blob: 57a9df04a2a7c9499ec1d72bf3d13a0ec54478e4 [file] [log] [blame]
// SPDX-License-Identifier: LGPL-2.1-or-later
/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
*
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <ell/ell.h>
#include "mesh/mesh-defs.h"
#include "mesh/util.h"
#include "mesh/crypto.h"
#include "mesh/mesh-io.h"
#include "mesh/net.h"
#include "mesh/net-keys.h"
#define BEACON_INTERVAL_MIN 10
#define BEACON_INTERVAL_MAX 600
/* This allows daemon to skip decryption on recently seen beacons */
#define BEACON_CACHE_MAX 10
struct beacon_rx {
uint8_t data[28];
uint32_t id;
uint32_t ivi;
bool kr;
bool ivu;
};
struct beacon_observe {
struct l_timeout *timeout;
uint32_t ts;
uint16_t period;
uint16_t seen;
uint16_t expected;
bool half_period;
};
struct net_key {
uint32_t id;
struct l_timeout *mpb_to;
uint8_t *mpb;
uint8_t *snb;
struct beacon_observe observe;
uint32_t ivi;
uint16_t ref_cnt;
uint16_t mpb_enables;
uint16_t snb_enables;
uint8_t mpb_refresh;
uint8_t friend_key;
uint8_t nid;
uint8_t flooding[16];
uint8_t enc_key[16];
uint8_t prv_key[16];
uint8_t snb_key[16];
uint8_t pvt_key[16];
uint8_t net_id[8];
bool kr;
bool ivu;
};
static struct l_queue *beacons;
static struct l_queue *keys;
static uint32_t last_flooding_id;
/* To avoid re-decrypting same packet for multiple nodes, cache and check */
static uint8_t cache_pkt[29];
static uint8_t cache_plain[29];
static size_t cache_len;
static size_t cache_plainlen;
static uint32_t cache_id;
static uint32_t cache_iv_index;
static bool match_flooding(const void *a, const void *b)
{
const struct net_key *key = a;
return (memcmp(key->flooding, b, sizeof(key->flooding)) == 0);
}
static bool match_id(const void *a, const void *b)
{
const struct net_key *key = a;
uint32_t id = L_PTR_TO_UINT(b);
return id == key->id;
}
static bool match_network(const void *a, const void *b)
{
const struct net_key *key = a;
const uint8_t *net_id = b;
return memcmp(key->net_id, net_id, sizeof(key->net_id)) == 0;
}
/* Key added from Provisioning, NetKey Add or NetKey update */
uint32_t net_key_add(const uint8_t flooding[16])
{
struct net_key *key = l_queue_find(keys, match_flooding, flooding);
uint8_t p[] = {0};
bool result;
if (key) {
key->ref_cnt++;
return key->id;
}
if (!keys)
keys = l_queue_new();
if (!beacons)
beacons = l_queue_new();
key = l_new(struct net_key, 1);
memcpy(key->flooding, flooding, 16);
key->ref_cnt++;
key->mpb_refresh = NET_MPB_REFRESH_DEFAULT;
result = mesh_crypto_k2(flooding, p, sizeof(p), &key->nid, key->enc_key,
key->prv_key);
if (!result)
goto fail;
result = mesh_crypto_k3(flooding, key->net_id);
if (!result)
goto fail;
result = mesh_crypto_nkbk(flooding, key->snb_key);
if (!result)
goto fail;
result = mesh_crypto_nkpk(flooding, key->pvt_key);
if (!result)
goto fail;
key->id = ++last_flooding_id;
l_queue_push_tail(keys, key);
return key->id;
fail:
l_free(key);
return 0;
}
uint32_t net_key_frnd_add(uint32_t flooding_id, uint16_t lpn, uint16_t frnd,
uint16_t lp_cnt, uint16_t fn_cnt)
{
const struct net_key *key = l_queue_find(keys, match_id,
L_UINT_TO_PTR(flooding_id));
struct net_key *frnd_key;
uint8_t p[9] = {0x01};
bool result;
if (!key || key->friend_key)
return 0;
frnd_key = l_new(struct net_key, 1);
l_put_be16(lpn, p + 1);
l_put_be16(frnd, p + 3);
l_put_be16(lp_cnt, p + 5);
l_put_be16(fn_cnt, p + 7);
result = mesh_crypto_k2(key->flooding, p, sizeof(p), &frnd_key->nid,
frnd_key->enc_key, frnd_key->prv_key);
if (!result) {
l_free(frnd_key);
return 0;
}
frnd_key->friend_key = true;
frnd_key->ref_cnt++;
frnd_key->id = ++last_flooding_id;
l_queue_push_head(keys, frnd_key);
return frnd_key->id;
}
void net_key_unref(uint32_t id)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (key && key->ref_cnt) {
if (--key->ref_cnt == 0) {
l_timeout_remove(key->observe.timeout);
l_queue_remove(keys, key);
l_free(key);
}
}
}
bool net_key_confirm(uint32_t id, const uint8_t flooding[16])
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (key)
return !memcmp(key->flooding, flooding, sizeof(key->flooding));
return false;
}
bool net_key_retrieve(uint32_t id, uint8_t *flooding)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (key) {
memcpy(flooding, key->flooding, sizeof(key->flooding));
return true;
}
return false;
}
static void decrypt_net_pkt(void *a, void *b)
{
const struct net_key *key = a;
bool result;
if (cache_id || !key->ref_cnt || (cache_pkt[0] & 0x7f) != key->nid)
return;
result = mesh_crypto_packet_decode(cache_pkt, cache_len, false,
cache_plain, cache_iv_index,
key->enc_key, key->prv_key);
if (result) {
cache_id = key->id;
if (cache_plain[1] & 0x80)
cache_plainlen = cache_len - 8;
else
cache_plainlen = cache_len - 4;
}
}
uint32_t net_key_decrypt(uint32_t iv_index, const uint8_t *pkt, size_t len,
uint8_t **plain, size_t *plain_len)
{
/* If we already successfully decrypted this packet, use cached data */
if (cache_id && cache_len == len && !memcmp(pkt, cache_pkt, len)) {
/* IV Index must match what was used to decrypt */
if (cache_iv_index != iv_index)
return 0;
goto done;
}
cache_id = 0;
memcpy(cache_pkt, pkt, len);
cache_len = len;
cache_iv_index = iv_index;
/* Try all network keys known to us */
l_queue_foreach(keys, decrypt_net_pkt, NULL);
done:
if (cache_id) {
*plain = cache_plain;
*plain_len = cache_plainlen;
}
return cache_id;
}
bool net_key_encrypt(uint32_t id, uint32_t iv_index, uint8_t *pkt, size_t len)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
bool result;
if (!key)
return false;
result = mesh_crypto_packet_encode(pkt, len, iv_index, key->enc_key,
key->prv_key);
if (!result)
return false;
result = mesh_crypto_packet_label(pkt, len, iv_index, key->nid);
return result;
}
uint32_t net_key_network_id(const uint8_t net_id[8])
{
struct net_key *key = l_queue_find(keys, match_network, net_id);
if (!key)
return 0;
return key->id;
}
struct auth_check {
const uint8_t *data;
uint32_t id;
uint32_t ivi;
bool ivu;
bool kr;
};
static void check_auth(void *a, void *b)
{
struct net_key *key = a;
struct auth_check *auth = b;
uint8_t out[5];
/* Stop checking if already found */
if (auth->id)
return;
if (mesh_crypto_aes_ccm_decrypt(auth->data + 1, key->pvt_key, NULL, 0,
auth->data + 14, 13,
out, NULL, 8)) {
auth->id = key->id;
auth->ivi = l_get_be32(out + 1);
auth->ivu = !!(out[0] & 0x02);
auth->kr = !!(out[0] & 0x01);
}
}
static uint32_t private_beacon_check(const void *beacon, uint32_t *ivi,
bool *ivu, bool *kr)
{
struct auth_check auth = {
.data = beacon,
.id = 0,
};
auth.id = 0;
l_queue_foreach(keys, check_auth, &auth);
if (auth.id) {
*ivi = auth.ivi;
*ivu = auth.ivu;
*kr = auth.kr;
}
return auth.id;
}
bool net_key_snb_check(uint32_t id, uint32_t iv_index, bool kr, bool ivu,
uint64_t cmac)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
uint64_t cmac_check;
if (!key)
return false;
/* Any behavioral changes must pass CMAC test */
if (!mesh_crypto_beacon_cmac(key->snb_key, key->net_id, iv_index, kr,
ivu, &cmac_check)) {
l_error("mesh_crypto_beacon_cmac failed");
return false;
}
if (cmac != cmac_check) {
l_error("cmac compare failed 0x%16" PRIx64 " != 0x%16" PRIx64,
cmac, cmac_check);
return false;
}
return true;
}
static bool mpb_compose(struct net_key *key, uint32_t ivi, bool kr, bool ivu)
{
uint8_t b_data[5 + 8];
uint8_t random[13];
if (!key)
return false;
b_data[0] = 0;
l_put_be32(ivi, b_data + 1);
if (kr)
b_data[0] |= KEY_REFRESH;
if (ivu)
b_data[0] |= IV_INDEX_UPDATE;
l_getrandom(random, sizeof(random));
if (!mesh_crypto_aes_ccm_encrypt(random, key->pvt_key, NULL, 0,
b_data, 5, b_data, NULL, 8))
return false;
key->mpb[0] = MESH_AD_TYPE_BEACON;
key->mpb[1] = BEACON_TYPE_MPB;
memcpy(key->mpb + 2, random, 13);
memcpy(key->mpb + 15, b_data, 13);
return true;
}
static bool snb_compose(struct net_key *key, uint32_t ivi, bool kr, bool ivu)
{
uint64_t cmac;
if (!key)
return false;
/* Any behavioral changes must pass CMAC test */
if (!mesh_crypto_beacon_cmac(key->snb_key, key->net_id, ivi, kr,
ivu, &cmac)) {
l_error("mesh_crypto_beacon_cmac failed");
return false;
}
key->snb[0] = MESH_AD_TYPE_BEACON;
key->snb[1] = BEACON_TYPE_SNB;
key->snb[2] = 0;
if (kr)
key->snb[2] |= KEY_REFRESH;
if (ivu)
key->snb[2] |= IV_INDEX_UPDATE;
memcpy(key->snb + 3, key->net_id, 8);
l_put_be32(ivi, key->snb + 11);
l_put_be64(cmac, key->snb + 15);
return true;
}
static bool match_beacon(const void *a, const void *b)
{
const struct beacon_rx *cached = a;
const uint8_t *incoming = b;
if (incoming[0] == BEACON_TYPE_MPB)
return !memcmp(cached->data, incoming, 27);
if (incoming[0] == BEACON_TYPE_SNB)
return !memcmp(cached->data, incoming, 22);
return false;
}
uint32_t net_key_beacon(const uint8_t *data, uint16_t len, uint32_t *ivi,
bool *ivu, bool *kr)
{
struct net_key *key;
struct beacon_rx *beacon;
uint32_t b_id, b_ivi;
bool b_ivu, b_kr;
if (data[1] == BEACON_TYPE_SNB && len != 23)
return 0;
if (data[1] == BEACON_TYPE_MPB && len != 28)
return 0;
beacon = l_queue_remove_if(beacons, match_beacon, data + 1);
if (beacon)
goto accept;
/* Validate beacon data */
if (data[1] == BEACON_TYPE_SNB) {
key = l_queue_find(keys, match_network, data + 3);
if (!key)
return 0;
b_id = key->id;
b_ivu = !!(data[2] & 0x02);
b_kr = !!(data[2] & 0x01);
b_ivi = l_get_be32(data + 11);
if (!net_key_snb_check(b_id, b_ivi, b_kr, b_ivu,
l_get_be64(data + 15)))
return 0;
} else if (data[1] == BEACON_TYPE_MPB) {
b_id = private_beacon_check(data + 1, &b_ivi, &b_ivu, &b_kr);
if (!b_id)
return 0;
} else
return 0;
beacon = l_new(struct beacon_rx, 1);
memcpy(beacon->data, data + 1, len - 1);
beacon->id = b_id;
beacon->ivi = b_ivi;
beacon->ivu = b_ivu;
beacon->kr = b_kr;
accept:
*ivi = beacon->ivi;
*ivu = beacon->ivu;
*kr = beacon->kr;
l_queue_push_head(beacons, beacon);
return beacon->id;
}
static void send_network_beacon(struct net_key *key)
{
struct mesh_io_send_info info = {
.type = MESH_IO_TIMING_TYPE_GENERAL,
.u.gen.interval = 100,
.u.gen.cnt = 1,
.u.gen.min_delay = DEFAULT_MIN_DELAY,
.u.gen.max_delay = DEFAULT_MAX_DELAY
};
if (key->mpb_enables) {
/* If Interval steps == 0, refresh key every time */
if (!key->mpb_refresh || !key->mpb || !key->mpb[0])
net_key_beacon_refresh(key->id, key->ivi, key->kr,
key->ivu, true);
mesh_io_send(NULL, &info, key->mpb, 28);
}
if (key->snb_enables) {
if (!key->snb || !key->snb[0]) {
net_key_beacon_refresh(key->id, key->ivi, key->kr,
key->ivu, true);
}
mesh_io_send(NULL, &info, key->snb, 23);
}
}
static void beacon_timeout(struct l_timeout *timeout, void *user_data)
{
struct net_key *key = user_data;
uint32_t interval, scale_factor;
/* Always send at least one beacon */
send_network_beacon(key);
/* Count our own beacons towards the vicinity total */
key->observe.seen++;
if (!key->observe.half_period) {
l_debug("beacon %d for %d nodes, period %d, obs %d, exp %d",
key->id,
key->snb_enables + key->mpb_enables,
key->observe.period,
key->observe.seen,
key->observe.expected);
interval = (key->observe.period * key->observe.seen)
/ key->observe.expected;
/* Limit Increases and Decreases by 10 seconds Up and
* 20 seconds down each step, to avoid going nearly silent
* in highly populated environments.
*/
if (interval - 10 > key->observe.period)
interval = key->observe.period + 10;
else if (interval + 20 < key->observe.period)
interval = key->observe.period - 20;
/* Beaconing must be no *slower* than once every 10 minutes,
* and no *faster* than once every 10 seconds, per spec.
* Observation period is twice beaconing period.
*/
if (interval < BEACON_INTERVAL_MIN * 2)
interval = BEACON_INTERVAL_MIN * 2;
else if (interval > BEACON_INTERVAL_MAX * 2)
interval = BEACON_INTERVAL_MAX * 2;
key->observe.period = interval;
key->observe.seen = 0;
/* To prevent "over slowing" of the beaconing frequency,
* require more significant "over observing" the slower
* our own beaconing frequency.
*/
key->observe.expected = interval / 10;
scale_factor = interval / 60;
key->observe.expected += scale_factor * 3;
}
interval = key->observe.period / 2;
key->observe.half_period = !key->observe.half_period;
if (key->mpb_enables || key->snb_enables)
l_timeout_modify(timeout, interval);
else {
l_timeout_remove(timeout);
key->observe.timeout = NULL;
}
}
void net_key_beacon_seen(uint32_t id)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (key) {
key->observe.seen++;
key->observe.ts = get_timestamp_secs();
}
}
uint32_t net_key_beacon_last_seen(uint32_t id)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (key)
return key->observe.ts;
return 0;
}
bool net_key_beacon_refresh(uint32_t id, uint32_t ivi, bool kr, bool ivu,
bool force)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
bool refresh = force;
uint32_t rand_ms;
if (!key)
return false;
if (key->snb_enables && !key->snb) {
key->snb = l_new(uint8_t, 23);
refresh = true;
}
if (key->mpb_enables && !key->mpb) {
key->mpb = l_new(uint8_t, 28);
refresh = true;
}
if (key->ivi != ivi || key->ivu != ivu || key->kr != kr)
refresh = true;
if (!refresh)
return true;
if (key->mpb) {
if (!mpb_compose(key, ivi, kr, ivu))
return false;
print_packet("Set MPB to", key->mpb, 28);
}
if (key->snb) {
if (!snb_compose(key, ivi, kr, ivu))
return false;
print_packet("Set SNB to", key->snb, 23);
}
l_debug("Set Beacon: IVI: %8.8x, IVU: %d, KR: %d", ivi, ivu, kr);
key->ivi = ivi;
key->ivu = ivu;
key->kr = kr;
/* Propagate changes to all local nodes */
net_local_beacon(id, ivi, ivu, kr);
/* Send one new SNB soon, after all nodes have seen it */
l_getrandom(&rand_ms, sizeof(rand_ms));
rand_ms %= 1000;
key->observe.expected++;
if (key->observe.timeout)
l_timeout_modify_ms(key->observe.timeout, 500 + rand_ms);
else
key->observe.timeout = l_timeout_create_ms(500 + rand_ms,
beacon_timeout, key, NULL);
return true;
}
static void mpb_timeout(struct l_timeout *timeout, void *user_data)
{
struct net_key *key = user_data;
if (key->mpb_refresh) {
l_debug("Refresh in %d seconds", key->mpb_refresh * 10);
l_timeout_modify(timeout, key->mpb_refresh * 10);
}
net_key_beacon_refresh(key->id, key->ivi, key->kr, key->ivu, true);
}
void net_key_beacon_enable(uint32_t id, bool mpb, uint8_t refresh_count)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
bool enabled;
uint32_t rand_ms;
if (!key)
return;
enabled = !!key->snb_enables || !!key->mpb_enables;
if (mpb) {
key->mpb_enables++;
key->mpb_refresh = refresh_count;
l_timeout_remove(key->mpb_to);
if (refresh_count)
key->mpb_to = l_timeout_create(refresh_count * 10,
mpb_timeout, key, NULL);
else
key->mpb_to = NULL;
} else
key->snb_enables++;
/* If already Enabled, do nothing */
if (enabled)
return;
/* Randomize first timeout to avoid bursts of beacons */
l_getrandom(&rand_ms, sizeof(rand_ms));
rand_ms %= (BEACON_INTERVAL_MIN * 1000);
rand_ms++;
/* Enable Periodic Beaconing on this key */
key->observe.period = BEACON_INTERVAL_MIN * 2;
key->observe.expected = 2;
key->observe.seen = 0;
key->observe.half_period = true;
l_timeout_remove(key->observe.timeout);
key->observe.timeout = l_timeout_create_ms(rand_ms, beacon_timeout,
key, NULL);
}
void net_key_beacon_disable(uint32_t id, bool mpb)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (!key)
return;
if (mpb) {
if (!key->mpb_enables)
return;
key->mpb_enables--;
if (!key->mpb_enables) {
l_free(key->mpb);
key->mpb = NULL;
l_timeout_remove(key->mpb_to);
key->mpb_to = NULL;
}
} else {
if (!key->snb_enables)
return;
key->snb_enables--;
if (!key->snb_enables) {
l_free(key->snb);
key->snb = NULL;
}
}
if (key->snb_enables || key->mpb_enables)
return;
/* Disable periodic Beaconing on this key */
l_timeout_remove(key->observe.timeout);
key->observe.timeout = NULL;
}
static void free_key(void *data)
{
struct net_key *key = data;
l_timeout_remove(key->mpb_to);
l_free(key->snb);
l_free(key->mpb);
l_free(key);
}
void net_key_cleanup(void)
{
l_queue_destroy(keys, free_key);
keys = NULL;
l_queue_destroy(beacons, l_free);
beacons = NULL;
}