blob: 738033081fc39aadc8b2da3f092967d4889a8848 [file] [log] [blame]
; -*- fundamental -*- (asm-mode sucks)
; $Id$
; ****************************************************************************
;
; ldlinux.asm
;
; A program to boot Linux kernels off an MS-DOS formatted floppy disk. This
; functionality is good to have for installation floppies, where it may
; be hard to find a functional Linux system to run LILO off.
;
; This program allows manipulation of the disk to take place entirely
; from MS-LOSS, and can be especially useful in conjunction with the
; umsdos filesystem.
;
; This file is loaded in stages; first the boot sector at offset 7C00h,
; then the first sector (cluster, really, but we can only assume 1 sector)
; of LDLINUX.SYS at 7E00h and finally the remainder of LDLINUX.SYS at 8000h.
;
; Copyright (C) 1994-2002 H. Peter Anvin
;
; This program is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA 02139,
; USA; either version 2 of the License, or (at your option) any later
; version; incorporated herein by reference.
;
; ****************************************************************************
%define IS_SYSLINUX 1
%include "macros.inc"
%include "config.inc"
%include "kernel.inc"
%include "bios.inc"
%include "tracers.inc"
;
; Some semi-configurable constants... change on your own risk.
;
my_id equ syslinux_id
FILENAME_MAX_LG2 equ 4 ; log2(Max filename size Including final null)
FILENAME_MAX equ 11 ; Max mangled filename size
NULLFILE equ ' ' ; First char space == null filename
retry_count equ 6 ; How patient are we with the disk?
%assign HIGHMEM_SLOP 0 ; Avoid this much memory near the top
;
; The following structure is used for "virtual kernels"; i.e. LILO-style
; option labels. The options we permit here are `kernel' and `append
; Since there is no room in the bottom 64K for all of these, we
; stick them at vk_seg:0000 and copy them down before we need them.
;
; Note: this structure can be added to, but it must
;
%define vk_power 7 ; log2(max number of vkernels)
%define max_vk (1 << vk_power) ; Maximum number of vkernels
%define vk_shift (16-vk_power) ; Number of bits to shift
%define vk_size (1 << vk_shift) ; Size of a vkernel buffer
struc vkernel
vk_vname: resb FILENAME_MAX ; Virtual name **MUST BE FIRST!**
vk_rname: resb FILENAME_MAX ; Real name
vk_appendlen: resw 1
alignb 4
vk_append: resb max_cmd_len+1 ; Command line
alignb 4
vk_end: equ $ ; Should be <= vk_size
endstruc
%ifndef DEPEND
%if (vk_end > vk_size) || (vk_size*max_vk > 65536)
%error "Too many vkernels defined, reduce vk_power"
%endif
%endif
;
; Segment assignments in the bottom 640K
; Stick to the low 512K in case we're using something like M-systems flash
; which load a driver into low RAM (evil!!)
;
; 0000h - main code/data segment (and BIOS segment)
;
real_mode_seg equ 7000h
fat_seg equ 5000h ; 128K area for FAT (2x64K)
vk_seg equ 4000h ; Virtual kernels
xfer_buf_seg equ 3000h ; Bounce buffer for I/O to high mem
comboot_seg equ 2000h ; COMBOOT image loading zone
; ---------------------------------------------------------------------------
; BEGIN CODE
; ---------------------------------------------------------------------------
;
; Memory below this point is reserved for the BIOS and the MBR
;
absolute 1000h
trackbuf equ $ ; Track buffer goes here
trackbufsize equ 16384 ; Safe size of track buffer
; trackbuf ends at 5000h
;
; Constants for the xfer_buf_seg
;
; The xfer_buf_seg is also used to store message file buffers. We
; need two trackbuffers (text and graphics), plus a work buffer
; for the graphics decompressor.
;
xbs_textbuf equ 0 ; Also hard-coded, do not change
xbs_vgabuf equ trackbufsize
xbs_vgatmpbuf equ 2*trackbufsize
absolute 5000h ; Here we keep our BSS stuff
VKernelBuf: resb vk_size ; "Current" vkernel
alignb 4
AppendBuf resb max_cmd_len+1 ; append=
KbdMap resb 256 ; Keyboard map
FKeyName resb 10*16 ; File names for F-key help
NumBuf resb 15 ; Buffer to load number
NumBufEnd resb 1 ; Last byte in NumBuf
alignb 8
; Expanded superblock
SuperInfo equ $
resq 16 ; The first 16 bytes expanded 8 times
;
; These need to follow SuperInfo
;
RootDir resd 1 ; Location of root directory
DataArea resd 1 ; Location of data area
RootDirSize resw 1 ; Root dir size in sectors
DirScanCtr resw 1 ; Used while searching directory
EndofDirSec resw 1 ; = trackbuf+bsBytesPerSec-31
alignb 4
E820Buf resd 5 ; INT 15:E820 data buffer
HiLoadAddr resd 1 ; Address pointer for high load loop
HighMemSize resd 1 ; End of memory pointer (bytes)
RamdiskMax resd 1 ; Highest address for a ramdisk
KernelSize resd 1 ; Size of kernel (bytes)
SavedSSSP resd 1 ; Our SS:SP while running a COMBOOT image
PMESP resd 1 ; Protected-mode ESP
ClustPerMoby resd 1 ; Clusters per 64K
ClustSize resd 1 ; Bytes/cluster
KernelName resb 12 ; Mangled name for kernel
; (note the spare byte after!)
OrigKernelExt resd 1 ; Original kernel extension
FBytes equ $ ; Used by open/getc
FBytes1 resw 1
FBytes2 resw 1
DirBlocksLeft resw 1 ; Ditto
RunLinClust resw 1 ; Cluster # for LDLINUX.SYS
BufSafe resw 1 ; Clusters we can load into trackbuf
BufSafeSec resw 1 ; = how many sectors?
BufSafeBytes resw 1 ; = how many bytes?
EndOfGetCBuf resw 1 ; = getcbuf+BufSafeBytes
KernelClust resw 1 ; Kernel size in clusters
FClust resw 1 ; Number of clusters in open/getc file
FNextClust resw 1 ; Pointer to next cluster in d:o
FPtr resw 1 ; Pointer to next char in buffer
CmdOptPtr resw 1 ; Pointer to first option on cmd line
KernelCNameLen resw 1 ; Length of unmangled kernel name
InitRDCNameLen resw 1 ; Length of unmangled initrd name
NextCharJump resw 1 ; Routine to interpret next print char
SetupSecs resw 1 ; Number of setup sectors
A20Test resw 1 ; Counter for testing status of A20
A20Type resw 1 ; A20 type
CmdLineLen resw 1 ; Length of command line including null
GraphXSize resw 1 ; Width of splash screen file
VGAPos resw 1 ; Pointer into VGA memory
VGACluster resw 1 ; Cluster pointer for VGA image file
VGAFilePtr resw 1 ; Pointer into VGAFileBuf
TextAttrBX equ $
TextAttribute resb 1 ; Text attribute for message file
TextPage resb 1 ; Active display page
CursorDX equ $
CursorCol resb 1 ; Cursor column for message file
CursorRow resb 1 ; Cursor row for message file
ScreenSize equ $
VidCols resb 1 ; Columns on screen-1
VidRows resb 1 ; Rows on screen-1
BaudDivisor resw 1 ; Baud rate divisor
FlowControl equ $
FlowOutput resb 1 ; Outputs to assert for serial flow
FlowInput resb 1 ; Input bits for serial flow
FlowIgnore resb 1 ; Ignore input unless these bits set
RetryCount resb 1 ; Used for disk access retries
KbdFlags resb 1 ; Check for keyboard escapes
LoadFlags resb 1 ; Loadflags from kernel
A20Tries resb 1 ; Times until giving up on A20
FuncFlag resb 1 ; Escape sequences received from keyboard
DisplayMask resb 1 ; Display modes mask
MNameBuf resb 11 ; Generic mangled file name buffer
InitRD resb 11 ; initrd= mangled name
KernelCName resb 13 ; Unmangled kernel name
InitRDCName resb 13 ; Unmangled initrd name
TextColorReg resb 17 ; VGA color registers for text mode
VGAFileBuf resb 13 ; Unmangled VGA image name
VGAFileBufEnd equ $
VGAFileMBuf resb 11 ; Mangled VGA image name
section .text
org 7C00h
;
; Some of the things that have to be saved very early are saved
; "close" to the initial stack pointer offset, in order to
; reduce the code size...
;
StackBuf equ $-32 ; Start the stack here (grow down - 4K)
PartInfo equ StackBuf ; Saved partition table entry
FloppyTable equ PartInfo+16 ; Floppy info table (must follow PartInfo)
OrigFDCTabPtr equ StackBuf-4 ; The high dword on the stack
;
; Primary entry point. Tempting as though it may be, we can't put the
; initial "cli" here; the jmp opcode in the first byte is part of the
; "magic number" (using the term very loosely) for the DOS superblock.
;
bootsec equ $
jmp short start ; 2 bytes
nop ; 1 byte
;
; "Superblock" follows -- it's in the boot sector, so it's already
; loaded and ready for us
;
bsOemName db 'SYSLINUX' ; The SYS command sets this, so...
;
; These are the fields we actually care about. We end up expanding them
; all to dword size early in the code, so generate labels for both
; the expanded and unexpanded versions.
;;
%macro superb 1
bx %+ %1 equ SuperInfo+($-superblock)*8+4
bs %+ %1 equ $
zb 1
%endmacro
%macro superw 1
bx %+ %1 equ SuperInfo+($-superblock)*8
bs %+ %1 equ $
zw 1
%endmacro
%macro superd 1
bx %+ %1 equ $ ; no expansion for dwords
bs %+ %1 equ $
zd 1
%endmacro
superblock equ $
superw BytesPerSec
superb SecPerClust
superw ResSectors
superb FATs
superw RootDirEnts
superw Sectors
superb Media
superw FATsecs
superw SecPerTrack
superw Heads
superinfo_size equ ($-superblock)-1 ; How much to expand
superd Hidden
superd HugeSectors
superb DriveNumber
superb Reserved1
superb BootSignature ; 29h if the following fields exist
superd VolumeID
bsVolumeLabel zb 11
bsFileSysType zb 8 ; Must be FAT12 or FAT16 for this version
superblock_len equ $-superblock
SecPerClust equ bxSecPerClust
;
; Note we don't check the constraints above now; we did that at install
; time (we hope!)
;
;floppy_table equ $ ; No sense in wasting memory, overwrite start
start:
cli ; No interrupts yet, please
cld ; Copy upwards
;
; Set up the stack
;
xor ax,ax
mov ss,ax
mov sp,StackBuf ; Just below BSS
mov es,ax
;
; DS:SI may contain a partition table entry. Preserve it for us.
;
mov cx,8 ; Save partition info
mov di,sp
rep movsw
mov ds,ax ; Now we can initialize DS...
mov [di+bsDriveNumber-FloppyTable],dl
and dl,dl ; If floppy disk (00-7F), assume no
js harddisk ; partition table
;
; Now sautee the BIOS floppy info block to that it will support decent-
; size transfers; the floppy block is 11 bytes and is stored in the
; INT 1Eh vector (brilliant waste of resources, eh?)
;
; Of course, if BIOSes had been properly programmed, we wouldn't have
; had to waste precious space with this code.
;
mov bx,fdctab
lfs si,[bx] ; FS:SI -> original fdctab
push fs ; Save on stack in case we need to bail
push si
mov cl,6 ; 12 bytes (CX == 0)
; es:di -> FloppyTable already
; This should be safe to do now, interrupts are off...
mov [bx],di ; FloppyTable
mov [bx+2],ax ; Segment 0
fs rep movsw ; Faster to move words
mov cl,[bsSecPerTrack] ; Patch the sector count
mov [di-8],cl
; AX == 0 here
int 13h ; Some BIOSes need this
jmp short not_harddisk
;
; The drive number and possibly partition information was passed to us
; by the BIOS or previous boot loader (MBR). Current "best practice" is to
; trust that rather than what the superblock contains.
;
; Would it be better to zero out bsHidden if we don't have a partition table?
;
; Note: di points to beyond the end of PartInfo
;
harddisk:
; This sanity check doesn't fit anymore...
; test byte [di-16],7Fh ; Sanity check: "active flag" should
; jnz no_partition ; be 00 or 80
mov eax,[di-8] ; Partition offset (dword)
mov [bsHidden],eax
no_partition:
;
; Get disk drive parameters (don't trust the superblock.) Don't do this for
; floppy drives -- INT 13:08 on floppy drives will (may?) return info about
; what the *drive* supports, not about the *media*. Fortunately floppy disks
; tend to have a fixed, well-defined geometry which is stored in the superblock.
;
; DL == drive # still
mov ah,08h
int 13h
jc no_driveparm
and ah,ah
jnz no_driveparm
shr dx,8
inc dx ; Contains # of heads - 1
mov [bsHeads],dx
and cx,3fh
mov [bsSecPerTrack],cx
no_driveparm:
not_harddisk:
;
; Ready to enable interrupts, captain
;
sti
;
; Insane hack to expand the superblock to dwords
;
expand_super:
xor eax,eax
mov es,ax ; INT 13:08 destroys ES
mov si,superblock
mov di,SuperInfo
mov cl,superinfo_size ; CH == 0
.loop:
lodsw
dec si
stosd ; Store expanded word
xor ah,ah
stosd ; Store expanded byte
loop .loop
;
; Now we have to do some arithmetric to figure out where things are located.
; If Micro$oft had had brains they would already have done this for us,
; and stored it in the superblock at format time, but here we go,
; wasting precious boot sector space again...
;
%define Z di-superinfo_size*8-SuperInfo
debugentrypt:
mov ax,[bxFATs] ; Number of FATs (eax<31:16> == 0)
mov edx,[Z+bxFATsecs] ; Sectors/FAT
mul edx ; Get the size of the FAT area
; edx <- 0
add eax,[bxHidden] ; Add hidden sectors
add eax,[Z+bxResSectors] ; And reserved sectors
mov [RootDir],eax ; Location of root directory
mov [DataArea],eax ; First data sector
push eax
mov eax,[Z+bxRootDirEnts]
shl ax,5 ; Size of a directory entry
mov bx,[Z+bxBytesPerSec]
add ax,bx ; Round up, not down
dec ax
div bx ; Now we have the size of the root dir
mov [RootDirSize],ax
mov [DirScanCtr],ax
add bx,trackbuf-31
mov [Z+EndofDirSec],bx ; End of a single directory sector
add [Z+DataArea],eax
pop eax ; Reload root directory starting point
;
; Now the fun begins. We have to search the root directory for
; LDLINUX.SYS and load the first sector, so we have a little more
; space to have fun with. Then we can go chasing through the FAT.
; Joy!!
;
sd_nextsec: push eax
mov bx,trackbuf
push bx
call getonesec
pop si
sd_nextentry: mov cx,11
cmp [si],ch ; Directory high water mark
je kaboom
; This no longer fits... since we'd be dead anyway if there
; was a nonfile named LDLINUX.SYS on the disk, it shouldn't
; matter...
; test byte [si+11],18h ; Must be a file
; jnz sd_not_file
mov di,ldlinux_name
push si
repe cmpsb
pop si
je found_it
sd_not_file: add si,byte 32 ; Distance to next
cmp si,[EndofDirSec]
jb sd_nextentry
pop eax
inc eax
dec word [DirScanCtr]
jnz sd_nextsec
;
; kaboom: write a message and bail out.
;
kaboom:
xor si,si
mov ss,si
mov sp,StackBuf-4 ; Reset stack
mov ds,si ; Reset data segment
pop dword [fdctab] ; Restore FDC table
.patch: mov si,bailmsg
call writestr ; Returns with AL = 0
cbw ; AH <- 0
int 16h ; Wait for keypress
int 19h ; And try once more to boot...
.norge: jmp short .norge ; If int 19h returned; this is the end
;
; found_it: now we compute the location of the first sector, then
; load it and JUMP (since we're almost out of space)
;
found_it: ; Note: we actually leave two words on the stack here
; (who cares?)
mov eax,[bxSecPerClust]
mov bp,ax ; Load an entire cluster
movzx ebx,word [si+26] ; First cluster
mov [RunLinClust],bx ; Save for later use
dec bx ; First cluster is "cluster 2"
dec bx
mul ebx
add eax,[DataArea]
mov bx,ldlinux_sys
call getlinsec
mov si,bs_magic
mov di,ldlinux_magic
mov cx,magic_len
repe cmpsb ; Make sure that the bootsector
jne kaboom ; matches LDLINUX.SYS
;
; Done! Jump to the entry point!
;
jmp ldlinux_ent
;
;
; writestr: write a null-terminated string to the console
;
writestr:
.loop: lodsb
and al,al
jz .return
mov ah,0Eh ; Write to screen as TTY
mov bx,0007h ; White on black, current page
int 10h
jmp short .loop
.return: ret
;
; disk_error: decrement the retry count and bail if zero.
; This gets patched once we have more space to try to
; optimize transfer sizes on broken machines.
;
disk_error: dec si ; SI holds the disk retry counter
jz kaboom
; End of patched "call" instruction!
jmp short disk_try_again
;
; getonesec: like getlinsec, but pre-sets the count to 1
;
getonesec:
mov bp,1
; Fall through to getlinsec
;
; getlinsec: load a sequence of BP floppy sector given by the linear sector
; number in EAX into the buffer at ES:BX. We try to optimize
; by loading up to a whole track at a time, but the user
; is responsible for not crossing a 64K boundary.
; (Yes, BP is weird for a count, but it was available...)
;
; On return, BX points to the first byte after the transferred
; block.
;
; The "stupid patch area" gets replaced by the code
; mov bp,1 ; nop ... (BD 01 00 90 90...) when installing with
; the -s option.
;
; This routine assumes CS == DS.
;
; Stylistic note: use "xchg" instead of "mov" when the source is a register
; that is dead from that point; this saves space. However, please keep
; the order to dst,src to keep things sane.
;
getlinsec:
mov esi,[bxSecPerTrack]
;
; Dividing by sectors to get (track,sector): we may have
; up to 2^18 tracks, so we need to use 32-bit arithmetric.
;
xor edx,edx ; Zero-extend LBA to 64 bits
div esi
xor cx,cx
xchg cx,dx ; CX <- sector index (0-based)
; EDX <- 0
; eax = track #
div dword [bxHeads] ; Convert track to head/cyl
;
; Now we have AX = cyl, DX = head, CX = sector (0-based),
; BP = sectors to transfer, SI = bsSecPerTrack,
; ES:BX = data target
;
gls_nextchunk: push si ; <A> bsSecPerTrack
push bp ; <B> Sectors to transfer
; Important - this gets patched with a call. The call
; assumes cx, si and bp are set up, and can modify bp
; and destroy si. Until we have the space to do so,
; transfer one sector at a time.
gls_set_size:
__BEGIN_STUPID_PATCH_AREA:
mov bp,1 ; 3 bytes, same as a call insn
__END_STUPID_PATCH_AREA:
push ax ; <C> Cylinder #
push dx ; <D> Head #
push cx ; <E> Sector #
shl ah,6 ; Because IBM was STOOPID
; and thought 8 bits were enough
; then thought 10 bits were enough...
pop cx ; <E> Sector #
push cx ; <E> Sector #
inc cx ; Sector numbers are 1-based, sigh
or cl,ah
mov ch,al
mov dh,dl
mov dl,[bsDriveNumber]
xchg ax,bp ; Sector to transfer count
; (xchg shorter than mov)
mov si,retry_count ; # of times to retry a disk access
;
; Do the disk transfer... save the registers in case we fail :(
;
disk_try_again:
pusha ; <F>
mov ah,02h ; READ DISK
int 13h
popa ; <F>
jc disk_error
;
; Disk access successful
;
pop cx ; <E> Sector #
mov di,ax ; Reduce sector left count
mul word [bsBytesPerSec] ; Figure out how much to advance ptr
add bx,ax ; Update buffer location
pop dx ; <D> Head #
pop ax ; <C> Cyl #
pop bp ; <B> Sectors left to transfer
pop si ; <A> Number of sectors/track
sub bp,di ; Reduce with # of sectors just read
jz writestr.return ; Done!
add cx,di
cmp cx,si
jb gls_nextchunk
inc dx ; Next track on cyl
cmp dx,[bsHeads] ; Was this the last one?
jb gls_nonewcyl
inc ax ; If so, new cylinder
xor dx,dx ; First head on new cylinder
gls_nonewcyl: sub cx,si ; First sector on new track
jmp short gls_nextchunk
bailmsg: db 'Boot failed', 0Dh, 0Ah, 0
bs_checkpt equ $ ; Must be <= 7DEFh
%if 1
bs_checkpt_off equ ($-$$)
%ifndef DEPEND
%if bs_checkpt_off > 1EFh
%error "Boot sector overflow"
%endif
%endif
zb 1EFh-($-$$)
%endif
bs_magic equ $ ; From here to the magic_len equ
; must match ldlinux_magic
ldlinux_name: db 'LDLINUX SYS' ; Looks like this in the root dir
dd HEXDATE ; Hopefully unique between compiles
bootsignature dw 0AA55h
magic_len equ $-bs_magic
;
; ===========================================================================
; End of boot sector
; ===========================================================================
; Start of LDLINUX.SYS
; ===========================================================================
ldlinux_sys:
syslinux_banner db 0Dh, 0Ah, 'SYSLINUX ', version_str, ' ', date, ' ', 0
db 0Dh, 0Ah, 1Ah ; EOF if we "type" this in DOS
ldlinux_magic db 'LDLINUX SYS'
dd HEXDATE
dw 0AA55h
;
; This area is possibly patched by the installer. It is located
; immediately after the EOF + LDLINUX SYS + 4 bytes + 55 AA + alignment,
; so we can find it algorithmically.
;
alignb 4
MaxTransfer dw 00FFh ; Absolutely maximum transfer size
align 4
ldlinux_ent:
;
; Note that some BIOSes are buggy and run the boot sector at 07C0:0000
; instead of 0000:7C00 and the like. We don't want to add anything
; more to the boot sector, so it is written to not assume a fixed
; value in CS, but we don't want to deal with that anymore from now
; on.
;
jmp 0:.next
.next:
;
; Tell the user we got this far
;
mov si,syslinux_banner
call writestr
;
; Remember, the boot sector loaded only the first cluster of LDLINUX.SYS.
; We can really only rely on a single sector having been loaded. Hence
; we should load the FAT into RAM and start chasing pointers...
;
xor ax,ax
cwd
inc dx ; DX:AX <- 64K
div word [bxBytesPerSec] ; sectors/64K
mov si,ax
push es
mov bx,fat_seg ; Load into fat_seg:0000
mov es,bx
mov eax,[bsHidden] ; Hidden sectors
add edx,[bxResSectors]
add eax,edx
mov ecx,[bxFATsecs] ; Sectors/FAT
fat_load_loop:
mov ebp,ecx ; Make sure high EBP = 0
cmp bp,si
jna fat_load
mov bp,si ; A full 64K moby
fat_load:
xor bx,bx ; Offset 0 in the current ES
call getlinsecsr
sub cx,bp
jz fat_load_done ; Last moby?
add eax,ebp ; Advance sector count
mov bx,es ; Next 64K moby
add bx,1000h
mov es,bx
jmp short fat_load_loop
fat_load_done:
pop es
;
; Fine, now we have the FAT in memory. How big is a cluster, really?
; Also figure out how many clusters will fit in an 8K buffer, and how
; many sectors and bytes that is
;
mov edi,[bxBytesPerSec] ; Used a lot below
mov eax,[SecPerClust]
mov si,ax ; Also used a lot
mul di
mov [ClustSize],eax ; Bytes/cluster
mov bx,ax
mov ax,trackbufsize ; High bit 0
cwd
div bx
mov [BufSafe],ax ; # of cluster in trackbuf
mul si
mov [BufSafeSec],ax
mul di
mov [BufSafeBytes],ax
add ax,getcbuf ; Size of getcbuf is the same
mov [EndOfGetCBuf],ax ; as for trackbuf
;
; FAT12 or FAT16? This computation is fscking ridiculous...
;
mov eax,[bxSectors]
and ax,ax
jnz have_secs
mov eax,[bsHugeSectors]
have_secs: add eax,[bsHidden] ; These are not included
sub eax,[RootDir] ; Start of root directory
movzx ebx,word [RootDirSize]
sub eax,ebx ; Subtract root directory size
xor edx,edx
div esi ; Convert to clusters
cmp ax,4086 ; FAT12 limit
jna is_fat12
; Patch the jump
mov byte [nextcluster+1],nextcluster_fat16-(nextcluster+2)
is_fat12:
;
; Patch gls_set_size so we can transfer more than one sector at a time.
;
mov byte [gls_set_size],0xe8 ; E8 = CALL NEAR
mov word [gls_set_size+1],do_gls_set_size-(gls_set_size+3)
mov byte [disk_error],0xe8
mov word [disk_error+1],do_disk_error-(disk_error+3)
;
; Now we read the rest of LDLINUX.SYS. Don't bother loading the first
; cluster again, though.
;
load_rest:
mov cx,[ClustSize]
mov bx,ldlinux_sys
add bx,cx
mov si,[RunLinClust]
call nextcluster
xor dx,dx
mov ax,ldlinux_len-1 ; To be on the safe side
add ax,cx
div cx ; the number of clusters
dec ax ; We've already read one
jz all_read_jmp
mov cx,ax
call getfssec
;
; All loaded up
;
all_read_jmp:
jmp all_read
;
; -----------------------------------------------------------------------------
; Subroutines that have to be in the first sector
; -----------------------------------------------------------------------------
;
; getfssec: Get multiple clusters from a file, given the starting cluster.
;
; This routine makes sure the subtransfers do not cross a 64K boundary,
; and will correct the situation if it does, UNLESS *sectors* cross
; 64K boundaries.
;
; ES:BX -> Buffer
; SI -> Starting cluster number (2-based)
; CX -> Cluster count (0FFFFh = until end of file)
;
; Returns CF=1 on EOF
;
getfssec:
getfragment: xor ebp,ebp ; Fragment sector count
movzx eax,si ; Get sector address
dec ax ; Convert to 0-based
dec ax
mul dword [SecPerClust]
add eax,[DataArea]
getseccnt: ; See if we can read > 1 clust
add bp,[SecPerClust]
dec cx ; Reduce clusters left to find
lea di,[si+1]
call nextcluster
cmc
jc gfs_eof ; At EOF?
jcxz endfragment ; Or was it the last we wanted?
cmp si,di ; Is file continuous?
jz getseccnt ; Yes, we can get
endfragment: clc ; Not at EOF
gfs_eof: pushf ; Remember EOF or not
push si
push cx
gfs_getchunk:
push eax
mov ax,es ; Check for 64K boundaries.
shl ax,4
add ax,bx
xor dx,dx
neg ax
setz dl ; DX <- 1 if full 64K segment
div word [bsBytesPerSec] ; How many sectors fit?
mov si,bp
sub si,ax ; Compute remaining sectors
jbe gfs_lastchunk
mov bp,ax
pop eax
call getlinsecsr
add eax,ebp ; EBP<31:16> == 0
mov bp,si ; Remaining sector count
jmp short gfs_getchunk
gfs_lastchunk: pop eax
call getlinsec
pop cx
pop si
popf
jcxz gfs_return ; If we hit the count limit
jnc getfragment ; If we didn't hit EOF
gfs_return: ret
;
; getlinsecsr: save registers, call getlinsec, restore registers
;
getlinsecsr: pushad
call getlinsec
popad
ret
;
; nextcluster: Advance a cluster pointer in SI to the next cluster
; pointed at in the FAT tables. CF=0 on return if end of file.
;
nextcluster:
jmp short nextcluster_fat12 ; This gets patched
nextcluster_fat12:
push bx
push ds
mov bx,fat_seg
mov ds,bx
mov bx,si ; Multiply by 3/2
shr bx,1 ; CF now set if odd
mov si,[si+bx]
jnc nc_even
shr si,4 ; Needed for odd only
nc_even:
and si,0FFFh
cmp si,0FF0h ; Clears CF if at end of file
pop ds
pop bx
nc_return: ret
;
; FAT16 decoding routine. Note that a 16-bit FAT can be up to 128K,
; so we have to decide if we're in the "low" or the "high" 64K-segment...
;
nextcluster_fat16:
push ax
push ds
mov ax,fat_seg
shl si,1
jnc .seg0
mov ax,fat_seg+1000h
.seg0: mov ds,ax
mov si,[si]
cmp si,0FFF0h
pop ds
pop ax
ret
;
; Routine that controls how much we can transfer in one chunk. Called
; from gls_set_size in getlinsec.
;
do_gls_set_size:
sub si,cx ; Sectors left on track
cmp bp,si
jna .lastchunk
mov bp,si ; No more than a trackful, please!
.lastchunk:
cmp bp,[MaxTransfer] ; Absolute maximum transfer size
jna .oktransfer
mov bp,[MaxTransfer]
.oktransfer:
ret
;
; This routine captures disk errors, and tries to decide if it is
; time to reduce the transfer size.
;
do_disk_error:
dec si ; Decrement the retry counter
jz kaboom ; If expired, croak
cmp si,2 ; If only 2 attempts left
ja .nodanger
mov al,1 ; Drop transfer size to 1
jmp short .setsize
.nodanger:
cmp si,retry_count-2
ja .again ; First time, just try again
shr al,1 ; Otherwise, try to reduce
adc al,0 ; the max transfer size, but not to 0
.setsize:
mov [MaxTransfer],al
.again:
ret
;
; Debug routine
;
%ifdef debug
safedumpregs:
cmp word [Debug_Magic],0D00Dh
jnz nc_return
jmp dumpregs
%endif
rl_checkpt equ $ ; Must be <= 8000h
rl_checkpt_off equ ($-$$)
%ifndef DEPEND
%if rl_checkpt_off > 400h
%error "Sector 1 overflow"
%endif
%endif
; ----------------------------------------------------------------------------
; End of code and data that have to be in the first sector
; ----------------------------------------------------------------------------
all_read:
;
; Let the user (and programmer!) know we got this far. This used to be
; in Sector 1, but makes a lot more sense here.
;
mov si,copyright_str
call writestr
;
; Common initialization code
;
%include "cpuinit.inc"
;
; Initialization that does not need to go into the any of the pre-load
; areas
;
; Now set up screen parameters
call adjust_screen
; Wipe the F-key area
mov al,NULLFILE
mov di,FKeyName
mov cx,10*(1 << FILENAME_MAX_LG2)
rep stosb
;
; Now, everything is "up and running"... patch kaboom for more
; verbosity and using the full screen system
;
; E9 = JMP NEAR
mov dword [kaboom.patch],0e9h+((kaboom2-(kaboom.patch+3)) << 8)
;
; Compute some parameters that depend on cluster size
;
xor eax,eax
cwd ; DX <- 0
inc dx ; DX:AX <- 64K
div word [ClustSize]
mov [ClustPerMoby],eax ; Clusters/64K
;
; Now we're all set to start with our *real* business. First load the
; configuration file (if any) and parse it.
;
; In previous versions I avoided using 32-bit registers because of a
; rumour some BIOSes clobbered the upper half of 32-bit registers at
; random. I figure, though, that if there are any of those still left
; they probably won't be trying to install Linux on them...
;
; The code is still ripe with 16-bitisms, though. Not worth the hassle
; to take'm out. In fact, we may want to put them back if we're going
; to boot ELKS at some point.
;
mov si,linuxauto_cmd ; Default command: "linux auto"
mov di,default_cmd
mov cx,linuxauto_len
rep movsb
mov di,KbdMap ; Default keymap 1:1
xor al,al
inc ch ; CX <- 256
mkkeymap: stosb
inc al
loop mkkeymap
;
; Load configuration file
;
mov di,syslinux_cfg
call open
jz no_config_file
;
; Now we have the config file open. Parse the config file and
; run the user interface.
;
%include "ui.inc"
;
; Linux kernel loading code is common.
;
%include "runkernel.inc"
;
; COMBOOT-loading code
;
%include "comboot.inc"
%include "com32.inc"
;
; Boot sector loading code
;
%include "bootsect.inc"
;
; abort_check: let the user abort with <ESC> or <Ctrl-C>
;
abort_check:
call pollchar
jz ac_ret1
pusha
call getchar
cmp al,27 ; <ESC>
je ac_kill
cmp al,3 ; <Ctrl-C>
jne ac_ret2
ac_kill: mov si,aborted_msg
;
; abort_load: Called by various routines which wants to print a fatal
; error message and return to the command prompt. Since this
; may happen at just about any stage of the boot process, assume
; our state is messed up, and just reset the segment registers
; and the stack forcibly.
;
; SI = offset (in _text) of error message to print
;
abort_load:
mov ax,cs ; Restore CS = DS = ES
mov ds,ax
mov es,ax
cli
mov sp,StackBuf-2*3 ; Reset stack
mov ss,ax ; Just in case...
sti
call cwritestr ; Expects SI -> error msg
al_ok: jmp enter_command ; Return to command prompt
;
; End of abort_check
;
ac_ret2: popa
ac_ret1: ret
;
; searchdir: Search the root directory for a pre-mangled filename in
; DS:DI. This routine is similar to the one in the boot
; sector, but is a little less Draconian when it comes to
; error handling, plus it reads the root directory in
; larger chunks than a sector at a time (which is probably
; a waste of coding effort, but I like to do things right).
;
; FIXME: usually we can load the entire root dir in memory,
; and files are usually at the beginning anyway. It probably
; would be worthwhile to remember if we have the first chunk
; in memory and skip the load if that (it would speed up online
; help, mainly.)
;
; NOTE: This file considers finding a zero-length file an
; error. This is so we don't have to deal with that special
; case elsewhere in the program (most loops have the test
; at the end).
;
; If successful:
; ZF clear
; SI = cluster # for the first cluster
; DX:AX = file length in bytes
; If unsuccessful
; ZF set
;
searchdir:
mov ax,[bsRootDirEnts]
mov [DirScanCtr],ax
mov ax,[RootDirSize]
mov [DirBlocksLeft],ax
mov eax,[RootDir]
scan_group:
movzx ebp,word [DirBlocksLeft]
and bp,bp
jz dir_return
cmp bp,[BufSafeSec]
jna load_last
mov bp,[BufSafeSec]
load_last:
sub [DirBlocksLeft],bp
push eax
mov ax,[bsBytesPerSec]
mul bp
add ax,trackbuf-31
mov [EndofDirSec],ax ; End of loaded
pop eax
mov bx,trackbuf
call getlinsecsr
mov si,trackbuf
dir_test_name: cmp byte [si],0 ; Directory high water mark
je dir_return ; Failed
test byte [si+11],18h ; Check it really is a file
jnz dir_not_this
push di
push si
mov cx,11 ; Filename = 11 bytes
repe cmpsb
pop si
pop di
je dir_success
dir_not_this: add si,byte 32
dec word [DirScanCtr]
jz dir_return ; Out of it...
cmp si,[EndofDirSec]
jb dir_test_name
add eax,ebp ; Increment linear sector number
jmp short scan_group
dir_success:
mov ax,[si+28] ; Length of file
mov dx,[si+30]
mov si,[si+26] ; Cluster pointer
mov bx,ax
or bx,dx ; Sets ZF iff DX:AX is zero
dir_return:
ret
;
; writechr: Write a single character in AL to the console without
; mangling any registers
;
writechr:
call write_serial ; write to serial port if needed
pushfd
pushad
mov ah,0Eh
mov bx,0007h ; white text on this page
int 10h
popad
popfd
ret
;
;
; kaboom2: once everything is loaded, replace the part of kaboom
; starting with "kaboom.patch" with this part
kaboom2:
mov si,err_bootfailed
call cwritestr
call getchar
call vgaclearmode
int 19h ; And try once more to boot...
.norge: jmp short .norge ; If int 19h returned; this is the end
;
; mangle_name: Mangle a DOS filename pointed to by DS:SI into a buffer pointed
; to by ES:DI; ends on encountering any whitespace
;
mangle_name:
mov cx,11 ; # of bytes to write
mn_loop:
lodsb
cmp al,' ' ; If control or space, end
jna mn_end
cmp al,'.' ; Period -> space-fill
je mn_is_period
cmp al,'a'
jb mn_not_lower
cmp al,'z'
ja mn_not_uslower
sub al,020h
jmp short mn_not_lower
mn_is_period: mov al,' ' ; We need to space-fill
mn_period_loop: cmp cx,3 ; If <= 3 characters left
jbe mn_loop ; Just ignore it
stosb ; Otherwise, write a period
loop mn_period_loop ; Dec CX and (always) jump
mn_not_uslower: cmp al,ucase_low
jb mn_not_lower
cmp al,ucase_high
ja mn_not_lower
mov bx,ucase_tab-ucase_low
cs xlatb
mn_not_lower: stosb
loop mn_loop ; Don't continue if too long
mn_end:
mov al,' ' ; Space-fill name
rep stosb ; Doesn't do anything if CX=0
ret ; Done
;
; Upper-case table for extended characters; this is technically code page 865,
; but code page 437 users will probably not miss not being able to use the
; cent sign in kernel images too much :-)
;
; The table only covers the range 129 to 164; the rest we can deal with.
;
ucase_low equ 129
ucase_high equ 164
ucase_tab db 154, 144, 'A', 142, 'A', 143, 128, 'EEEIII'
db 142, 143, 144, 146, 146, 'O', 153, 'OUUY', 153, 154
db 157, 156, 157, 158, 159, 'AIOU', 165
;
; unmangle_name: Does the opposite of mangle_name; converts a DOS-mangled
; filename to the conventional representation. This is needed
; for the BOOT_IMAGE= parameter for the kernel.
; NOTE: A 13-byte buffer is mandatory, even if the string is
; known to be shorter.
;
; DS:SI -> input mangled file name
; ES:DI -> output buffer
;
; On return, DI points to the first byte after the output name,
; which is set to a null byte.
;
unmangle_name:
push si ; Save pointer to original name
mov cx,8
mov bp,di
un_copy_body: lodsb
call lower_case
stosb
cmp al,' '
jbe un_cb_space
mov bp,di ; Position of last nonblank+1
un_cb_space: loop un_copy_body
mov di,bp
mov al,'.' ; Don't save
stosb
mov cx,3
un_copy_ext: lodsb
call lower_case
stosb
cmp al,' '
jbe un_ce_space
mov bp,di
un_ce_space: loop un_copy_ext
mov di,bp
mov byte [es:di], 0
pop si
ret
;
; lower_case: Lower case a character in AL
;
lower_case:
cmp al,'A'
jb lc_ret
cmp al,'Z'
ja lc_1
or al,20h
ret
lc_1: cmp al,lcase_low
jb lc_ret
cmp al,lcase_high
ja lc_ret
push bx
mov bx,lcase_tab-lcase_low
cs xlatb
pop bx
lc_ret: ret
; -----------------------------------------------------------------------------
; Common modules
; -----------------------------------------------------------------------------
%include "getc.inc" ; getc et al
%include "conio.inc" ; Console I/O
%include "writestr.inc" ; String output
%include "parseconfig.inc" ; High-level config file handling
%include "parsecmd.inc" ; Low-level config file handling
%include "bcopy32.inc" ; 32-bit bcopy
%include "loadhigh.inc" ; Load a file into high memory
%include "font.inc" ; VGA font stuff
%include "graphics.inc" ; VGA graphics
%include "highmem.inc" ; High memory sizing
; -----------------------------------------------------------------------------
; Begin data section
; -----------------------------------------------------------------------------
CR equ 13 ; Carriage Return
LF equ 10 ; Line Feed
FF equ 12 ; Form Feed
BS equ 8 ; Backspace
;
; Lower-case table for codepage 865
;
lcase_low equ 128
lcase_high equ 165
lcase_tab db 135, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138
db 139, 140, 141, 132, 134, 130, 145, 145, 147, 148, 149
db 150, 151, 152, 148, 129, 155, 156, 155, 158, 159, 160
db 161, 162, 163, 164, 164
copyright_str db ' Copyright (C) 1994-', year, ' H. Peter Anvin'
db CR, LF, 0
boot_prompt db 'boot: ', 0
wipe_char db BS, ' ', BS, 0
err_notfound db 'Could not find kernel image: ',0
err_notkernel db CR, LF, 'Invalid or corrupt kernel image.', CR, LF, 0
err_noram db 'It appears your computer has less than 488K of low ("DOS")'
db CR, LF
db 'RAM. Linux needs at least this amount to boot. If you get'
db CR, LF
db 'this message in error, hold down the Ctrl key while'
db CR, LF
db 'booting, and I will take your word for it.', CR, LF, 0
err_badcfg db 'Unknown keyword in syslinux.cfg.', CR, LF, 0
err_noparm db 'Missing parameter in syslinux.cfg.', CR, LF, 0
err_noinitrd db CR, LF, 'Could not find ramdisk image: ', 0
err_nohighmem db 'Not enough memory to load specified kernel.', CR, LF, 0
err_highload db CR, LF, 'Kernel transfer failure.', CR, LF, 0
err_oldkernel db 'Cannot load a ramdisk with an old kernel image.'
db CR, LF, 0
err_notdos db ': attempted DOS system call', CR, LF, 0
err_comlarge db 'COMBOOT image too large.', CR, LF, 0
err_a20 db CR, LF, 'A20 gate not responding!', CR, LF, 0
err_bootfailed db CR, LF, 'Boot failed: please change disks and press '
db 'a key to continue.', CR, LF, 0
ready_msg db 'Ready.', CR, LF, 0
crlfloading_msg db CR, LF
loading_msg db 'Loading ', 0
dotdot_msg db '.'
dot_msg db '.', 0
aborted_msg db ' aborted.' ; Fall through to crlf_msg!
crlf_msg db CR, LF
null_msg db 0
crff_msg db CR, FF, 0
syslinux_cfg db 'SYSLINUXCFG'
;
; Command line options we'd like to take a look at
;
; mem= and vga= are handled as normal 32-bit integer values
initrd_cmd db 'initrd='
initrd_cmd_len equ 7
;
; Config file keyword table
;
%include "keywords.inc"
;
; Extensions to search for (in *forward* order).
;
exten_table: db 'CBT',0 ; COMBOOT (specific)
db 'BSS',0 ; Boot Sector (add superblock)
db 'BS ',0 ; Boot Sector
db 'COM',0 ; COMBOOT (same as DOS)
exten_table_end:
dd 0, 0 ; Need 8 null bytes here
;
; Misc initialized (data) variables
;
%ifdef debug ; This code for debugging only
debug_magic dw 0D00Dh ; Debug code sentinel
%endif
AppendLen dw 0 ; Bytes in append= command
KbdTimeOut dw 0 ; Keyboard timeout (if any)
CmdLinePtr dw cmd_line_here ; Command line advancing pointer
initrd_flag equ $
initrd_ptr dw 0 ; Initial ramdisk pointer/flag
VKernelCtr dw 0 ; Number of registered vkernels
ForcePrompt dw 0 ; Force prompt
AllowImplicit dw 1 ; Allow implicit kernels
SerialPort dw 0 ; Serial port base (or 0 for no serial port)
VGAFontSize dw 16 ; Defaults to 16 byte font
UserFont db 0 ; Using a user-specified font
ScrollAttribute db 07h ; White on black (for text mode)
;
; Stuff for the command line; we do some trickery here with equ to avoid
; tons of zeros appended to our file and wasting space
;
linuxauto_cmd db 'linux auto',0
linuxauto_len equ $-linuxauto_cmd
boot_image db 'BOOT_IMAGE='
boot_image_len equ $-boot_image
align 4, db 0 ; For the good of REP MOVSD
command_line equ $
default_cmd equ $+(max_cmd_len+2)
ldlinux_end equ default_cmd+(max_cmd_len+1)
kern_cmd_len equ ldlinux_end-command_line
ldlinux_len equ ldlinux_end-ldlinux_magic
;
; Put the getcbuf right after the code, aligned on a sector boundary
;
end_of_code equ (ldlinux_end-bootsec)+7C00h
getcbuf equ (end_of_code + 511) & 0FE00h
; VGA font buffer at the end of memory (so loading a font works even
; in graphics mode.)
vgafontbuf equ 0E000h
; This is a compile-time assert that we didn't run out of space
%ifndef DEPEND
%if (getcbuf+trackbufsize) > vgafontbuf
%error "Out of memory, better reorganize something..."
%endif
%endif