blob: 415bf7e50cc99149d66eb6204d99a1802e27014e [file] [log] [blame]
/*
* Linearize - walk the statement tree (but _not_ the expressions)
* to generate a linear version of it and the basic blocks.
*
* NOTE! We're not interested in the actual sub-expressions yet,
* even though they can generate conditional branches and
* subroutine calls. That's all "local" behaviour.
*
* Copyright (C) 2004 Linus Torvalds
* Copyright (C) 2004 Christopher Li
*/
#include <string.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include "parse.h"
#include "expression.h"
#include "linearize.h"
#include "optimize.h"
#include "flow.h"
#include "target.h"
static pseudo_t linearize_statement(struct entrypoint *ep, struct statement *stmt);
static pseudo_t linearize_expression(struct entrypoint *ep, struct expression *expr);
static pseudo_t add_cast(struct entrypoint *ep, struct symbol *to, struct symbol *from, int op, pseudo_t src);
static pseudo_t add_binary_op(struct entrypoint *ep, struct symbol *ctype, int op, pseudo_t left, pseudo_t right);
static pseudo_t add_setval(struct entrypoint *ep, struct symbol *ctype, struct expression *val);
static pseudo_t linearize_one_symbol(struct entrypoint *ep, struct symbol *sym);
struct access_data;
static pseudo_t add_load(struct entrypoint *ep, struct access_data *);
static pseudo_t linearize_initializer(struct entrypoint *ep, struct expression *initializer, struct access_data *);
static pseudo_t cast_pseudo(struct entrypoint *ep, pseudo_t src, struct symbol *from, struct symbol *to);
struct pseudo void_pseudo = {};
static struct position current_pos;
ALLOCATOR(pseudo_user, "pseudo_user");
static struct instruction *alloc_instruction(int opcode, int size)
{
struct instruction * insn = __alloc_instruction(0);
insn->opcode = opcode;
insn->size = size;
insn->pos = current_pos;
return insn;
}
static inline int type_size(struct symbol *type)
{
return type ? type->bit_size > 0 ? type->bit_size : 0 : 0;
}
static struct instruction *alloc_typed_instruction(int opcode, struct symbol *type)
{
struct instruction *insn = alloc_instruction(opcode, type_size(type));
insn->type = type;
return insn;
}
static struct entrypoint *alloc_entrypoint(void)
{
return __alloc_entrypoint(0);
}
static struct basic_block *alloc_basic_block(struct entrypoint *ep, struct position pos)
{
static int nr;
struct basic_block *bb = __alloc_basic_block(0);
bb->pos = pos;
bb->ep = ep;
bb->nr = nr++;
return bb;
}
static struct multijmp *alloc_multijmp(struct basic_block *target, long long begin, long long end)
{
struct multijmp *multijmp = __alloc_multijmp(0);
multijmp->target = target;
multijmp->begin = begin;
multijmp->end = end;
return multijmp;
}
const char *show_label(struct basic_block *bb)
{
static int n;
static char buffer[4][16];
char *buf = buffer[3 & ++n];
if (!bb)
return ".L???";
snprintf(buf, 64, ".L%u", bb->nr);
return buf;
}
const char *show_pseudo(pseudo_t pseudo)
{
static int n;
static char buffer[4][64];
char *buf;
int i;
if (!pseudo)
return "no pseudo";
if (pseudo == VOID)
return "VOID";
buf = buffer[3 & ++n];
switch(pseudo->type) {
case PSEUDO_SYM: {
struct symbol *sym = pseudo->sym;
struct expression *expr;
if (!sym) {
snprintf(buf, 64, "<bad symbol>");
break;
}
if (sym->bb_target) {
snprintf(buf, 64, "%s", show_label(sym->bb_target));
break;
}
if (sym->ident) {
snprintf(buf, 64, "%s", show_ident(sym->ident));
break;
}
expr = sym->initializer;
snprintf(buf, 64, "<anon symbol:%p>", verbose ? sym : NULL);
if (expr) {
switch (expr->type) {
case EXPR_VALUE:
snprintf(buf, 64, "<symbol value: %lld>", expr->value);
break;
case EXPR_STRING:
return show_string(expr->string);
default:
break;
}
}
break;
}
case PSEUDO_REG:
i = snprintf(buf, 64, "%%r%d", pseudo->nr);
if (pseudo->ident)
sprintf(buf+i, "(%s)", show_ident(pseudo->ident));
break;
case PSEUDO_VAL: {
long long value = pseudo->value;
if (value > 1000 || value < -1000)
snprintf(buf, 64, "$%#llx", value);
else
snprintf(buf, 64, "$%lld", value);
break;
}
case PSEUDO_ARG:
snprintf(buf, 64, "%%arg%d", pseudo->nr);
break;
case PSEUDO_PHI:
i = snprintf(buf, 64, "%%phi%d", pseudo->nr);
if (pseudo->ident)
sprintf(buf+i, "(%s)", show_ident(pseudo->ident));
break;
case PSEUDO_UNDEF:
return "UNDEF";
default:
snprintf(buf, 64, "<bad pseudo type %d>", pseudo->type);
}
return buf;
}
static const char *opcodes[] = {
[OP_BADOP] = "bad_op",
/* Fn entrypoint */
[OP_ENTRY] = "<entry-point>",
/* Terminator */
[OP_RET] = "ret",
[OP_BR] = "br",
[OP_CBR] = "cbr",
[OP_SWITCH] = "switch",
[OP_COMPUTEDGOTO] = "jmp *",
/* Binary */
[OP_ADD] = "add",
[OP_SUB] = "sub",
[OP_MUL] = "mul",
[OP_DIVU] = "divu",
[OP_DIVS] = "divs",
[OP_MODU] = "modu",
[OP_MODS] = "mods",
[OP_SHL] = "shl",
[OP_LSR] = "lsr",
[OP_ASR] = "asr",
/* Floating-point Binary */
[OP_FADD] = "fadd",
[OP_FSUB] = "fsub",
[OP_FMUL] = "fmul",
[OP_FDIV] = "fdiv",
/* Logical */
[OP_AND] = "and",
[OP_OR] = "or",
[OP_XOR] = "xor",
/* Binary comparison */
[OP_SET_EQ] = "seteq",
[OP_SET_NE] = "setne",
[OP_SET_LE] = "setle",
[OP_SET_GE] = "setge",
[OP_SET_LT] = "setlt",
[OP_SET_GT] = "setgt",
[OP_SET_B] = "setb",
[OP_SET_A] = "seta",
[OP_SET_BE] = "setbe",
[OP_SET_AE] = "setae",
/* floating-point comparison */
[OP_FCMP_ORD] = "fcmpord",
[OP_FCMP_OEQ] = "fcmpoeq",
[OP_FCMP_ONE] = "fcmpone",
[OP_FCMP_OLE] = "fcmpole",
[OP_FCMP_OGE] = "fcmpoge",
[OP_FCMP_OLT] = "fcmpolt",
[OP_FCMP_OGT] = "fcmpogt",
[OP_FCMP_UEQ] = "fcmpueq",
[OP_FCMP_UNE] = "fcmpune",
[OP_FCMP_ULE] = "fcmpule",
[OP_FCMP_UGE] = "fcmpuge",
[OP_FCMP_ULT] = "fcmpult",
[OP_FCMP_UGT] = "fcmpugt",
[OP_FCMP_UNO] = "fcmpuno",
/* Uni */
[OP_NOT] = "not",
[OP_NEG] = "neg",
[OP_FNEG] = "fneg",
/* Special three-input */
[OP_SEL] = "select",
/* Memory */
[OP_LOAD] = "load",
[OP_STORE] = "store",
[OP_SETVAL] = "set",
[OP_SETFVAL] = "setfval",
[OP_SYMADDR] = "symaddr",
/* Other */
[OP_PHI] = "phi",
[OP_PHISOURCE] = "phisrc",
[OP_SEXT] = "sext",
[OP_ZEXT] = "zext",
[OP_TRUNC] = "trunc",
[OP_FCVTU] = "fcvtu",
[OP_FCVTS] = "fcvts",
[OP_UCVTF] = "ucvtf",
[OP_SCVTF] = "scvtf",
[OP_FCVTF] = "fcvtf",
[OP_UTPTR] = "utptr",
[OP_PTRTU] = "ptrtu",
[OP_PTRCAST] = "ptrcast",
[OP_INLINED_CALL] = "# call",
[OP_CALL] = "call",
[OP_SLICE] = "slice",
[OP_NOP] = "nop",
[OP_DEATHNOTE] = "dead",
[OP_ASM] = "asm",
/* Sparse tagging (line numbers, context, whatever) */
[OP_CONTEXT] = "context",
[OP_RANGE] = "range-check",
[OP_COPY] = "copy",
};
static char *show_asm_constraints(char *buf, const char *sep, struct asm_constraint_list *list)
{
struct asm_constraint *entry;
FOR_EACH_PTR(list, entry) {
buf += sprintf(buf, "%s\"%s\"", sep, entry->constraint);
if (entry->pseudo)
buf += sprintf(buf, " (%s)", show_pseudo(entry->pseudo));
if (entry->ident)
buf += sprintf(buf, " [%s]", show_ident(entry->ident));
sep = ", ";
} END_FOR_EACH_PTR(entry);
return buf;
}
static char *show_asm(char *buf, struct instruction *insn)
{
struct asm_rules *rules = insn->asm_rules;
buf += sprintf(buf, "\"%s\"", insn->string);
buf = show_asm_constraints(buf, "\n\t\tout: ", rules->outputs);
buf = show_asm_constraints(buf, "\n\t\tin: ", rules->inputs);
buf = show_asm_constraints(buf, "\n\t\tclobber: ", rules->clobbers);
return buf;
}
const char *show_instruction(struct instruction *insn)
{
int opcode = insn->opcode;
static char buffer[4096];
char *buf;
buf = buffer;
if (!insn->bb)
buf += sprintf(buf, "# ");
if (opcode < ARRAY_SIZE(opcodes)) {
const char *op = opcodes[opcode];
if (!op)
buf += sprintf(buf, "opcode:%d", opcode);
else
buf += sprintf(buf, "%s", op);
if (insn->size)
buf += sprintf(buf, ".%d", insn->size);
memset(buf, ' ', 20);
buf++;
}
if (buf < buffer + 12)
buf = buffer + 12;
switch (opcode) {
case OP_RET:
if (insn->src && insn->src != VOID)
buf += sprintf(buf, "%s", show_pseudo(insn->src));
break;
case OP_CBR:
buf += sprintf(buf, "%s, %s, %s", show_pseudo(insn->cond), show_label(insn->bb_true), show_label(insn->bb_false));
break;
case OP_BR:
buf += sprintf(buf, "%s", show_label(insn->bb_true));
break;
case OP_SETVAL: {
struct expression *expr = insn->val;
buf += sprintf(buf, "%s <- ", show_pseudo(insn->target));
if (!expr) {
buf += sprintf(buf, "%s", "<none>");
break;
}
switch (expr->type) {
case EXPR_VALUE:
buf += sprintf(buf, "%lld", expr->value);
break;
case EXPR_FVALUE:
buf += sprintf(buf, "%Le", expr->fvalue);
break;
case EXPR_STRING:
buf += sprintf(buf, "%.40s", show_string(expr->string));
break;
case EXPR_SYMBOL:
buf += sprintf(buf, "%s", show_ident(expr->symbol->ident));
break;
case EXPR_LABEL:
buf += sprintf(buf, "%s", show_label(expr->symbol->bb_target));
break;
default:
buf += sprintf(buf, "SETVAL EXPR TYPE %d", expr->type);
}
break;
}
case OP_SETFVAL:
buf += sprintf(buf, "%s <- ", show_pseudo(insn->target));
buf += sprintf(buf, "%Le", insn->fvalue);
break;
case OP_SWITCH: {
struct multijmp *jmp;
buf += sprintf(buf, "%s", show_pseudo(insn->cond));
FOR_EACH_PTR(insn->multijmp_list, jmp) {
if (jmp->begin == jmp->end)
buf += sprintf(buf, ", %lld -> %s", jmp->begin, show_label(jmp->target));
else if (jmp->begin < jmp->end)
buf += sprintf(buf, ", %lld ... %lld -> %s", jmp->begin, jmp->end, show_label(jmp->target));
else
buf += sprintf(buf, ", default -> %s", show_label(jmp->target));
} END_FOR_EACH_PTR(jmp);
break;
}
case OP_COMPUTEDGOTO: {
struct multijmp *jmp;
buf += sprintf(buf, "%s", show_pseudo(insn->src));
FOR_EACH_PTR(insn->multijmp_list, jmp) {
buf += sprintf(buf, ", %s", show_label(jmp->target));
} END_FOR_EACH_PTR(jmp);
break;
}
case OP_PHISOURCE: {
struct instruction *phi;
buf += sprintf(buf, "%s <- %s ", show_pseudo(insn->target), show_pseudo(insn->phi_src));
FOR_EACH_PTR(insn->phi_users, phi) {
buf += sprintf(buf, " (%s)", show_pseudo(phi->target));
} END_FOR_EACH_PTR(phi);
break;
}
case OP_PHI: {
pseudo_t phi;
const char *s = " <-";
buf += sprintf(buf, "%s", show_pseudo(insn->target));
FOR_EACH_PTR(insn->phi_list, phi) {
if (phi == VOID && !verbose)
continue;
buf += sprintf(buf, "%s %s", s, show_pseudo(phi));
s = ",";
} END_FOR_EACH_PTR(phi);
break;
}
case OP_LOAD:
buf += sprintf(buf, "%s <- %d[%s]", show_pseudo(insn->target), insn->offset, show_pseudo(insn->src));
break;
case OP_STORE:
buf += sprintf(buf, "%s -> %d[%s]", show_pseudo(insn->target), insn->offset, show_pseudo(insn->src));
break;
case OP_INLINED_CALL:
case OP_CALL: {
struct pseudo *arg;
if (insn->target && insn->target != VOID)
buf += sprintf(buf, "%s <- ", show_pseudo(insn->target));
buf += sprintf(buf, "%s", show_pseudo(insn->func));
FOR_EACH_PTR(insn->arguments, arg) {
buf += sprintf(buf, ", %s", show_pseudo(arg));
} END_FOR_EACH_PTR(arg);
break;
}
case OP_SEXT: case OP_ZEXT:
case OP_TRUNC:
case OP_FCVTU: case OP_FCVTS:
case OP_UCVTF: case OP_SCVTF:
case OP_FCVTF:
case OP_UTPTR:
case OP_PTRTU:
case OP_PTRCAST:
buf += sprintf(buf, "%s <- (%d) %s",
show_pseudo(insn->target),
type_size(insn->orig_type),
show_pseudo(insn->src));
break;
case OP_BINARY ... OP_BINARY_END:
case OP_FPCMP ... OP_FPCMP_END:
case OP_BINCMP ... OP_BINCMP_END:
buf += sprintf(buf, "%s <- %s, %s", show_pseudo(insn->target), show_pseudo(insn->src1), show_pseudo(insn->src2));
break;
case OP_SEL:
buf += sprintf(buf, "%s <- %s, %s, %s", show_pseudo(insn->target),
show_pseudo(insn->src1), show_pseudo(insn->src2), show_pseudo(insn->src3));
break;
case OP_SLICE:
buf += sprintf(buf, "%s <- %s, %d, %d", show_pseudo(insn->target), show_pseudo(insn->base), insn->from, insn->len);
break;
case OP_NOT: case OP_NEG:
case OP_FNEG:
case OP_SYMADDR:
buf += sprintf(buf, "%s <- %s", show_pseudo(insn->target), show_pseudo(insn->src1));
break;
case OP_CONTEXT:
buf += sprintf(buf, "%s%d", insn->check ? "check: " : "", insn->increment);
break;
case OP_RANGE:
buf += sprintf(buf, "%s between %s..%s", show_pseudo(insn->src1), show_pseudo(insn->src2), show_pseudo(insn->src3));
break;
case OP_NOP:
buf += sprintf(buf, "%s <- %s", show_pseudo(insn->target), show_pseudo(insn->src1));
break;
case OP_DEATHNOTE:
buf += sprintf(buf, "%s", show_pseudo(insn->target));
break;
case OP_ASM:
buf = show_asm(buf, insn);
break;
case OP_COPY:
buf += sprintf(buf, "%s <- %s", show_pseudo(insn->target), show_pseudo(insn->src));
break;
default:
break;
}
if (buf >= buffer + sizeof(buffer))
die("instruction buffer overflowed %td\n", buf - buffer);
do { --buf; } while (*buf == ' ');
*++buf = 0;
return buffer;
}
void show_bb(struct basic_block *bb)
{
struct instruction *insn;
printf("%s:\n", show_label(bb));
if (verbose) {
pseudo_t needs, defines;
printf("%s:%d\n", stream_name(bb->pos.stream), bb->pos.line);
FOR_EACH_PTR(bb->needs, needs) {
struct instruction *def = needs->def;
if (def->opcode != OP_PHI) {
printf(" **uses %s (from %s)**\n", show_pseudo(needs), show_label(def->bb));
} else {
pseudo_t phi;
const char *sep = " ";
printf(" **uses %s (from", show_pseudo(needs));
FOR_EACH_PTR(def->phi_list, phi) {
if (phi == VOID)
continue;
printf("%s(%s:%s)", sep, show_pseudo(phi), show_label(phi->def->bb));
sep = ", ";
} END_FOR_EACH_PTR(phi);
printf(")**\n");
}
} END_FOR_EACH_PTR(needs);
FOR_EACH_PTR(bb->defines, defines) {
printf(" **defines %s **\n", show_pseudo(defines));
} END_FOR_EACH_PTR(defines);
if (bb->parents) {
struct basic_block *from;
FOR_EACH_PTR(bb->parents, from) {
printf(" **from %s (%s:%d:%d)**\n", show_label(from),
stream_name(from->pos.stream), from->pos.line, from->pos.pos);
} END_FOR_EACH_PTR(from);
}
if (bb->children) {
struct basic_block *to;
FOR_EACH_PTR(bb->children, to) {
printf(" **to %s (%s:%d:%d)**\n", show_label(to),
stream_name(to->pos.stream), to->pos.line, to->pos.pos);
} END_FOR_EACH_PTR(to);
}
}
FOR_EACH_PTR(bb->insns, insn) {
if (!insn->bb && verbose < 2)
continue;
printf("\t%s\n", show_instruction(insn));
} END_FOR_EACH_PTR(insn);
if (!bb_terminated(bb))
printf("\tEND\n");
}
static void show_symbol_usage(pseudo_t pseudo)
{
struct pseudo_user *pu;
if (pseudo) {
FOR_EACH_PTR(pseudo->users, pu) {
printf("\t%s\n", show_instruction(pu->insn));
} END_FOR_EACH_PTR(pu);
}
}
void show_entry(struct entrypoint *ep)
{
struct symbol *sym;
struct basic_block *bb;
printf("%s:\n", show_ident(ep->name->ident));
if (verbose) {
printf("ep %p: %s\n", ep, show_ident(ep->name->ident));
FOR_EACH_PTR(ep->syms, sym) {
if (!sym->pseudo)
continue;
if (!sym->pseudo->users)
continue;
printf(" sym: %p %s\n", sym, show_ident(sym->ident));
if (sym->ctype.modifiers & (MOD_EXTERN | MOD_STATIC | MOD_ADDRESSABLE))
printf("\texternal visibility\n");
show_symbol_usage(sym->pseudo);
} END_FOR_EACH_PTR(sym);
printf("\n");
}
FOR_EACH_PTR(ep->bbs, bb) {
if (!bb)
continue;
if (!bb->parents && !bb->children && !bb->insns && verbose < 2)
continue;
show_bb(bb);
printf("\n");
} END_FOR_EACH_PTR(bb);
printf("\n");
}
static void bind_label(struct symbol *label, struct basic_block *bb, struct position pos)
{
if (label->bb_target)
warning(pos, "label '%s' already bound", show_ident(label->ident));
label->bb_target = bb;
}
static struct basic_block * get_bound_block(struct entrypoint *ep, struct symbol *label)
{
struct basic_block *bb = label->bb_target;
if (!bb) {
bb = alloc_basic_block(ep, label->pos);
label->bb_target = bb;
}
return bb;
}
static void finish_block(struct entrypoint *ep)
{
struct basic_block *src = ep->active;
if (bb_reachable(src))
ep->active = NULL;
}
static void add_goto(struct entrypoint *ep, struct basic_block *dst)
{
struct basic_block *src = ep->active;
if (bb_reachable(src)) {
struct instruction *br = alloc_instruction(OP_BR, 0);
br->bb_true = dst;
add_bb(&dst->parents, src);
add_bb(&src->children, dst);
br->bb = src;
add_instruction(&src->insns, br);
ep->active = NULL;
}
}
static void add_one_insn(struct entrypoint *ep, struct instruction *insn)
{
struct basic_block *bb = ep->active;
if (bb_reachable(bb)) {
insn->bb = bb;
add_instruction(&bb->insns, insn);
}
}
static void set_activeblock(struct entrypoint *ep, struct basic_block *bb)
{
if (!bb_terminated(ep->active))
add_goto(ep, bb);
ep->active = bb;
if (bb_reachable(bb))
add_bb(&ep->bbs, bb);
}
static void remove_parent(struct basic_block *child, struct basic_block *parent)
{
remove_bb_from_list(&child->parents, parent, 1);
if (!child->parents)
repeat_phase |= REPEAT_CFG_CLEANUP;
}
/* Change a "switch" or a conditional branch into a branch */
void insert_branch(struct basic_block *bb, struct instruction *jmp, struct basic_block *target)
{
struct instruction *br, *old;
struct basic_block *child;
/* Remove the switch */
old = delete_last_instruction(&bb->insns);
assert(old == jmp);
kill_instruction(old);
br = alloc_instruction(OP_BR, 0);
br->bb = bb;
br->bb_true = target;
add_instruction(&bb->insns, br);
FOR_EACH_PTR(bb->children, child) {
if (child == target) {
target = NULL; /* Trigger just once */
continue;
}
DELETE_CURRENT_PTR(child);
remove_parent(child, bb);
} END_FOR_EACH_PTR(child);
PACK_PTR_LIST(&bb->children);
}
void insert_select(struct basic_block *bb, struct instruction *br, struct instruction *phi_node, pseudo_t if_true, pseudo_t if_false)
{
pseudo_t target;
struct instruction *select;
/* Remove the 'br' */
delete_last_instruction(&bb->insns);
select = alloc_typed_instruction(OP_SEL, phi_node->type);
select->bb = bb;
assert(br->cond);
use_pseudo(select, br->cond, &select->src1);
target = phi_node->target;
assert(target->def == phi_node);
select->target = target;
target->def = select;
use_pseudo(select, if_true, &select->src2);
use_pseudo(select, if_false, &select->src3);
add_instruction(&bb->insns, select);
add_instruction(&bb->insns, br);
}
static inline int bb_empty(struct basic_block *bb)
{
return !bb->insns;
}
/* Add a label to the currently active block, return new active block */
static struct basic_block * add_label(struct entrypoint *ep, struct symbol *label)
{
struct basic_block *bb = label->bb_target;
if (bb) {
set_activeblock(ep, bb);
return bb;
}
bb = ep->active;
if (!bb_reachable(bb) || !bb_empty(bb)) {
bb = alloc_basic_block(ep, label->pos);
set_activeblock(ep, bb);
}
label->bb_target = bb;
return bb;
}
static void add_branch(struct entrypoint *ep, pseudo_t cond, struct basic_block *bb_true, struct basic_block *bb_false)
{
struct basic_block *bb = ep->active;
struct instruction *br;
if (bb_reachable(bb)) {
br = alloc_instruction(OP_CBR, 0);
use_pseudo(br, cond, &br->cond);
br->bb_true = bb_true;
br->bb_false = bb_false;
add_bb(&bb_true->parents, bb);
add_bb(&bb_false->parents, bb);
add_bb(&bb->children, bb_true);
add_bb(&bb->children, bb_false);
add_one_insn(ep, br);
}
}
pseudo_t alloc_pseudo(struct instruction *def)
{
static int nr = 0;
struct pseudo * pseudo = __alloc_pseudo(0);
pseudo->type = PSEUDO_REG;
pseudo->nr = ++nr;
pseudo->def = def;
return pseudo;
}
static pseudo_t symbol_pseudo(struct entrypoint *ep, struct symbol *sym)
{
pseudo_t pseudo;
if (!sym)
return VOID;
pseudo = sym->pseudo;
if (!pseudo) {
pseudo = __alloc_pseudo(0);
pseudo->nr = -1;
pseudo->type = PSEUDO_SYM;
pseudo->sym = sym;
pseudo->ident = sym->ident;
sym->pseudo = pseudo;
add_pseudo(&ep->accesses, pseudo);
}
/* Symbol pseudos have neither nr nor def */
return pseudo;
}
pseudo_t value_pseudo(long long val)
{
#define MAX_VAL_HASH 64
static struct pseudo_list *prev[MAX_VAL_HASH];
int hash = val & (MAX_VAL_HASH-1);
struct pseudo_list **list = prev + hash;
pseudo_t pseudo;
FOR_EACH_PTR(*list, pseudo) {
if (pseudo->value == val)
return pseudo;
} END_FOR_EACH_PTR(pseudo);
pseudo = __alloc_pseudo(0);
pseudo->type = PSEUDO_VAL;
pseudo->value = val;
add_pseudo(list, pseudo);
/* Value pseudos have neither nr, usage nor def */
return pseudo;
}
pseudo_t undef_pseudo(void)
{
pseudo_t pseudo = __alloc_pseudo(0);
pseudo->type = PSEUDO_UNDEF;
return pseudo;
}
static pseudo_t argument_pseudo(struct entrypoint *ep, int nr)
{
pseudo_t pseudo = __alloc_pseudo(0);
struct instruction *entry = ep->entry;
pseudo->type = PSEUDO_ARG;
pseudo->nr = nr;
pseudo->def = entry;
add_pseudo(&entry->arg_list, pseudo);
/* Argument pseudos have neither usage nor def */
return pseudo;
}
struct instruction *alloc_phisrc(pseudo_t pseudo, struct symbol *type)
{
struct instruction *insn = alloc_typed_instruction(OP_PHISOURCE, type);
pseudo_t phi = __alloc_pseudo(0);
static int nr = 0;
phi->type = PSEUDO_PHI;
phi->nr = ++nr;
phi->def = insn;
use_pseudo(insn, pseudo, &insn->phi_src);
insn->target = phi;
return insn;
}
pseudo_t alloc_phi(struct basic_block *source, pseudo_t pseudo, struct symbol *type)
{
struct instruction *insn;
if (!source)
return VOID;
insn = alloc_phisrc(pseudo, type);
insn->bb = source;
add_instruction(&source->insns, insn);
return insn->target;
}
struct instruction *alloc_phi_node(struct basic_block *bb, struct symbol *type, struct ident *ident)
{
struct instruction *phi_node = alloc_typed_instruction(OP_PHI, type);
pseudo_t phi;
phi = alloc_pseudo(phi_node);
phi->ident = ident;
phi->def = phi_node;
phi_node->target = phi;
phi_node->bb = bb;
return phi_node;
}
void add_phi_node(struct basic_block *bb, struct instruction *phi_node)
{
struct instruction *insn;
FOR_EACH_PTR(bb->insns, insn) {
enum opcode op = insn->opcode;
if (op == OP_PHI)
continue;
INSERT_CURRENT(phi_node, insn);
return;
} END_FOR_EACH_PTR(insn);
// FIXME
add_instruction(&bb->insns, phi_node);
}
struct instruction *insert_phi_node(struct basic_block *bb, struct symbol *var)
{
struct instruction *phi_node = alloc_phi_node(bb, var, var->ident);
add_phi_node(bb, phi_node);
return phi_node;
}
/*
* We carry the "access_data" structure around for any accesses,
* which simplifies things a lot. It contains all the access
* information in one place.
*/
struct access_data {
struct symbol *type; // ctype
struct symbol *btype; // base type of bitfields
pseudo_t address; // pseudo containing address ..
unsigned int offset; // byte offset
};
static int linearize_simple_address(struct entrypoint *ep,
struct expression *addr,
struct access_data *ad)
{
if (addr->type == EXPR_SYMBOL) {
linearize_one_symbol(ep, addr->symbol);
ad->address = symbol_pseudo(ep, addr->symbol);
return 1;
}
if (addr->type == EXPR_BINOP) {
if (addr->right->type == EXPR_VALUE) {
if (addr->op == '+') {
ad->offset += get_expression_value(addr->right);
return linearize_simple_address(ep, addr->left, ad);
}
}
}
ad->address = linearize_expression(ep, addr);
return 1;
}
static struct symbol *bitfield_base_type(struct symbol *sym)
{
struct symbol *base = sym;
if (sym) {
if (sym->type == SYM_NODE)
base = base->ctype.base_type;
if (base->type == SYM_BITFIELD)
return base->ctype.base_type;
}
return sym;
}
static int linearize_address_gen(struct entrypoint *ep,
struct expression *expr,
struct access_data *ad)
{
struct symbol *ctype = expr->ctype;
if (!ctype)
return 0;
ad->type = ctype;
if (expr->type == EXPR_PREOP && expr->op == '*')
return linearize_simple_address(ep, expr->unop, ad);
warning(expr->pos, "generating address of non-lvalue (%d)", expr->type);
return 0;
}
static pseudo_t add_load(struct entrypoint *ep, struct access_data *ad)
{
struct instruction *insn;
pseudo_t new;
if (!ep->active)
return VOID;
insn = alloc_typed_instruction(OP_LOAD, ad->btype);
new = alloc_pseudo(insn);
insn->target = new;
insn->offset = ad->offset;
insn->is_volatile = ad->type && (ad->type->ctype.modifiers & MOD_VOLATILE);
use_pseudo(insn, ad->address, &insn->src);
add_one_insn(ep, insn);
return new;
}
static void add_store(struct entrypoint *ep, struct access_data *ad, pseudo_t value)
{
struct basic_block *bb = ep->active;
struct instruction *store;
if (!bb)
return;
store = alloc_typed_instruction(OP_STORE, ad->btype);
store->offset = ad->offset;
store->is_volatile = ad->type && (ad->type->ctype.modifiers & MOD_VOLATILE);
use_pseudo(store, value, &store->target);
use_pseudo(store, ad->address, &store->src);
add_one_insn(ep, store);
}
static pseudo_t linearize_bitfield_insert(struct entrypoint *ep,
pseudo_t ori, pseudo_t val, struct symbol *ctype, struct symbol *btype)
{
unsigned int shift = ctype->bit_offset;
unsigned int size = ctype->bit_size;
unsigned long long mask = ((1ULL << size) - 1);
unsigned long long smask= bits_mask(btype->bit_size);
val = add_cast(ep, btype, ctype, OP_ZEXT, val);
if (shift) {
val = add_binary_op(ep, btype, OP_SHL, val, value_pseudo(shift));
mask <<= shift;
}
ori = add_binary_op(ep, btype, OP_AND, ori, value_pseudo(~mask & smask));
val = add_binary_op(ep, btype, OP_OR, ori, val);
return val;
}
static pseudo_t linearize_store_gen(struct entrypoint *ep,
pseudo_t value,
struct access_data *ad)
{
struct symbol *ctype = ad->type;
struct symbol *btype;
pseudo_t store = value;
if (!ep->active)
return VOID;
btype = ad->btype = bitfield_base_type(ctype);
if (type_size(btype) != type_size(ctype)) {
pseudo_t orig = add_load(ep, ad);
store = linearize_bitfield_insert(ep, orig, value, ctype, btype);
}
add_store(ep, ad, store);
return value;
}
static void taint_undefined_behaviour(struct instruction *insn)
{
pseudo_t src2;
switch (insn->opcode) {
case OP_LSR:
case OP_ASR:
case OP_SHL:
src2 = insn->src2;
if (src2->type != PSEUDO_VAL)
break;
if ((unsigned long long)src2->value >= insn->size)
insn->tainted = 1;
break;
}
}
static pseudo_t add_binary_op(struct entrypoint *ep, struct symbol *ctype, int op, pseudo_t left, pseudo_t right)
{
struct instruction *insn = alloc_typed_instruction(op, ctype);
pseudo_t target = alloc_pseudo(insn);
insn->target = target;
use_pseudo(insn, left, &insn->src1);
use_pseudo(insn, right, &insn->src2);
add_one_insn(ep, insn);
return target;
}
static pseudo_t add_setval(struct entrypoint *ep, struct symbol *ctype, struct expression *val)
{
struct instruction *insn = alloc_typed_instruction(OP_SETVAL, ctype);
pseudo_t target = alloc_pseudo(insn);
insn->target = target;
insn->val = val;
add_one_insn(ep, insn);
return target;
}
static pseudo_t add_setfval(struct entrypoint *ep, struct symbol *ctype, long double fval)
{
struct instruction *insn = alloc_typed_instruction(OP_SETFVAL, ctype);
pseudo_t target = alloc_pseudo(insn);
insn->target = target;
insn->fvalue = fval;
add_one_insn(ep, insn);
return target;
}
static pseudo_t add_symbol_address(struct entrypoint *ep, struct symbol *sym)
{
struct instruction *insn = alloc_instruction(OP_SYMADDR, bits_in_pointer);
pseudo_t target = alloc_pseudo(insn);
insn->target = target;
use_pseudo(insn, symbol_pseudo(ep, sym), &insn->src);
add_one_insn(ep, insn);
return target;
}
static pseudo_t linearize_bitfield_extract(struct entrypoint *ep,
pseudo_t val, struct symbol *ctype, struct symbol *btype)
{
unsigned int off = ctype->bit_offset;
if (off) {
pseudo_t shift = value_pseudo(off);
val = add_binary_op(ep, btype, OP_LSR, val, shift);
}
val = cast_pseudo(ep, val, btype, ctype);
return val;
}
static pseudo_t linearize_load_gen(struct entrypoint *ep, struct access_data *ad)
{
struct symbol *ctype = ad->type;
struct symbol *btype;
pseudo_t new;
if (!ep->active)
return VOID;
btype = ad->btype = bitfield_base_type(ctype);
new = add_load(ep, ad);
if (ctype->bit_size != type_size(btype))
new = linearize_bitfield_extract(ep, new, ctype, btype);
return new;
}
static pseudo_t linearize_access(struct entrypoint *ep, struct expression *expr)
{
struct access_data ad = { NULL, };
pseudo_t value;
if (!linearize_address_gen(ep, expr, &ad))
return VOID;
value = linearize_load_gen(ep, &ad);
return value;
}
static pseudo_t linearize_inc_dec(struct entrypoint *ep, struct expression *expr, int postop)
{
struct access_data ad = { NULL, };
pseudo_t old, new, one;
int op = expr->op == SPECIAL_INCREMENT ? OP_ADD : OP_SUB;
if (!linearize_address_gen(ep, expr->unop, &ad))
return VOID;
old = linearize_load_gen(ep, &ad);
op = opcode_float(op, expr->ctype);
if (is_float_type(expr->ctype))
one = add_setfval(ep, expr->ctype, expr->op_value);
else
one = value_pseudo(expr->op_value);
if (ad.btype != ad.type)
old = cast_pseudo(ep, old, ad.type, ad.btype);
new = add_binary_op(ep, ad.btype, op, old, one);
if (ad.btype != ad.type)
new = cast_pseudo(ep, new, ad.btype, ad.type);
linearize_store_gen(ep, new, &ad);
return postop ? old : new;
}
static pseudo_t add_unop(struct entrypoint *ep, struct symbol *ctype, int op, pseudo_t src)
{
struct instruction *insn = alloc_typed_instruction(op, ctype);
pseudo_t new = alloc_pseudo(insn);
insn->target = new;
use_pseudo(insn, src, &insn->src1);
add_one_insn(ep, insn);
return new;
}
static pseudo_t add_cast(struct entrypoint *ep, struct symbol *to,
struct symbol *from, int op, pseudo_t src)
{
pseudo_t new = add_unop(ep, to, op, src);
new->def->orig_type = from;
return new;
}
static pseudo_t linearize_slice(struct entrypoint *ep, struct expression *expr)
{
pseudo_t pre = linearize_expression(ep, expr->base);
struct instruction *insn = alloc_typed_instruction(OP_SLICE, expr->ctype);
pseudo_t new = alloc_pseudo(insn);
insn->target = new;
insn->from = expr->r_bitpos;
insn->len = expr->r_nrbits;
use_pseudo(insn, pre, &insn->base);
add_one_insn(ep, insn);
return new;
}
static pseudo_t linearize_regular_preop(struct entrypoint *ep, struct expression *expr)
{
pseudo_t pre = linearize_expression(ep, expr->unop);
struct symbol *ctype = expr->ctype;
switch (expr->op) {
case '+':
return pre;
case '!': {
pseudo_t zero = value_pseudo(0);
return add_binary_op(ep, ctype, OP_SET_EQ, pre, zero);
}
case '~':
return add_unop(ep, ctype, OP_NOT, pre);
case '-':
return add_unop(ep, ctype, opcode_float(OP_NEG, ctype), pre);
}
return VOID;
}
static pseudo_t linearize_preop(struct entrypoint *ep, struct expression *expr)
{
/*
* '*' is an lvalue access, and is fundamentally different
* from an arithmetic operation. Maybe it should have an
* expression type of its own..
*/
if (expr->op == '*')
return linearize_access(ep, expr);
if (expr->op == SPECIAL_INCREMENT || expr->op == SPECIAL_DECREMENT)
return linearize_inc_dec(ep, expr, 0);
return linearize_regular_preop(ep, expr);
}
static pseudo_t linearize_postop(struct entrypoint *ep, struct expression *expr)
{
return linearize_inc_dec(ep, expr, 1);
}
/*
* Casts to pointers are "less safe" than other casts, since
* they imply type-unsafe accesses. "void *" is a special
* case, since you can't access through it anyway without another
* cast.
*/
enum mtype {
MTYPE_UINT,
MTYPE_SINT,
MTYPE_PTR,
MTYPE_VPTR, // TODO: must be removed ?
MTYPE_FLOAT,
MTYPE_BAD,
};
static enum mtype get_mtype(struct symbol *s)
{
int sign = (s->ctype.modifiers & MOD_SIGNED) ? 1 : 0;
retry: switch (s->type) {
case SYM_NODE:
s = s->ctype.base_type;
goto retry;
case SYM_PTR:
if (s->ctype.base_type == &void_ctype)
return MTYPE_VPTR;
return MTYPE_PTR;
case SYM_BITFIELD:
case SYM_RESTRICT:
case SYM_FOULED:
case SYM_ENUM:
s = s->ctype.base_type;
/* fall-through */
case_int:
return sign ? MTYPE_SINT : MTYPE_UINT;
case SYM_BASETYPE:
if (s->ctype.base_type == &fp_type)
return MTYPE_FLOAT;
if (s->ctype.base_type == &int_type)
goto case_int;
/* fall-through */
default:
return MTYPE_BAD;
}
}
static int get_cast_opcode(struct symbol *dst, struct symbol *src)
{
enum mtype stype = get_mtype(src);
enum mtype dtype = get_mtype(dst);
switch (dtype) {
case MTYPE_FLOAT:
switch (stype) {
case MTYPE_FLOAT:
if (dst->bit_size == src->bit_size)
return OP_NOP;
return OP_FCVTF;
case MTYPE_UINT:
return OP_UCVTF;
case MTYPE_SINT:
return OP_SCVTF;
default:
return OP_BADOP;
}
case MTYPE_PTR:
switch (stype) {
case MTYPE_UINT:
case MTYPE_SINT:
return OP_UTPTR;
case MTYPE_PTR:
case MTYPE_VPTR:
return OP_PTRCAST;
default:
return OP_BADOP;
}
case MTYPE_VPTR:
switch (stype) {
case MTYPE_PTR:
case MTYPE_VPTR:
case MTYPE_UINT:
stype = MTYPE_UINT;
/* fall through */
case MTYPE_SINT:
break;
default:
return OP_BADOP;
}
/* fall through */
case MTYPE_UINT:
case MTYPE_SINT:
switch (stype) {
case MTYPE_FLOAT:
return dtype == MTYPE_UINT ? OP_FCVTU : OP_FCVTS;
case MTYPE_PTR:
return OP_PTRTU;
case MTYPE_VPTR:
case MTYPE_UINT:
case MTYPE_SINT:
if (dst->bit_size ==src->bit_size)
return OP_NOP;
if (dst->bit_size < src->bit_size)
return OP_TRUNC;
return stype == MTYPE_SINT ? OP_SEXT : OP_ZEXT;
default:
return OP_BADOP;
}
/* fall through */
default:
if (src->type == SYM_NODE)
src = src->ctype.base_type;
if (dst->type == SYM_NODE)
dst = dst->ctype.base_type;
if (src == dst)
return OP_NOP;
return OP_BADOP;
}
}
static pseudo_t cast_pseudo(struct entrypoint *ep, pseudo_t src, struct symbol *from, struct symbol *to)
{
const struct position pos = current_pos;
pseudo_t result;
struct instruction *insn;
int opcode;
if (src == VOID)
return VOID;
if (!from || !to)
return VOID;
if (from->bit_size < 0 || to->bit_size < 0)
return VOID;
opcode = get_cast_opcode(to, from);
switch (opcode) {
case OP_NOP:
return src;
case OP_UTPTR:
if (from->bit_size == to->bit_size)
break;
if (src == value_pseudo(0))
break;
if (Wint_to_pointer_cast)
warning(pos, "non size-preserving integer to pointer cast");
src = cast_pseudo(ep, src, from, size_t_ctype);
from = size_t_ctype;
break;
case OP_PTRTU:
if (from->bit_size == to->bit_size)
break;
if (Wpointer_to_int_cast)
warning(pos, "non size-preserving pointer to integer cast");
src = cast_pseudo(ep, src, from, size_t_ctype);
return cast_pseudo(ep, src, size_t_ctype, to);
case OP_BADOP:
return VOID;
default:
break;
}
insn = alloc_typed_instruction(opcode, to);
result = alloc_pseudo(insn);
insn->target = result;
insn->orig_type = from;
use_pseudo(insn, src, &insn->src);
add_one_insn(ep, insn);
return result;
}
static int map_opcode(int opcode, struct symbol *ctype)
{
if (ctype && is_float_type(ctype))
return opcode_table[opcode].to_float;
if (ctype && (ctype->ctype.modifiers & MOD_SIGNED)) {
switch(opcode) {
case OP_DIVU: case OP_MODU: case OP_LSR:
opcode++;
}
}
return opcode;
}
static inline pseudo_t add_convert_to_bool(struct entrypoint *ep, pseudo_t src, struct symbol *type)
{
pseudo_t zero;
int op;
if (!type || src == VOID)
return VOID;
if (is_bool_type(type))
return src;
if (src->type == PSEUDO_VAL && (src->value == 0 || src->value == 1))
return src;
if (is_float_type(type)) {
zero = add_setfval(ep, type, 0.0);
op = map_opcode(OP_SET_NE, type);
} else {
zero = value_pseudo(0);
op = OP_SET_NE;
}
return add_binary_op(ep, &bool_ctype, op, src, zero);
}
static pseudo_t linearize_expression_to_bool(struct entrypoint *ep, struct expression *expr)
{
pseudo_t dst;
dst = linearize_expression(ep, expr);
dst = add_convert_to_bool(ep, dst, expr->ctype);
return dst;
}
static pseudo_t linearize_assignment(struct entrypoint *ep, struct expression *expr)
{
struct access_data ad = { NULL, };
struct expression *target = expr->left;
struct expression *src = expr->right;
struct symbol *ctype;
pseudo_t value;
value = linearize_expression(ep, src);
if (!target || !linearize_address_gen(ep, target, &ad))
return value;
if (expr->op != '=') {
pseudo_t oldvalue = linearize_load_gen(ep, &ad);
pseudo_t dst;
static const int op_trans[] = {
[SPECIAL_ADD_ASSIGN - SPECIAL_BASE] = OP_ADD,
[SPECIAL_SUB_ASSIGN - SPECIAL_BASE] = OP_SUB,
[SPECIAL_MUL_ASSIGN - SPECIAL_BASE] = OP_MUL,
[SPECIAL_DIV_ASSIGN - SPECIAL_BASE] = OP_DIVU,
[SPECIAL_MOD_ASSIGN - SPECIAL_BASE] = OP_MODU,
[SPECIAL_SHL_ASSIGN - SPECIAL_BASE] = OP_SHL,
[SPECIAL_SHR_ASSIGN - SPECIAL_BASE] = OP_LSR,
[SPECIAL_AND_ASSIGN - SPECIAL_BASE] = OP_AND,
[SPECIAL_OR_ASSIGN - SPECIAL_BASE] = OP_OR,
[SPECIAL_XOR_ASSIGN - SPECIAL_BASE] = OP_XOR
};
int opcode;
if (!src)
return VOID;
ctype = src->ctype;
oldvalue = cast_pseudo(ep, oldvalue, target->ctype, ctype);
opcode = map_opcode(op_trans[expr->op - SPECIAL_BASE], ctype);
dst = add_binary_op(ep, ctype, opcode, oldvalue, value);
taint_undefined_behaviour(dst->def);
value = cast_pseudo(ep, dst, ctype, expr->ctype);
}
value = linearize_store_gen(ep, value, &ad);
return value;
}
static pseudo_t linearize_call_expression(struct entrypoint *ep, struct expression *expr)
{
struct expression *arg, *fn;
struct instruction *insn = alloc_typed_instruction(OP_CALL, expr->ctype);
pseudo_t retval, call;
struct ctype *ctype = NULL;
struct symbol *fntype;
struct context *context;
if (!expr->ctype)
return VOID;
fn = expr->fn;
fntype = fn->ctype;
ctype = &fntype->ctype;
if (fntype->type == SYM_NODE)
fntype = fntype->ctype.base_type;
add_symbol(&insn->fntypes, fntype);
FOR_EACH_PTR(expr->args, arg) {
pseudo_t new = linearize_expression(ep, arg);
use_pseudo(insn, new, add_pseudo(&insn->arguments, new));
add_symbol(&insn->fntypes, arg->ctype);
} END_FOR_EACH_PTR(arg);
if (fn->type == EXPR_PREOP && fn->op == '*' && is_func_type(fn->ctype))
fn = fn->unop;
if (fn->type == EXPR_SYMBOL) {
call = symbol_pseudo(ep, fn->symbol);
} else {
call = linearize_expression(ep, fn);
}
use_pseudo(insn, call, &insn->func);
retval = VOID;
if (expr->ctype != &void_ctype)
retval = alloc_pseudo(insn);
insn->target = retval;
add_one_insn(ep, insn);
if (ctype) {
FOR_EACH_PTR(ctype->contexts, context) {
int in = context->in;
int out = context->out;
int check = 0;
int context_diff;
if (in < 0) {
check = 1;
in = 0;
}
if (out < 0) {
check = 0;
out = 0;
}
context_diff = out - in;
if (check || context_diff) {
insn = alloc_instruction(OP_CONTEXT, 0);
insn->increment = context_diff;
insn->check = check;
insn->context_expr = context->context;
add_one_insn(ep, insn);
}
} END_FOR_EACH_PTR(context);
}
return retval;
}
static pseudo_t linearize_binop_bool(struct entrypoint *ep, struct expression *expr)
{
pseudo_t src1, src2, dst;
int op = (expr->op == SPECIAL_LOGICAL_OR) ? OP_OR : OP_AND;
src1 = linearize_expression_to_bool(ep, expr->left);
src2 = linearize_expression_to_bool(ep, expr->right);
dst = add_binary_op(ep, &bool_ctype, op, src1, src2);
if (expr->ctype != &bool_ctype)
dst = cast_pseudo(ep, dst, &bool_ctype, expr->ctype);
return dst;
}
static pseudo_t linearize_binop(struct entrypoint *ep, struct expression *expr)
{
pseudo_t src1, src2, dst;
static const int opcode[] = {
['+'] = OP_ADD, ['-'] = OP_SUB,
['*'] = OP_MUL, ['/'] = OP_DIVU,
['%'] = OP_MODU, ['&'] = OP_AND,
['|'] = OP_OR, ['^'] = OP_XOR,
[SPECIAL_LEFTSHIFT] = OP_SHL,
[SPECIAL_RIGHTSHIFT] = OP_LSR,
};
int op;
src1 = linearize_expression(ep, expr->left);
src2 = linearize_expression(ep, expr->right);
op = map_opcode(opcode[expr->op], expr->ctype);
dst = add_binary_op(ep, expr->ctype, op, src1, src2);
taint_undefined_behaviour(dst->def);
return dst;
}
static pseudo_t linearize_logical_branch(struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false);
static pseudo_t linearize_cond_branch(struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false);
static pseudo_t linearize_select(struct entrypoint *ep, struct expression *expr)
{
pseudo_t cond, valt, valf, res;
struct instruction *insn;
valt = linearize_expression(ep, expr->cond_true);
valf = linearize_expression(ep, expr->cond_false);
cond = linearize_expression(ep, expr->conditional);
insn = alloc_typed_instruction(OP_SEL, expr->ctype);
if (!expr->cond_true)
valt = cond;
use_pseudo(insn, cond, &insn->src1);
use_pseudo(insn, valt, &insn->src2);
use_pseudo(insn, valf, &insn->src3);
res = alloc_pseudo(insn);
insn->target = res;
add_one_insn(ep, insn);
return res;
}
static pseudo_t add_join_conditional(struct entrypoint *ep, struct expression *expr,
pseudo_t phi1, pseudo_t phi2)
{
pseudo_t target;
struct instruction *phi_node;
if (phi1 == VOID)
return phi2;
if (phi2 == VOID)
return phi1;
phi_node = alloc_typed_instruction(OP_PHI, expr->ctype);
use_pseudo(phi_node, phi1, add_pseudo(&phi_node->phi_list, phi1));
use_pseudo(phi_node, phi2, add_pseudo(&phi_node->phi_list, phi2));
phi_node->target = target = alloc_pseudo(phi_node);
add_one_insn(ep, phi_node);
return target;
}
static pseudo_t linearize_short_conditional(struct entrypoint *ep, struct expression *expr,
struct expression *cond,
struct expression *expr_false)
{
pseudo_t src1, src2;
struct basic_block *bb_false;
struct basic_block *merge;
pseudo_t phi1, phi2;
if (!expr_false || !ep->active)
return VOID;
bb_false = alloc_basic_block(ep, expr_false->pos);
merge = alloc_basic_block(ep, expr->pos);
src1 = linearize_expression(ep, cond);
phi1 = alloc_phi(ep->active, src1, expr->ctype);
add_branch(ep, src1, merge, bb_false);
set_activeblock(ep, bb_false);
src2 = linearize_expression(ep, expr_false);
phi2 = alloc_phi(ep->active, src2, expr->ctype);
set_activeblock(ep, merge);
return add_join_conditional(ep, expr, phi1, phi2);
}
static pseudo_t linearize_conditional(struct entrypoint *ep, struct expression *expr,
struct expression *cond,
struct expression *expr_true,
struct expression *expr_false)
{
pseudo_t src1, src2;
pseudo_t phi1, phi2;
struct basic_block *bb_true, *bb_false, *merge;
if (!cond || !expr_true || !expr_false || !ep->active)
return VOID;
bb_true = alloc_basic_block(ep, expr_true->pos);
bb_false = alloc_basic_block(ep, expr_false->pos);
merge = alloc_basic_block(ep, expr->pos);
linearize_cond_branch(ep, cond, bb_true, bb_false);
set_activeblock(ep, bb_true);
src1 = linearize_expression(ep, expr_true);
phi1 = alloc_phi(ep->active, src1, expr->ctype);
add_goto(ep, merge);
set_activeblock(ep, bb_false);
src2 = linearize_expression(ep, expr_false);
phi2 = alloc_phi(ep->active, src2, expr->ctype);
set_activeblock(ep, merge);
return add_join_conditional(ep, expr, phi1, phi2);
}
static void insert_phis(struct basic_block *bb, pseudo_t src, struct symbol *ctype,
struct instruction *node)
{
struct basic_block *parent;
FOR_EACH_PTR(bb->parents, parent) {
struct instruction *br = delete_last_instruction(&parent->insns);
pseudo_t phi = alloc_phi(parent, src, ctype);
add_instruction(&parent->insns, br);
use_pseudo(node, phi, add_pseudo(&node->phi_list, phi));
} END_FOR_EACH_PTR(parent);
}
static pseudo_t linearize_logical(struct entrypoint *ep, struct expression *expr)
{
struct symbol *ctype = expr->ctype;
struct basic_block *other, *merge;
struct instruction *node;
pseudo_t src1, src2, phi2;
if (!ep->active || !expr->left || !expr->right)
return VOID;
other = alloc_basic_block(ep, expr->right->pos);
merge = alloc_basic_block(ep, expr->pos);
node = alloc_phi_node(merge, ctype, NULL);
// LHS and its shortcut
if (expr->op == SPECIAL_LOGICAL_OR) {
linearize_cond_branch(ep, expr->left, merge, other);
src1 = value_pseudo(1);
} else {
linearize_cond_branch(ep, expr->left, other, merge);
src1 = value_pseudo(0);
}
insert_phis(merge, src1, ctype, node);
// RHS
set_activeblock(ep, other);
src2 = linearize_expression_to_bool(ep, expr->right);
src2 = cast_pseudo(ep, src2, &bool_ctype, ctype);
phi2 = alloc_phi(ep->active, src2, ctype);
use_pseudo(node, phi2, add_pseudo(&node->phi_list, phi2));
// join
set_activeblock(ep, merge);
add_instruction(&merge->insns, node);
return node->target;
}
static pseudo_t linearize_compare(struct entrypoint *ep, struct expression *expr)
{
static const int cmpop[] = {
['>'] = OP_SET_GT, ['<'] = OP_SET_LT,
[SPECIAL_EQUAL] = OP_SET_EQ,
[SPECIAL_NOTEQUAL] = OP_SET_NE,
[SPECIAL_GTE] = OP_SET_GE,
[SPECIAL_LTE] = OP_SET_LE,
[SPECIAL_UNSIGNED_LT] = OP_SET_B,
[SPECIAL_UNSIGNED_GT] = OP_SET_A,
[SPECIAL_UNSIGNED_LTE] = OP_SET_BE,
[SPECIAL_UNSIGNED_GTE] = OP_SET_AE,
};
int op = opcode_float(cmpop[expr->op], expr->right->ctype);
pseudo_t src1 = linearize_expression(ep, expr->left);
pseudo_t src2 = linearize_expression(ep, expr->right);
pseudo_t dst = add_binary_op(ep, expr->ctype, op, src1, src2);
return dst;
}
static pseudo_t linearize_cond_branch(struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false)
{
pseudo_t cond;
if (!expr || !bb_reachable(ep->active))
return VOID;
switch (expr->type) {
case EXPR_STRING:
case EXPR_VALUE:
add_goto(ep, expr->value ? bb_true : bb_false);
return VOID;
case EXPR_FVALUE:
add_goto(ep, expr->fvalue ? bb_true : bb_false);
return VOID;
case EXPR_LOGICAL:
linearize_logical_branch(ep, expr, bb_true, bb_false);
return VOID;
case EXPR_COMPARE:
cond = linearize_compare(ep, expr);
add_branch(ep, cond, bb_true, bb_false);
break;
case EXPR_PREOP:
if (expr->op == '!')
return linearize_cond_branch(ep, expr->unop, bb_false, bb_true);
/* fall through */
default: {
cond = linearize_expression_to_bool(ep, expr);
add_branch(ep, cond, bb_true, bb_false);
return VOID;
}
}
return VOID;
}
static pseudo_t linearize_logical_branch(struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false)
{
struct basic_block *next = alloc_basic_block(ep, expr->pos);
if (expr->op == SPECIAL_LOGICAL_OR)
linearize_cond_branch(ep, expr->left, bb_true, next);
else
linearize_cond_branch(ep, expr->left, next, bb_false);
set_activeblock(ep, next);
linearize_cond_branch(ep, expr->right, bb_true, bb_false);
return VOID;
}
static pseudo_t linearize_cast(struct entrypoint *ep, struct expression *expr)
{
pseudo_t src;
struct expression *orig = expr->cast_expression;
if (!orig)
return VOID;
src = linearize_expression(ep, orig);
return cast_pseudo(ep, src, orig->ctype, expr->ctype);
}
static pseudo_t linearize_initializer(struct entrypoint *ep, struct expression *initializer, struct access_data *ad)
{
switch (initializer->type) {
case EXPR_INITIALIZER: {
struct expression *expr;
FOR_EACH_PTR(initializer->expr_list, expr) {
linearize_initializer(ep, expr, ad);
} END_FOR_EACH_PTR(expr);
break;
}
case EXPR_POS:
ad->offset = initializer->init_offset;
linearize_initializer(ep, initializer->init_expr, ad);
break;
default: {
pseudo_t value = linearize_expression(ep, initializer);
ad->type = initializer->ctype;
linearize_store_gen(ep, value, ad);
return value;
}
}
return VOID;
}
static void linearize_argument(struct entrypoint *ep, struct symbol *arg, int nr)
{
struct access_data ad = { NULL, };
ad.type = arg;
ad.address = symbol_pseudo(ep, arg);
linearize_store_gen(ep, argument_pseudo(ep, nr), &ad);
}
static pseudo_t linearize_expression(struct entrypoint *ep, struct expression *expr)
{
if (!expr)
return VOID;
current_pos = expr->pos;
switch (expr->type) {
case EXPR_SYMBOL:
linearize_one_symbol(ep, expr->symbol);
return add_symbol_address(ep, expr->symbol);
case EXPR_VALUE:
return value_pseudo(expr->value);
case EXPR_STRING:
case EXPR_LABEL:
return add_setval(ep, expr->ctype, expr);
case EXPR_FVALUE:
return add_setfval(ep, expr->ctype, expr->fvalue);
case EXPR_STATEMENT:
return linearize_statement(ep, expr->statement);
case EXPR_CALL:
return linearize_call_expression(ep, expr);
case EXPR_BINOP:
if (expr->op == SPECIAL_LOGICAL_AND || expr->op == SPECIAL_LOGICAL_OR)
return linearize_binop_bool(ep, expr);
return linearize_binop(ep, expr);
case EXPR_LOGICAL:
return linearize_logical(ep, expr);
case EXPR_COMPARE:
return linearize_compare(ep, expr);
case EXPR_SELECT:
return linearize_select(ep, expr);
case EXPR_CONDITIONAL:
if (!expr->cond_true)
return linearize_short_conditional(ep, expr, expr->conditional, expr->cond_false);
return linearize_conditional(ep, expr, expr->conditional,
expr->cond_true, expr->cond_false);
case EXPR_COMMA:
linearize_expression(ep, expr->left);
return linearize_expression(ep, expr->right);
case EXPR_ASSIGNMENT:
return linearize_assignment(ep, expr);
case EXPR_PREOP:
return linearize_preop(ep, expr);
case EXPR_POSTOP:
return linearize_postop(ep, expr);
case EXPR_CAST:
case EXPR_FORCE_CAST:
case EXPR_IMPLIED_CAST:
return linearize_cast(ep, expr);
case EXPR_SLICE:
return linearize_slice(ep, expr);
case EXPR_INITIALIZER:
case EXPR_POS:
warning(expr->pos, "unexpected initializer expression (%d %d)", expr->type, expr->op);
return VOID;
default:
warning(expr->pos, "unknown expression (%d %d)", expr->type, expr->op);
return VOID;
}
return VOID;
}
static pseudo_t linearize_one_symbol(struct entrypoint *ep, struct symbol *sym)
{
struct access_data ad = { NULL, };
pseudo_t value;
if (!sym || !sym->initializer || sym->initialized)
return VOID;
/* We need to output these puppies some day too.. */
if (sym->ctype.modifiers & (MOD_STATIC | MOD_TOPLEVEL))
return VOID;
sym->initialized = 1;
ad.address = symbol_pseudo(ep, sym);
if (sym->initializer && !is_scalar_type(sym)) {
// default zero initialization [6.7.9.21]
// FIXME: this init the whole aggregate while
// only the existing fields need to be initialized.
// FIXME: this init the whole aggregate even if
// all fields arelater explicitely initialized.
ad.type = sym;
ad.address = symbol_pseudo(ep, sym);
linearize_store_gen(ep, value_pseudo(0), &ad);
}
value = linearize_initializer(ep, sym->initializer, &ad);
return value;
}
static pseudo_t linearize_compound_statement(struct entrypoint *ep, struct statement *stmt)
{
pseudo_t pseudo;
struct statement *s;
pseudo = VOID;
FOR_EACH_PTR(stmt->stmts, s) {
pseudo = linearize_statement(ep, s);
} END_FOR_EACH_PTR(s);
return pseudo;
}
static void add_return(struct entrypoint *ep, struct basic_block *bb, struct symbol *ctype, pseudo_t src)
{
struct instruction *phi_node = first_instruction(bb->insns);
pseudo_t phi;
if (!phi_node) {
phi_node = alloc_typed_instruction(OP_PHI, ctype);
phi_node->target = alloc_pseudo(phi_node);
phi_node->bb = bb;
add_instruction(&bb->insns, phi_node);
}
phi = alloc_phi(ep->active, src, ctype);
phi->ident = &return_ident;
use_pseudo(phi_node, phi, add_pseudo(&phi_node->phi_list, phi));
}
static pseudo_t linearize_fn_statement(struct entrypoint *ep, struct statement *stmt)
{
struct instruction *phi_node;
struct basic_block *bb;
pseudo_t pseudo;
pseudo = linearize_compound_statement(ep, stmt);
if (!is_void_type(stmt->ret)) { // non-void function
struct basic_block *active = ep->active;
if (active && !bb_terminated(active)) { // missing return
struct basic_block *bb_ret;
bb_ret = get_bound_block(ep, stmt->ret);
add_return(ep, bb_ret, stmt->ret, undef_pseudo());
}
}
bb = add_label(ep, stmt->ret);
phi_node = first_instruction(bb->insns);
if (phi_node)
pseudo = phi_node->target;
return pseudo;
}
static pseudo_t linearize_inlined_call(struct entrypoint *ep, struct statement *stmt)
{
struct instruction *insn = alloc_instruction(OP_INLINED_CALL, 0);
struct statement *args = stmt->args;
struct basic_block *bb;
pseudo_t pseudo;
if (args) {
struct symbol *sym;
concat_symbol_list(args->declaration, &ep->syms);
FOR_EACH_PTR(args->declaration, sym) {
pseudo_t value = linearize_one_symbol(ep, sym);
add_pseudo(&insn->arguments, value);
} END_FOR_EACH_PTR(sym);
}
pseudo = linearize_fn_statement(ep, stmt);
insn->target = pseudo;
use_pseudo(insn, symbol_pseudo(ep, stmt->inline_fn), &insn->func);
bb = ep->active;
if (!bb->insns)
bb->pos = stmt->pos;
add_one_insn(ep, insn);
return pseudo;
}
static pseudo_t linearize_context(struct entrypoint *ep, struct statement *stmt)
{
struct instruction *insn = alloc_instruction(OP_CONTEXT, 0);
struct expression *expr = stmt->expression;
insn->increment = get_expression_value(expr);
insn->context_expr = stmt->context;
add_one_insn(ep, insn);
return VOID;
}
static pseudo_t linearize_range(struct entrypoint *ep, struct statement *stmt)
{
struct instruction *insn = alloc_instruction(OP_RANGE, 0);
use_pseudo(insn, linearize_expression(ep, stmt->range_expression), &insn->src1);
use_pseudo(insn, linearize_expression(ep, stmt->range_low), &insn->src2);
use_pseudo(insn, linearize_expression(ep, stmt->range_high), &insn->src3);
add_one_insn(ep, insn);
return VOID;
}
ALLOCATOR(asm_rules, "asm rules");
ALLOCATOR(asm_constraint, "asm constraints");
static void add_asm_input(struct entrypoint *ep, struct instruction *insn, struct expression *expr,
const char *constraint, const struct ident *ident)
{
pseudo_t pseudo = linearize_expression(ep, expr);
struct asm_constraint *rule = __alloc_asm_constraint(0);
rule->ident = ident;
rule->constraint = constraint;
use_pseudo(insn, pseudo, &rule->pseudo);
add_ptr_list(&insn->asm_rules->inputs, rule);
}
static void add_asm_output(struct entrypoint *ep, struct instruction *insn, struct expression *expr,
const char *constraint, const struct ident *ident)
{
struct access_data ad = { NULL, };
pseudo_t pseudo = alloc_pseudo(insn);
struct asm_constraint *rule;
if (!expr || !linearize_address_gen(ep, expr, &ad))
return;
linearize_store_gen(ep, pseudo, &ad);
rule = __alloc_asm_constraint(0);
rule->ident = ident;
rule->constraint = constraint;
use_pseudo(insn, pseudo, &rule->pseudo);
add_ptr_list(&insn->asm_rules->outputs, rule);
}
static pseudo_t linearize_asm_statement(struct entrypoint *ep, struct statement *stmt)
{
struct expression *expr;
struct instruction *insn;
struct asm_rules *rules;
const char *constraint;
insn = alloc_instruction(OP_ASM, 0);
expr = stmt->asm_string;
if (!expr || expr->type != EXPR_STRING) {
warning(stmt->pos, "expected string in inline asm");
return VOID;
}
insn->string = expr->string->data;
rules = __alloc_asm_rules(0);
insn->asm_rules = rules;
/* Gather the inputs.. */
FOR_EACH_PTR(stmt->asm_inputs, expr) {
constraint = expr->constraint ? expr->constraint->string->data : "";
add_asm_input(ep, insn, expr->expr, constraint, expr->name);
} END_FOR_EACH_PTR(expr);
add_one_insn(ep, insn);
/* Assign the outputs */
FOR_EACH_PTR(stmt->asm_outputs, expr) {
constraint = expr->constraint ? expr->constraint->string->data : "";
add_asm_output(ep, insn, expr->expr, constraint, expr->name);
} END_FOR_EACH_PTR(expr);
return VOID;
}
static int multijmp_cmp(const void *_a, const void *_b)
{
const struct multijmp *a = _a;
const struct multijmp *b = _b;
// "default" case?
if (a->begin > a->end) {
if (b->begin > b->end)
return 0;
return 1;
}
if (b->begin > b->end)
return -1;
if (a->begin == b->begin) {
if (a->end == b->end)
return 0;
return (a->end < b->end) ? -1 : 1;
}
return a->begin < b->begin ? -1 : 1;
}
static void sort_switch_cases(struct instruction *insn)
{
sort_list((struct ptr_list **)&insn->multijmp_list, multijmp_cmp);
}
static pseudo_t linearize_declaration(struct entrypoint *ep, struct statement *stmt)
{
struct symbol *sym;
concat_symbol_list(stmt->declaration, &ep->syms);
FOR_EACH_PTR(stmt->declaration, sym) {
linearize_one_symbol(ep, sym);
} END_FOR_EACH_PTR(sym);
return VOID;
}
static pseudo_t linearize_return(struct entrypoint *ep, struct statement *stmt)
{
struct expression *expr = stmt->expression;
struct symbol *ret = stmt->ret_target;
struct basic_block *bb_return = get_bound_block(ep, ret);
struct basic_block *active;
pseudo_t src = linearize_expression(ep, expr);
active = ep->active;
if (active && !is_void_type(ret)) {
add_return(ep, bb_return, ret, src);
}
add_goto(ep, bb_return);
return VOID;
}
static pseudo_t linearize_switch(struct entrypoint *ep, struct statement *stmt)
{
struct symbol *sym;
struct instruction *switch_ins;
struct basic_block *switch_end = alloc_basic_block(ep, stmt->pos);
struct basic_block *active, *default_case;
struct expression *expr = stmt->switch_expression;
struct multijmp *jmp;
pseudo_t pseudo;
if (!expr || !expr->ctype)
return VOID;
pseudo = linearize_expression(ep, expr);
active = ep->active;
if (!active) {
active = alloc_basic_block(ep, stmt->pos);
set_activeblock(ep, active);
}
switch_ins = alloc_typed_instruction(OP_SWITCH, expr->ctype);
use_pseudo(switch_ins, pseudo, &switch_ins->cond);
add_one_insn(ep, switch_ins);
finish_block(ep);
default_case = NULL;
FOR_EACH_PTR(stmt->switch_case->symbol_list, sym) {
struct statement *case_stmt = sym->stmt;
struct basic_block *bb_case = get_bound_block(ep, sym);
if (!case_stmt->case_expression) {
default_case = bb_case;
continue;
} else if (case_stmt->case_expression->type != EXPR_VALUE) {
continue;
} else {
struct expression *case_to = case_stmt->case_to;
long long begin, end;
begin = end = case_stmt->case_expression->value;
if (case_to && case_to->type == EXPR_VALUE)
end = case_to->value;
if (begin > end)
jmp = alloc_multijmp(bb_case, end, begin);
else
jmp = alloc_multijmp(bb_case, begin, end);
}
add_multijmp(&switch_ins->multijmp_list, jmp);
add_bb(&bb_case->parents, active);
add_bb(&active->children, bb_case);
} END_FOR_EACH_PTR(sym);
bind_label(stmt->switch_break, switch_end, stmt->pos);
/* And linearize the actual statement */
linearize_statement(ep, stmt->switch_statement);
set_activeblock(ep, switch_end);
if (!default_case)
default_case = switch_end;
jmp = alloc_multijmp(default_case, 1, 0);
add_multijmp(&switch_ins->multijmp_list, jmp);
add_bb(&default_case->parents, active);
add_bb(&active->children, default_case);
sort_switch_cases(switch_ins);
return VOID;
}
static pseudo_t linearize_iterator(struct entrypoint *ep, struct statement *stmt)
{
struct statement *pre_statement = stmt->iterator_pre_statement;
struct expression *pre_condition = stmt->iterator_pre_condition;
struct statement *statement = stmt->iterator_statement;
struct statement *post_statement = stmt->iterator_post_statement;
struct expression *post_condition = stmt->iterator_post_condition;
struct basic_block *loop_top, *loop_body, *loop_continue, *loop_end;
struct symbol *sym;
FOR_EACH_PTR(stmt->iterator_syms, sym) {
linearize_one_symbol(ep, sym);
} END_FOR_EACH_PTR(sym);
concat_symbol_list(stmt->iterator_syms, &ep->syms);
linearize_statement(ep, pre_statement);
loop_body = loop_top = alloc_basic_block(ep, stmt->pos);
loop_continue = alloc_basic_block(ep, stmt->pos);
loop_end = alloc_basic_block(ep, stmt->pos);
/* An empty post-condition means that it's the same as the pre-condition */
if (!post_condition) {
loop_top = alloc_basic_block(ep, stmt->pos);
set_activeblock(ep, loop_top);
}
if (pre_condition)
linearize_cond_branch(ep, pre_condition, loop_body, loop_end);
bind_label(stmt->iterator_continue, loop_continue, stmt->pos);
bind_label(stmt->iterator_break, loop_end, stmt->pos);
set_activeblock(ep, loop_body);
linearize_statement(ep, statement);
add_goto(ep, loop_continue);
set_activeblock(ep, loop_continue);
linearize_statement(ep, post_statement);
if (!post_condition)
add_goto(ep, loop_top);
else
linearize_cond_branch(ep, post_condition, loop_top, loop_end);
set_activeblock(ep, loop_end);
return VOID;
}
static pseudo_t linearize_statement(struct entrypoint *ep, struct statement *stmt)
{
struct basic_block *bb;
if (!stmt)
return VOID;
bb = ep->active;
if (bb && !bb->insns)
bb->pos = stmt->pos;
current_pos = stmt->pos;
switch (stmt->type) {
case STMT_NONE:
break;
case STMT_DECLARATION:
return linearize_declaration(ep, stmt);
case STMT_CONTEXT:
return linearize_context(ep, stmt);
case STMT_RANGE:
return linearize_range(ep, stmt);
case STMT_EXPRESSION:
return linearize_expression(ep, stmt->expression);
case STMT_ASM:
return linearize_asm_statement(ep, stmt);
case STMT_RETURN:
return linearize_return(ep, stmt);
case STMT_CASE: {
add_label(ep, stmt->case_label);
linearize_statement(ep, stmt->case_statement);
break;
}
case STMT_LABEL: {
struct symbol *label = stmt->label_identifier;
if (label->used) {
add_label(ep, label);
}
return linearize_statement(ep, stmt->label_statement);
}
case STMT_GOTO: {
struct symbol *sym;
struct expression *expr;
struct instruction *goto_ins;
struct basic_block *active;
pseudo_t pseudo;
active = ep->active;
if (!bb_reachable(active))
break;
if (stmt->goto_label) {
add_goto(ep, get_bound_block(ep, stmt->goto_label));
break;
}
expr = stmt->goto_expression;
if (!expr)
break;
/* This can happen as part of simplification */
if (expr->type == EXPR_LABEL) {
add_goto(ep, get_bound_block(ep, expr->label_symbol));
break;
}
pseudo = linearize_expression(ep, expr);
goto_ins = alloc_instruction(OP_COMPUTEDGOTO, 0);
use_pseudo(goto_ins, pseudo, &goto_ins->src);
add_one_insn(ep, goto_ins);
FOR_EACH_PTR(stmt->target_list, sym) {
struct basic_block *bb_computed = get_bound_block(ep, sym);
struct multijmp *jmp = alloc_multijmp(bb_computed, 1, 0);
add_multijmp(&goto_ins->multijmp_list, jmp);
add_bb(&bb_computed->parents, ep->active);
add_bb(&active->children, bb_computed);
} END_FOR_EACH_PTR(sym);
finish_block(ep);
break;
}
case STMT_COMPOUND:
if (stmt->inline_fn)
return linearize_inlined_call(ep, stmt);
return linearize_compound_statement(ep, stmt);
/*
* This could take 'likely/unlikely' into account, and
* switch the arms around appropriately..
*/
case STMT_IF: {
struct basic_block *bb_true, *bb_false, *endif;
struct expression *cond = stmt->if_conditional;
bb_true = alloc_basic_block(ep, stmt->pos);
bb_false = endif = alloc_basic_block(ep, stmt->pos);
linearize_cond_branch(ep, cond, bb_true, bb_false);
set_activeblock(ep, bb_true);
linearize_statement(ep, stmt->if_true);
if (stmt->if_false) {
endif = alloc_basic_block(ep, stmt->pos);
add_goto(ep, endif);
set_activeblock(ep, bb_false);
linearize_statement(ep, stmt->if_false);
}
set_activeblock(ep, endif);
break;
}
case STMT_SWITCH:
return linearize_switch(ep, stmt);
case STMT_ITERATOR:
return linearize_iterator(ep, stmt);
default:
break;
}
return VOID;
}
static struct entrypoint *linearize_fn(struct symbol *sym, struct symbol *base_type)
{
struct statement *stmt = base_type->stmt;
struct entrypoint *ep;
struct basic_block *bb;
struct symbol *ret_type;
struct symbol *arg;
struct instruction *entry;
struct instruction *ret;
pseudo_t result;
int i;
if (!stmt)
return NULL;
ep = alloc_entrypoint();
ep->name = sym;
sym->ep = ep;
bb = alloc_basic_block(ep, sym->pos);
set_activeblock(ep, bb);
if (stmt->type == STMT_ASM) { // top-level asm
linearize_asm_statement(ep, stmt);
return ep;
}
entry = alloc_instruction(OP_ENTRY, 0);
add_one_insn(ep, entry);
ep->entry = entry;
concat_symbol_list(base_type->arguments, &ep->syms);
/* FIXME!! We should do something else about varargs.. */
i = 0;
FOR_EACH_PTR(base_type->arguments, arg) {
linearize_argument(ep, arg, ++i);
} END_FOR_EACH_PTR(arg);
result = linearize_fn_statement(ep, stmt);
ret_type = base_type->ctype.base_type;
ret = alloc_typed_instruction(OP_RET, ret_type);
if (type_size(ret_type) > 0)
use_pseudo(ret, result, &ret->src);
add_one_insn(ep, ret);
optimize(ep);
return ep;
}
struct entrypoint *linearize_symbol(struct symbol *sym)
{
struct symbol *base_type;
if (!sym)
return NULL;
current_pos = sym->pos;
base_type = sym->ctype.base_type;
if (!base_type)
return NULL;
if (base_type->type == SYM_FN)
return linearize_fn(sym, base_type);
return NULL;
}