include "bswap.h"
//#define DEBUG_MMIO
//#define DEBUG_UNASSIGNED
#define DEBUG_UIC
/*****************************************************************************/
/* Generic PowerPC 4xx processor instanciation */
CPUState *ppc4xx_init (const char *cpu_model,
clk_setup_t *cpu_clk, clk_setup_t *tb_clk,
uint32_t sysclk)
{
CPUState *env;
/* init CPUs */
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find PowerPC %s CPU definition\n",
cpu_model);
exit(1);
}
cpu_clk->cb = NULL; /* We don't care about CPU clock frequency changes */
cpu_clk->opaque = env;
/* Set time-base frequency to sysclk */
tb_clk->cb = ppc_emb_timers_init(env, sysclk);
tb_clk->opaque = env;
ppc_dcr_init(env, NULL, NULL);
/* Register qemu callbacks */
qemu_register_reset(&cpu_ppc_reset, env);
return env;
}
/*****************************************************************************/
/* Fake device used to map multiple devices in a single memory page */
#define MMIO_AREA_BITS 8
#define MMIO_AREA_LEN (1 << MMIO_AREA_BITS)
#define MMIO_AREA_NB (1 << (TARGET_PAGE_BITS - MMIO_AREA_BITS))
#define MMIO_IDX(addr) (((addr) >> MMIO_AREA_BITS) & (MMIO_AREA_NB - 1))
struct ppc4xx_mmio_t {
target_phys_addr_t base;
CPUReadMemoryFunc **mem_read[MMIO_AREA_NB];
CPUWriteMemoryFunc **mem_write[MMIO_AREA_NB];
void *opaque[MMIO_AREA_NB];
};
static uint32_t unassigned_mmio_readb (void *opaque, target_phys_addr_t addr)
{
#ifdef DEBUG_UNASSIGNED
ppc4xx_mmio_t *mmio;
mmio = opaque;
printf("Unassigned mmio read 0x" PADDRX " base " PADDRX "\n",
addr, mmio->base);
#endif
return 0;
}
static void unassigned_mmio_writeb (void *opaque,
target_phys_addr_t addr, uint32_t val)
{
#ifdef DEBUG_UNASSIGNED
ppc4xx_mmio_t *mmio;
mmio = opaque;
printf("Unassigned mmio write 0x" PADDRX " = 0x%x base " PADDRX "\n",
addr, val, mmio->base);
#endif
}
static CPUReadMemoryFunc *unassigned_mmio_read[3] = {
unassigned_mmio_readb,
unassigned_mmio_readb,
unassigned_mmio_readb,
};
static CPUWriteMemoryFunc *unassigned_mmio_write[3] = {
unassigned_mmio_writeb,
unassigned_mmio_writeb,
unassigned_mmio_writeb,
};
static uint32_t mmio_readlen (ppc4xx_mmio_t *mmio,
target_phys_addr_t addr, int len)
{
CPUReadMemoryFunc **mem_read;
uint32_t ret;
int idx;
idx = MMIO_IDX(addr - mmio->base);
#if defined(DEBUG_MMIO)
printf("%s: mmio %p len %d addr " PADDRX " idx %d\n", __func__,
mmio, len, addr, idx);
#endif
mem_read = mmio->mem_read[idx];
ret = (*mem_read[len])(mmio->opaque[idx], addr - mmio->base);
return ret;
}
static void mmio_writelen (ppc4xx_mmio_t *mmio,
target_phys_addr_t addr, uint32_t value, int len)
{
CPUWriteMemoryFunc **mem_write;
int idx;
idx = MMIO_IDX(addr - mmio->base);
#if defined(DEBUG_MMIO)
printf("%s: mmio %p len %d addr " PADDRX " idx %d value %08" PRIx32 "\n",
__func__, mmio, len, addr, idx, value);
#endif
mem_write = mmio->mem_write[idx];
(*mem_write[len])(mmio->opaque[idx], addr - mmio->base, value);
}
static uint32_t mmio_readb (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX "\n", __func__, addr);
#endif
return mmio_readlen(opaque, addr, 0);
}
static void mmio_writeb (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
#endif
mmio_writelen(opaque, addr, value, 0);
}
static uint32_t mmio_readw (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX "\n", __func__, addr);
#endif
return mmio_readlen(opaque, addr, 1);
}
static void mmio_writew (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
#endif
mmio_writelen(opaque, addr, value, 1);
}
static uint32_t mmio_readl (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX "\n", __func__, addr);
#endif
return mmio_readlen(opaque, addr, 2);
}
static void mmio_writel (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
#if defined(DEBUG_MMIO)
printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
#endif
mmio_writelen(opaque, addr, value, 2);
}
static CPUReadMemoryFunc *mmio_read[] = {
&mmio_readb,
&mmio_readw,
&mmio_readl,
};
static CPUWriteMemoryFunc *mmio_write[] = {
&mmio_writeb,
&mmio_writew,
&mmio_writel,
};
int ppc4xx_mmio_register (CPUState *env, ppc4xx_mmio_t *mmio,
target_phys_addr_t offset, uint32_t len,
CPUReadMemoryFunc **mem_read,
CPUWriteMemoryFunc **mem_write, void *opaque)
{
target_phys_addr_t end;
int idx, eidx;
if ((offset + len) > TARGET_PAGE_SIZE)
return -1;
idx = MMIO_IDX(offset);
end = offset + len - 1;
eidx = MMIO_IDX(end);
#if defined(DEBUG_MMIO)
printf("%s: offset " PADDRX " len %08" PRIx32 " " PADDRX " %d %d\n",
__func__, offset, len, end, idx, eidx);
#endif
for (; idx <= eidx; idx++) {
mmio->mem_read[idx] = mem_read;
mmio->mem_write[idx] = mem_write;
mmio->opaque[idx] = opaque;
}
return 0;
}
ppc4xx_mmio_t *ppc4xx_mmio_init (CPUState *env, target_phys_addr_t base)
{
ppc4xx_mmio_t *mmio;
int mmio_memory;
mmio = qemu_mallocz(sizeof(ppc4xx_mmio_t));
if (mmio != NULL) {
mmio->base = base;
mmio_memory = cpu_register_io_memory(0, mmio_read, mmio_write, mmio);
#if defined(DEBUG_MMIO)
printf("%s: base " PADDRX " len %08x %d\n", __func__,
base, TARGET_PAGE_SIZE, mmio_memory);
#endif
cpu_register_physical_memory(base, TARGET_PAGE_SIZE, mmio_memory);
ppc4xx_mmio_register(env, mmio, 0, TARGET_PAGE_SIZE,
unassigned_mmio_read, unassigned_mmio_write,
mmio);
}
return mmio;
}
/*****************************************************************************/
/* "Universal" Interrupt controller */
enum {
DCR_UICSR = 0x000,
DCR_UICSRS = 0x001,
DCR_UICER = 0x002,
DCR_UICCR = 0x003,
DCR_UICPR = 0x004,
DCR_UICTR = 0x005,
DCR_UICMSR = 0x006,
DCR_UICVR = 0x007,
DCR_UICVCR = 0x008,
DCR_UICMAX = 0x009,
};
#define UIC_MAX_IRQ 32
typedef struct ppcuic_t ppcuic_t;
struct ppcuic_t {
uint32_t dcr_base;
int use_vectors;
uint32_t level; /* Remembers the state of level-triggered interrupts. */
uint32_t uicsr; /* Status register */
uint32_t uicer; /* Enable register */
uint32_t uiccr; /* Critical register */
uint32_t uicpr; /* Polarity register */
uint32_t uictr; /* Triggering register */
uint32_t uicvcr; /* Vector configuration register */
uint32_t uicvr;
qemu_irq *irqs;
};
static void ppcuic_trigger_irq (ppcuic_t *uic)
{
uint32_t ir, cr;
int start, end, inc, i;
/* Trigger interrupt if any is pending */
ir = uic->uicsr & uic->uicer & (~uic->uiccr);
cr = uic->uicsr & uic->uicer & uic->uiccr;
#ifdef DEBUG_UIC
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "%s: uicsr %08" PRIx32 " uicer %08" PRIx32
" uiccr %08" PRIx32 "\n"
" %08" PRIx32 " ir %08" PRIx32 " cr %08" PRIx32 "\n",
__func__, uic->uicsr, uic->uicer, uic->uiccr,
uic->uicsr & uic->uicer, ir, cr);
}
#endif
if (ir != 0x0000000) {
#ifdef DEBUG_UIC
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "Raise UIC interrupt\n");
}
#endif
qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_INT]);
} else {
#ifdef DEBUG_UIC
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "Lower UIC interrupt\n");
}
#endif
qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_INT]);
}
/* Trigger critical interrupt if any is pending and update vector */
if (cr != 0x0000000) {
qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_CINT]);
if (uic->use_vectors) {
/* Compute critical IRQ vector */
if (uic->uicvcr & 1) {
start = 31;
end = 0;
inc = -1;
} else {
start = 0;
end = 31;
inc = 1;
}
uic->uicvr = uic->uicvcr & 0xFFFFFFFC;
for (i = start; i <= end; i += inc) {
if (cr & (1 << i)) {
uic->uicvr += (i - start) * 512 * inc;
break;
}
}
}
#ifdef DEBUG_UIC
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "Raise UIC critical interrupt - "
"vector %08" PRIx32 "\n", uic->uicvr);
}
#endif
} else {
#ifdef DEBUG_UIC
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "Lower UIC critical interrupt\n");
}
#endif
qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_CINT]);
uic->uicvr = 0x00000000;
}
}
static void ppcuic_set_irq (void *opaque, int irq_num, int level)
{
ppcuic_t *uic;
uint32_t mask, sr;
uic = opaque;
mask = 1 << (31-irq_num);
#ifdef DEBUG_UIC
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "%s: irq %d level %d uicsr %08" PRIx32
" mask %08" PRIx32 " => %08" PRIx32 " %08" PRIx32 "\n",
__func__, irq_num, level,
uic->uicsr, mask, uic->uicsr & mask, level << irq_num);
}
#endif
if (irq_num < 0 || irq_num > 31)
return;
sr = uic->uicsr;
/* Update status register */
if (uic->uictr & mask) {
/* Edge sensitive interrupt */
if (level == 1)
uic->uicsr |= mask;
} else {
/* Level sensitive interrupt */
if (level == 1) {
uic->uicsr |= mask;
uic->level |= mask;
} else {
uic->uicsr &= ~mask;
uic->level &= ~mask;
}
}
#ifdef DEBUG_UIC
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "%s: irq %d level %d sr %" PRIx32 " => "
"%08" PRIx32 "\n", __func__, irq_num, level, uic->uicsr, sr);
}
#endif
if (sr != uic->uicsr)
ppcuic_trigger_irq(uic);
}
static target_ulong dcr_read_uic (void *opaque, int dcrn)
{
ppcuic_t *uic;
target_ulong ret;
uic = opaque;
dcrn -= uic->dcr_base;
switch (dcrn) {
case DCR_UICSR:
case DCR_UICSRS:
ret = uic->uicsr;
break;
case DCR_UICER:
ret = uic->uicer;
break;
case DCR_UICCR:
ret = uic->uiccr;
break;
case DCR_UICPR:
ret = uic->uicpr;
break;
case DCR_UICTR:
ret = uic->uictr;
break;
case DCR_UICMSR:
ret = uic->uicsr & uic->uicer;
break;
case DCR_UICVR:
if (!uic->use_vectors)
goto no_read;
ret = uic->uicvr;
break;
case DCR_UICVCR:
if (!uic->use_vectors)
goto no_read;
ret = uic->uicvcr;
break;
default:
no_read:
ret = 0x00000000;
break;
}
return ret;
}
static void dcr_write_uic (void *opaque, int dcrn, target_ulong val)
{
ppcuic_t *uic;
uic = opaque;
dcrn -= uic->dcr_base;
#ifdef DEBUG_UIC
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "%s: dcr %d val " ADDRX "\n", __func__, dcrn, val);
}
#endif
switch (dcrn) {
case DCR_UICSR:
uic->uicsr &= ~val;
uic->uicsr |= uic->level;
ppcuic_trigger_irq(uic);
break;
case DCR_UICSRS:
uic->uicsr |= val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICER:
uic->uicer = val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICCR:
uic->uiccr = val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICPR:
uic->uicpr = val;
break;
case DCR_UICTR:
uic->uictr = val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICMSR:
break;
case DCR_UICVR:
break;
case DCR_UICVCR:
uic->uicvcr = val & 0xFFFFFFFD;
ppcuic_trigger_irq(uic);
break;
}
}
static void ppcuic_reset (void *opaque)
{
ppcuic_t *uic;
uic = opaque;
uic->uiccr = 0x00000000;
uic->uicer = 0x00000000;
uic->uicpr = 0x00000000;
uic->uicsr = 0x00000000;
uic->uictr = 0x00000000;
if (uic->use_vectors) {
uic->uicvcr = 0x00000000;
uic->uicvr = 0x0000000;
}
}
qemu_irq *ppcuic_init (CPUState *env, qemu_irq *irqs,
uint32_t dcr_base, int has_ssr, int has_vr)
{
ppcuic_t *uic;
int i;
uic = qemu_mallocz(sizeof(ppcuic_t));
if (uic != NULL) {
uic->dcr_base = dcr_base;
uic->irqs = irqs;
if (has_vr)
uic->use_vectors = 1;
for (i = 0; i < DCR_UICMAX; i++) {
ppc_dcr_register(env, dcr_base + i, uic,
&dcr_read_uic, &dcr_write_uic);
}
qemu_register_reset(ppcuic_reset, uic);
ppcuic_reset(uic);
}
return qemu_allocate_irqs(&ppcuic_set_irq, uic, UIC_MAX_IRQ);
}
#define PCIC0_CFGADDR 0x0
#define PCIC0_CFGDATA 0x4
#define PCIL0_PMM0LA 0x0
#define PCIL0_PMM0MA 0x4
#define PCIL0_PMM0PCILA 0x8
#define PCIL0_PMM0PCIHA 0xc
#define PCIL0_PMM1LA 0x10
#define PCIL0_PMM1MA 0x14
#define PCIL0_PMM1PCILA 0x18
#define PCIL0_PMM1PCIHA 0x1c
#define PCIL0_PMM2LA 0x20
#define PCIL0_PMM2MA 0x24
#define PCIL0_PMM2PCILA 0x28
#define PCIL0_PMM2PCIHA 0x2c
#define PCIL0_PTM1MS 0x30
#define PCIL0_PTM1LA 0x34
#define PCIL0_PTM2MS 0x38
#define PCIL0_PTM2LA 0x3c
#define PCI_REG_SIZE 0x40
#define PPC44x_PCI_MA_MASK 0xfffff000
#define PPC44x_PCI_MA_ENABLE 0x1
static uint32_t pci4xx_cfgaddr_read4(void *opaque, target_phys_addr_t addr)
{
ppc4xx_pci_t *ppc4xx_pci = opaque;
return cpu_to_le32(ppc4xx_pci->pcic0_cfgaddr);
}
static CPUReadMemoryFunc *pci4xx_cfgaddr_read[] = {
&pci4xx_cfgaddr_read4,
&pci4xx_cfgaddr_read4,
&pci4xx_cfgaddr_read4,
};
static void pci4xx_cfgaddr_write4(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
ppc4xx_pci_t *ppc4xx_pci = opaque;
value = le32_to_cpu(value);
ppc4xx_pci->pcic0_cfgaddr = value & ~0x3;
}
static CPUWriteMemoryFunc *pci4xx_cfgaddr_write[] = {
&pci4xx_cfgaddr_write4,
&pci4xx_cfgaddr_write4,
&pci4xx_cfgaddr_write4,
};
static uint32_t pci4xx_cfgdata_read1(void *opaque, target_phys_addr_t addr)
{
ppc4xx_pci_t *ppc4xx_pci = opaque;
int offset = addr & 0x3;
uint32_t cfgaddr = ppc4xx_pci->pcic0_cfgaddr;
uint32_t value;
if (!(cfgaddr & (1<<31)))
return 0xffffffff;
value = pci_data_read(ppc4xx_pci->bus, cfgaddr | offset, 1);
return value;
}
static uint32_t pci4xx_cfgdata_read2(void *opaque, target_phys_addr_t addr)
{
ppc4xx_pci_t *ppc4xx_pci = opaque;
int offset = addr & 0x3;
uint32_t cfgaddr = ppc4xx_pci->pcic0_cfgaddr;
uint32_t value;
if (!(cfgaddr & (1<<31)))
return 0xffffffff;
value = pci_data_read(ppc4xx_pci->bus, cfgaddr | offset, 2);
return cpu_to_le16(value);
}
static uint32_t pci4xx_cfgdata_read4(void *opaque, target_phys_addr_t addr)
{
ppc4xx_pci_t *ppc4xx_pci = opaque;
int offset = addr & 0x3;
uint32_t cfgaddr = ppc4xx_pci->pcic0_cfgaddr;
uint32_t value;
if (!(cfgaddr & (1<<31)))
return 0xffffffff;
value = pci_data_read(ppc4xx_pci->bus, cfgaddr | offset, 4);
return cpu_to_le32(value);
}
static CPUReadMemoryFunc *pci4xx_cfgdata_read[] = {
&pci4xx_cfgdata_read1,
&pci4xx_cfgdata_read2,
&pci4xx_cfgdata_read4,
};
static void pci4xx_cfgdata_write1(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
ppc4xx_pci_t *ppc4xx_pci = opaque;
int offset = addr & 0x3;
pci_data_write(ppc4xx_pci->bus, ppc4xx_pci->pcic0_cfgaddr | offset,
value, 1);
}
static void pci4xx_cfgdata_write2(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
ppc4xx_pci_t *ppc4xx_pci = opaque;
int offset = addr & 0x3;
value = le16_to_cpu(value);
pci_data_write(ppc4xx_pci->bus, ppc4xx_pci->pcic0_cfgaddr | offset,
value, 2);
}
static void pci4xx_cfgdata_write4(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
ppc4xx_pci_t *ppc4xx_pci = opaque;
int offset = addr & 0x3;
value = le32_to_cpu(value);
pci_data_write(ppc4xx_pci->bus, ppc4xx_pci->pcic0_cfgaddr | offset,
value, 4);
}
static CPUWriteMemoryFunc *pci4xx_cfgdata_write[] = {
&pci4xx_cfgdata_write1,
&pci4xx_cfgdata_write2,
&pci4xx_cfgdata_write4,
};
static void pci_reg_write4(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct ppc4xx_pci_t *pci = opaque;
unsigned long offset = addr - pci->registers;
value = le32_to_cpu(value);
switch (offset) {
case PCIL0_PMM0LA:
pci->pmm[0].la = value;
break;
case PCIL0_PMM1LA:
pci->pmm[0].la = value;
break;
case PCIL0_PMM2LA:
pci->pmm[0].la = value;
break;
default:
//printf(" unhandled PCI internal register 0x%lx\n", offset);
break;
}
}
static uint32_t pci_reg_read4(void *opaque, target_phys_addr_t addr)
{
struct ppc4xx_pci_t *pci = opaque;
unsigned long offset = addr - pci->registers;
uint32_t value;
switch (offset) {
case PCIL0_PMM0LA:
value = pci->pmm[0].la;
break;
case PCIL0_PMM0MA:
value = pci->pmm[0].ma;
break;
case PCIL0_PMM0PCIHA:
value = pci->pmm[0].pciha;
break;
case PCIL0_PMM0PCILA:
value = pci->pmm[0].pcila;
break;
case PCIL0_PMM1LA:
value = pci->pmm[1].la;
break;
case PCIL0_PMM1MA:
value = pci->pmm[1].ma;
break;
case PCIL0_PMM1PCIHA:
value = pci->pmm[1].pciha;
break;
case PCIL0_PMM1PCILA:
value = pci->pmm[1].pcila;
break;
case PCIL0_PMM2LA:
value = pci->pmm[2].la;
break;
case PCIL0_PMM2MA:
value = pci->pmm[2].ma;
break;
case PCIL0_PMM2PCIHA:
value = pci->pmm[2].pciha;
break;
case PCIL0_PMM2PCILA:
value = pci->pmm[2].pcila;
break;
case PCIL0_PTM1MS:
value = pci->ptm[0].ms;
break;
case PCIL0_PTM1LA:
value = pci->ptm[0].la;
break;
case PCIL0_PTM2MS:
value = pci->ptm[1].ms;
break;
case PCIL0_PTM2LA:
value = pci->ptm[1].la;
break;
default:
//printf(" read from invalid PCI internal register 0x%lx\n", offset);
value = 0;
}
value = cpu_to_le32(value);
return value;
}
static CPUReadMemoryFunc *pci_reg_read[] = {
&pci_reg_read4,
&pci_reg_read4,
&pci_reg_read4,
};
static CPUWriteMemoryFunc *pci_reg_write[] = {
&pci_reg_write4,
&pci_reg_write4,
&pci_reg_write4,
};
static uint32_t pci_int_ack_read4(void *opaque, target_phys_addr_t addr)
{
printf("%s\n", __func__);
return 0;
}
static CPUReadMemoryFunc *pci_int_ack_read[] = {
&pci_int_ack_read4,
&pci_int_ack_read4,
&pci_int_ack_read4,
};
static void pci_special_write4(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
printf("%s\n", __func__);
}
static CPUWriteMemoryFunc *pci_special_write[] = {
&pci_special_write4,
&pci_special_write4,
&pci_special_write4,
};
static int bamboo_pci_map_irq(PCIDevice *pci_dev, int irq_num)
{
int slot = pci_dev->devfn >> 3;
#if 0
printf("### %s: devfn %x irq %d -> %d\n", __func__,
pci_dev->devfn, irq_num, slot+1);
#endif
/* All pins from each slot are tied to a single board IRQ (2-5) */
return slot + 1;
}
static void bamboo_pci_set_irq(qemu_irq *pic, int irq_num, int level)
{
#if 0
printf("### %s: PCI irq %d, UIC irq %d\n", __func__, irq_num, 30 - irq_num);
#endif
/* Board IRQs 2-5 are connected to UIC IRQs 28-25 */
qemu_set_irq(pic[30-irq_num], level);
}
/* XXX Needs some abstracting for boards other than Bamboo. */
ppc4xx_pci_t *ppc4xx_pci_init(CPUState *env, qemu_irq *pic,
target_phys_addr_t config_space,
target_phys_addr_t int_ack,
target_phys_addr_t special_cycle,
target_phys_addr_t registers)
{
ppc4xx_pci_t *pci;
PCIDevice *d;
int index;
pci = qemu_mallocz(sizeof(ppc4xx_pci_t));
if (!pci)
return NULL;
pci->config_space = config_space;
pci->registers = registers;
pci->pic = pic;
pci->bus = pci_register_bus(bamboo_pci_set_irq, bamboo_pci_map_irq,
pic, 0, 4);
d = pci_register_device(pci->bus, "host bridge", sizeof(PCIDevice),
0, NULL, NULL);
d->config[0x00] = 0x14; // vendor_id
d->config[0x01] = 0x10;
d->config[0x02] = 0x7f; // device_id
d->config[0x03] = 0x02;
d->config[0x0a] = 0x80; // class_sub = other bridge type
d->config[0x0b] = 0x06; // class_base = PCI_bridge
/* CFGADDR */
index = cpu_register_io_memory(0, pci4xx_cfgaddr_read,
pci4xx_cfgaddr_write, pci);
if (index < 0)
goto free;
cpu_register_physical_memory(config_space, 4, index);
/* CFGDATA */
index = cpu_register_io_memory(0, pci4xx_cfgdata_read,
pci4xx_cfgdata_write, pci);
if (index < 0)
goto free;
cpu_register_physical_memory(config_space + 4, 4, index);
/* "Special cycle" and interrupt acknowledge */
index = cpu_register_io_memory(0, pci_int_ack_read,
pci_special_write, pci);
if (index < 0)
goto free;
cpu_register_physical_memory(int_ack, 4, index);
/* Internal registers */
index = cpu_register_io_memory(0, pci_reg_read, pci_reg_write, pci);
if (index < 0)
goto free;
cpu_register_physical_memory(registers, PCI_REG_SIZE, index);
/* XXX register_savevm() */
return pci;
free:
printf("%s error\n", __func__);
qemu_free(pci);
return NULL;
}