| // SPDX-License-Identifier: GPL-2.0 |
| |
| //! String representations. |
| |
| use crate::{ |
| alloc::{flags::*, AllocError, KVec}, |
| error::{to_result, Result}, |
| fmt::{self, Write}, |
| prelude::*, |
| }; |
| use core::{ |
| marker::PhantomData, |
| ops::{Deref, DerefMut, Index}, |
| }; |
| |
| pub use crate::prelude::CStr; |
| |
| pub mod parse_int; |
| |
| /// Byte string without UTF-8 validity guarantee. |
| #[repr(transparent)] |
| pub struct BStr([u8]); |
| |
| impl BStr { |
| /// Returns the length of this string. |
| #[inline] |
| pub const fn len(&self) -> usize { |
| self.0.len() |
| } |
| |
| /// Returns `true` if the string is empty. |
| #[inline] |
| pub const fn is_empty(&self) -> bool { |
| self.len() == 0 |
| } |
| |
| /// Creates a [`BStr`] from a `[u8]`. |
| #[inline] |
| pub const fn from_bytes(bytes: &[u8]) -> &Self { |
| // SAFETY: `BStr` is transparent to `[u8]`. |
| unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) } |
| } |
| |
| /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use kernel::b_str; |
| /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo"))); |
| /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar"))); |
| /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!(""))); |
| /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar"))); |
| /// ``` |
| pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> { |
| self.deref() |
| .strip_prefix(pattern.as_ref().deref()) |
| .map(Self::from_bytes) |
| } |
| } |
| |
| impl fmt::Display for BStr { |
| /// Formats printable ASCII characters, escaping the rest. |
| /// |
| /// ``` |
| /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}}; |
| /// let ascii = b_str!("Hello, BStr!"); |
| /// let s = CString::try_from_fmt(fmt!("{ascii}"))?; |
| /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes()); |
| /// |
| /// let non_ascii = b_str!("🦀"); |
| /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?; |
| /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes()); |
| /// # Ok::<(), kernel::error::Error>(()) |
| /// ``` |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| for &b in &self.0 { |
| match b { |
| // Common escape codes. |
| b'\t' => f.write_str("\\t")?, |
| b'\n' => f.write_str("\\n")?, |
| b'\r' => f.write_str("\\r")?, |
| // Printable characters. |
| 0x20..=0x7e => f.write_char(b as char)?, |
| _ => write!(f, "\\x{b:02x}")?, |
| } |
| } |
| Ok(()) |
| } |
| } |
| |
| impl fmt::Debug for BStr { |
| /// Formats printable ASCII characters with a double quote on either end, |
| /// escaping the rest. |
| /// |
| /// ``` |
| /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}}; |
| /// // Embedded double quotes are escaped. |
| /// let ascii = b_str!("Hello, \"BStr\"!"); |
| /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?; |
| /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes()); |
| /// |
| /// let non_ascii = b_str!("😺"); |
| /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?; |
| /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes()); |
| /// # Ok::<(), kernel::error::Error>(()) |
| /// ``` |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.write_char('"')?; |
| for &b in &self.0 { |
| match b { |
| // Common escape codes. |
| b'\t' => f.write_str("\\t")?, |
| b'\n' => f.write_str("\\n")?, |
| b'\r' => f.write_str("\\r")?, |
| // String escape characters. |
| b'\"' => f.write_str("\\\"")?, |
| b'\\' => f.write_str("\\\\")?, |
| // Printable characters. |
| 0x20..=0x7e => f.write_char(b as char)?, |
| _ => write!(f, "\\x{b:02x}")?, |
| } |
| } |
| f.write_char('"') |
| } |
| } |
| |
| impl Deref for BStr { |
| type Target = [u8]; |
| |
| #[inline] |
| fn deref(&self) -> &Self::Target { |
| &self.0 |
| } |
| } |
| |
| impl PartialEq for BStr { |
| fn eq(&self, other: &Self) -> bool { |
| self.deref().eq(other.deref()) |
| } |
| } |
| |
| impl<Idx> Index<Idx> for BStr |
| where |
| [u8]: Index<Idx, Output = [u8]>, |
| { |
| type Output = Self; |
| |
| fn index(&self, index: Idx) -> &Self::Output { |
| BStr::from_bytes(&self.0[index]) |
| } |
| } |
| |
| impl AsRef<BStr> for [u8] { |
| fn as_ref(&self) -> &BStr { |
| BStr::from_bytes(self) |
| } |
| } |
| |
| impl AsRef<BStr> for BStr { |
| fn as_ref(&self) -> &BStr { |
| self |
| } |
| } |
| |
| /// Creates a new [`BStr`] from a string literal. |
| /// |
| /// `b_str!` converts the supplied string literal to byte string, so non-ASCII |
| /// characters can be included. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use kernel::b_str; |
| /// # use kernel::str::BStr; |
| /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); |
| /// ``` |
| #[macro_export] |
| macro_rules! b_str { |
| ($str:literal) => {{ |
| const S: &'static str = $str; |
| const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes()); |
| C |
| }}; |
| } |
| |
| /// Returns a C pointer to the string. |
| // It is a free function rather than a method on an extension trait because: |
| // |
| // - error[E0379]: functions in trait impls cannot be declared const |
| #[inline] |
| pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char { |
| c_str.as_ptr().cast() |
| } |
| |
| mod private { |
| pub trait Sealed {} |
| |
| impl Sealed for super::CStr {} |
| } |
| |
| /// Extensions to [`CStr`]. |
| pub trait CStrExt: private::Sealed { |
| /// Wraps a raw C string pointer. |
| /// |
| /// # Safety |
| /// |
| /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must |
| /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` |
| /// must not be mutated. |
| // This function exists to paper over the fact that `CStr::from_ptr` takes a `*const |
| // core::ffi::c_char` rather than a `*const crate::ffi::c_char`. |
| unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self; |
| |
| /// Creates a mutable [`CStr`] from a `[u8]` without performing any |
| /// additional checks. |
| /// |
| /// # Safety |
| /// |
| /// `bytes` *must* end with a `NUL` byte, and should only have a single |
| /// `NUL` byte (or the string will be truncated). |
| unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self; |
| |
| /// Returns a C pointer to the string. |
| // This function exists to paper over the fact that `CStr::as_ptr` returns a `*const |
| // core::ffi::c_char` rather than a `*const crate::ffi::c_char`. |
| fn as_char_ptr(&self) -> *const c_char; |
| |
| /// Convert this [`CStr`] into a [`CString`] by allocating memory and |
| /// copying over the string data. |
| fn to_cstring(&self) -> Result<CString, AllocError>; |
| |
| /// Converts this [`CStr`] to its ASCII lower case equivalent in-place. |
| /// |
| /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', |
| /// but non-ASCII letters are unchanged. |
| /// |
| /// To return a new lowercased value without modifying the existing one, use |
| /// [`to_ascii_lowercase()`]. |
| /// |
| /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase |
| fn make_ascii_lowercase(&mut self); |
| |
| /// Converts this [`CStr`] to its ASCII upper case equivalent in-place. |
| /// |
| /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', |
| /// but non-ASCII letters are unchanged. |
| /// |
| /// To return a new uppercased value without modifying the existing one, use |
| /// [`to_ascii_uppercase()`]. |
| /// |
| /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase |
| fn make_ascii_uppercase(&mut self); |
| |
| /// Returns a copy of this [`CString`] where each character is mapped to its |
| /// ASCII lower case equivalent. |
| /// |
| /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', |
| /// but non-ASCII letters are unchanged. |
| /// |
| /// To lowercase the value in-place, use [`make_ascii_lowercase`]. |
| /// |
| /// [`make_ascii_lowercase`]: str::make_ascii_lowercase |
| fn to_ascii_lowercase(&self) -> Result<CString, AllocError>; |
| |
| /// Returns a copy of this [`CString`] where each character is mapped to its |
| /// ASCII upper case equivalent. |
| /// |
| /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', |
| /// but non-ASCII letters are unchanged. |
| /// |
| /// To uppercase the value in-place, use [`make_ascii_uppercase`]. |
| /// |
| /// [`make_ascii_uppercase`]: str::make_ascii_uppercase |
| fn to_ascii_uppercase(&self) -> Result<CString, AllocError>; |
| } |
| |
| impl fmt::Display for CStr { |
| /// Formats printable ASCII characters, escaping the rest. |
| /// |
| /// ``` |
| /// # use kernel::prelude::fmt; |
| /// # use kernel::str::CStr; |
| /// # use kernel::str::CString; |
| /// let penguin = c"🐧"; |
| /// let s = CString::try_from_fmt(fmt!("{penguin}"))?; |
| /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); |
| /// |
| /// let ascii = c"so \"cool\""; |
| /// let s = CString::try_from_fmt(fmt!("{ascii}"))?; |
| /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes()); |
| /// # Ok::<(), kernel::error::Error>(()) |
| /// ``` |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| for &c in self.to_bytes() { |
| if (0x20..0x7f).contains(&c) { |
| // Printable character. |
| f.write_char(c as char)?; |
| } else { |
| write!(f, "\\x{c:02x}")?; |
| } |
| } |
| Ok(()) |
| } |
| } |
| |
| /// Converts a mutable C string to a mutable byte slice. |
| /// |
| /// # Safety |
| /// |
| /// The caller must ensure that the slice ends in a NUL byte and contains no other NUL bytes before |
| /// the borrow ends and the underlying [`CStr`] is used. |
| unsafe fn to_bytes_mut(s: &mut CStr) -> &mut [u8] { |
| // SAFETY: the cast from `&CStr` to `&[u8]` is safe since `CStr` has the same layout as `&[u8]` |
| // (this is technically not guaranteed, but we rely on it here). The pointer dereference is |
| // safe since it comes from a mutable reference which is guaranteed to be valid for writes. |
| unsafe { &mut *(core::ptr::from_mut(s) as *mut [u8]) } |
| } |
| |
| impl CStrExt for CStr { |
| #[inline] |
| unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self { |
| // SAFETY: The safety preconditions are the same as for `CStr::from_ptr`. |
| unsafe { CStr::from_ptr(ptr.cast()) } |
| } |
| |
| #[inline] |
| unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self { |
| // SAFETY: the cast from `&[u8]` to `&CStr` is safe since the properties of `bytes` are |
| // guaranteed by the safety precondition and `CStr` has the same layout as `&[u8]` (this is |
| // technically not guaranteed, but we rely on it here). The pointer dereference is safe |
| // since it comes from a mutable reference which is guaranteed to be valid for writes. |
| unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) } |
| } |
| |
| #[inline] |
| fn as_char_ptr(&self) -> *const c_char { |
| self.as_ptr().cast() |
| } |
| |
| fn to_cstring(&self) -> Result<CString, AllocError> { |
| CString::try_from(self) |
| } |
| |
| fn make_ascii_lowercase(&mut self) { |
| // SAFETY: This doesn't introduce or remove NUL bytes in the C string. |
| unsafe { to_bytes_mut(self) }.make_ascii_lowercase(); |
| } |
| |
| fn make_ascii_uppercase(&mut self) { |
| // SAFETY: This doesn't introduce or remove NUL bytes in the C string. |
| unsafe { to_bytes_mut(self) }.make_ascii_uppercase(); |
| } |
| |
| fn to_ascii_lowercase(&self) -> Result<CString, AllocError> { |
| let mut s = self.to_cstring()?; |
| |
| s.make_ascii_lowercase(); |
| |
| Ok(s) |
| } |
| |
| fn to_ascii_uppercase(&self) -> Result<CString, AllocError> { |
| let mut s = self.to_cstring()?; |
| |
| s.make_ascii_uppercase(); |
| |
| Ok(s) |
| } |
| } |
| |
| impl AsRef<BStr> for CStr { |
| #[inline] |
| fn as_ref(&self) -> &BStr { |
| BStr::from_bytes(self.to_bytes()) |
| } |
| } |
| |
| /// Creates a new [`CStr`] from a string literal. |
| /// |
| /// The string literal should not contain any `NUL` bytes. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use kernel::c_str; |
| /// # use kernel::str::CStr; |
| /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); |
| /// ``` |
| #[macro_export] |
| macro_rules! c_str { |
| ($str:expr) => {{ |
| const S: &str = concat!($str, "\0"); |
| const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { |
| Ok(v) => v, |
| Err(_) => panic!("string contains interior NUL"), |
| }; |
| C |
| }}; |
| } |
| |
| #[kunit_tests(rust_kernel_str)] |
| mod tests { |
| use super::*; |
| |
| impl From<core::ffi::FromBytesWithNulError> for Error { |
| #[inline] |
| fn from(_: core::ffi::FromBytesWithNulError) -> Error { |
| EINVAL |
| } |
| } |
| |
| macro_rules! format { |
| ($($f:tt)*) => ({ |
| CString::try_from_fmt(fmt!($($f)*))?.to_str()? |
| }) |
| } |
| |
| const ALL_ASCII_CHARS: &str = |
| "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\ |
| \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \ |
| !\"#$%&'()*+,-./0123456789:;<=>?@\ |
| ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\ |
| \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\ |
| \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\ |
| \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\ |
| \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\ |
| \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\ |
| \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\ |
| \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\ |
| \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff"; |
| |
| #[test] |
| fn test_cstr_to_str() -> Result { |
| let cstr = c"\xf0\x9f\xa6\x80"; |
| let checked_str = cstr.to_str()?; |
| assert_eq!(checked_str, "🦀"); |
| Ok(()) |
| } |
| |
| #[test] |
| fn test_cstr_to_str_invalid_utf8() -> Result { |
| let cstr = c"\xc3\x28"; |
| assert!(cstr.to_str().is_err()); |
| Ok(()) |
| } |
| |
| #[test] |
| fn test_cstr_display() -> Result { |
| let hello_world = c"hello, world!"; |
| assert_eq!(format!("{hello_world}"), "hello, world!"); |
| let non_printables = c"\x01\x09\x0a"; |
| assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a"); |
| let non_ascii = c"d\xe9j\xe0 vu"; |
| assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu"); |
| let good_bytes = c"\xf0\x9f\xa6\x80"; |
| assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80"); |
| Ok(()) |
| } |
| |
| #[test] |
| fn test_cstr_display_all_bytes() -> Result { |
| let mut bytes: [u8; 256] = [0; 256]; |
| // fill `bytes` with [1..=255] + [0] |
| for i in u8::MIN..=u8::MAX { |
| bytes[i as usize] = i.wrapping_add(1); |
| } |
| let cstr = CStr::from_bytes_with_nul(&bytes)?; |
| assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS); |
| Ok(()) |
| } |
| |
| #[test] |
| fn test_cstr_debug() -> Result { |
| let hello_world = c"hello, world!"; |
| assert_eq!(format!("{hello_world:?}"), "\"hello, world!\""); |
| let non_printables = c"\x01\x09\x0a"; |
| assert_eq!(format!("{non_printables:?}"), "\"\\x01\\t\\n\""); |
| let non_ascii = c"d\xe9j\xe0 vu"; |
| assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\""); |
| Ok(()) |
| } |
| |
| #[test] |
| fn test_bstr_display() -> Result { |
| let hello_world = BStr::from_bytes(b"hello, world!"); |
| assert_eq!(format!("{hello_world}"), "hello, world!"); |
| let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); |
| assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_"); |
| let others = BStr::from_bytes(b"\x01"); |
| assert_eq!(format!("{others}"), "\\x01"); |
| let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); |
| assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu"); |
| let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); |
| assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80"); |
| Ok(()) |
| } |
| |
| #[test] |
| fn test_bstr_debug() -> Result { |
| let hello_world = BStr::from_bytes(b"hello, world!"); |
| assert_eq!(format!("{hello_world:?}"), "\"hello, world!\""); |
| let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); |
| assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\""); |
| let others = BStr::from_bytes(b"\x01"); |
| assert_eq!(format!("{others:?}"), "\"\\x01\""); |
| let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); |
| assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\""); |
| let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); |
| assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\""); |
| Ok(()) |
| } |
| } |
| |
| /// Allows formatting of [`fmt::Arguments`] into a raw buffer. |
| /// |
| /// It does not fail if callers write past the end of the buffer so that they can calculate the |
| /// size required to fit everything. |
| /// |
| /// # Invariants |
| /// |
| /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` |
| /// is less than `end`. |
| pub struct RawFormatter { |
| // Use `usize` to use `saturating_*` functions. |
| beg: usize, |
| pos: usize, |
| end: usize, |
| } |
| |
| impl RawFormatter { |
| /// Creates a new instance of [`RawFormatter`] with an empty buffer. |
| fn new() -> Self { |
| // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. |
| Self { |
| beg: 0, |
| pos: 0, |
| end: 0, |
| } |
| } |
| |
| /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. |
| /// |
| /// # Safety |
| /// |
| /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` |
| /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. |
| pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { |
| // INVARIANT: The safety requirements guarantee the type invariants. |
| Self { |
| beg: pos as usize, |
| pos: pos as usize, |
| end: end as usize, |
| } |
| } |
| |
| /// Creates a new instance of [`RawFormatter`] with the given buffer. |
| /// |
| /// # Safety |
| /// |
| /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes |
| /// for the lifetime of the returned [`RawFormatter`]. |
| pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { |
| let pos = buf as usize; |
| // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements |
| // guarantees that the memory region is valid for writes. |
| Self { |
| pos, |
| beg: pos, |
| end: pos.saturating_add(len), |
| } |
| } |
| |
| /// Returns the current insert position. |
| /// |
| /// N.B. It may point to invalid memory. |
| pub(crate) fn pos(&self) -> *mut u8 { |
| self.pos as *mut u8 |
| } |
| |
| /// Returns the number of bytes written to the formatter. |
| pub fn bytes_written(&self) -> usize { |
| self.pos - self.beg |
| } |
| } |
| |
| impl fmt::Write for RawFormatter { |
| fn write_str(&mut self, s: &str) -> fmt::Result { |
| // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we |
| // don't want it to wrap around to 0. |
| let pos_new = self.pos.saturating_add(s.len()); |
| |
| // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. |
| let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); |
| |
| if len_to_copy > 0 { |
| // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` |
| // yet, so it is valid for write per the type invariants. |
| unsafe { |
| core::ptr::copy_nonoverlapping( |
| s.as_bytes().as_ptr(), |
| self.pos as *mut u8, |
| len_to_copy, |
| ) |
| }; |
| } |
| |
| self.pos = pos_new; |
| Ok(()) |
| } |
| } |
| |
| /// Allows formatting of [`fmt::Arguments`] into a raw buffer. |
| /// |
| /// Fails if callers attempt to write more than will fit in the buffer. |
| pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>); |
| |
| impl Formatter<'_> { |
| /// Creates a new instance of [`Formatter`] with the given buffer. |
| /// |
| /// # Safety |
| /// |
| /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes |
| /// for the lifetime of the returned [`Formatter`]. |
| pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { |
| // SAFETY: The safety requirements of this function satisfy those of the callee. |
| Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData) |
| } |
| |
| /// Create a new [`Self`] instance. |
| pub fn new(buffer: &mut [u8]) -> Self { |
| // SAFETY: `buffer` is valid for writes for the entire length for |
| // the lifetime of `Self`. |
| unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) } |
| } |
| } |
| |
| impl Deref for Formatter<'_> { |
| type Target = RawFormatter; |
| |
| fn deref(&self) -> &Self::Target { |
| &self.0 |
| } |
| } |
| |
| impl fmt::Write for Formatter<'_> { |
| fn write_str(&mut self, s: &str) -> fmt::Result { |
| self.0.write_str(s)?; |
| |
| // Fail the request if we go past the end of the buffer. |
| if self.0.pos > self.0.end { |
| Err(fmt::Error) |
| } else { |
| Ok(()) |
| } |
| } |
| } |
| |
| /// A mutable reference to a byte buffer where a string can be written into. |
| /// |
| /// The buffer will be automatically null terminated after the last written character. |
| /// |
| /// # Invariants |
| /// |
| /// * The first byte of `buffer` is always zero. |
| /// * The length of `buffer` is at least 1. |
| pub(crate) struct NullTerminatedFormatter<'a> { |
| buffer: &'a mut [u8], |
| } |
| |
| impl<'a> NullTerminatedFormatter<'a> { |
| /// Create a new [`Self`] instance. |
| pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> { |
| *(buffer.first_mut()?) = 0; |
| |
| // INVARIANT: |
| // - We wrote zero to the first byte above. |
| // - If buffer was not at least length 1, `buffer.first_mut()` would return None. |
| Some(Self { buffer }) |
| } |
| } |
| |
| impl Write for NullTerminatedFormatter<'_> { |
| fn write_str(&mut self, s: &str) -> fmt::Result { |
| let bytes = s.as_bytes(); |
| let len = bytes.len(); |
| |
| // We want space for a zero. By type invariant, buffer length is always at least 1, so no |
| // underflow. |
| if len > self.buffer.len() - 1 { |
| return Err(fmt::Error); |
| } |
| |
| let buffer = core::mem::take(&mut self.buffer); |
| // We break the zero start invariant for a short while. |
| buffer[..len].copy_from_slice(bytes); |
| // INVARIANT: We checked above that buffer will have size at least 1 after this assignment. |
| self.buffer = &mut buffer[len..]; |
| |
| // INVARIANT: We write zero to the first byte of the buffer. |
| self.buffer[0] = 0; |
| |
| Ok(()) |
| } |
| } |
| |
| /// # Safety |
| /// |
| /// - `string` must point to a null terminated string that is valid for read. |
| unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> { |
| let mut result: bool = false; |
| |
| // SAFETY: |
| // - By function safety requirement, `string` is a valid null-terminated string. |
| // - `result` is a valid `bool` that we own. |
| to_result(unsafe { bindings::kstrtobool(string, &mut result) })?; |
| Ok(result) |
| } |
| |
| /// Convert common user inputs into boolean values using the kernel's `kstrtobool` function. |
| /// |
| /// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or |
| /// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use kernel::str::kstrtobool; |
| /// |
| /// // Lowercase |
| /// assert_eq!(kstrtobool(c"true"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"tr"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"t"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"twrong"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"false"), Ok(false)); |
| /// assert_eq!(kstrtobool(c"f"), Ok(false)); |
| /// assert_eq!(kstrtobool(c"yes"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"no"), Ok(false)); |
| /// assert_eq!(kstrtobool(c"on"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"off"), Ok(false)); |
| /// |
| /// // Camel case |
| /// assert_eq!(kstrtobool(c"True"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"False"), Ok(false)); |
| /// assert_eq!(kstrtobool(c"Yes"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"No"), Ok(false)); |
| /// assert_eq!(kstrtobool(c"On"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"Off"), Ok(false)); |
| /// |
| /// // All caps |
| /// assert_eq!(kstrtobool(c"TRUE"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"FALSE"), Ok(false)); |
| /// assert_eq!(kstrtobool(c"YES"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"NO"), Ok(false)); |
| /// assert_eq!(kstrtobool(c"ON"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"OFF"), Ok(false)); |
| /// |
| /// // Numeric |
| /// assert_eq!(kstrtobool(c"1"), Ok(true)); |
| /// assert_eq!(kstrtobool(c"0"), Ok(false)); |
| /// |
| /// // Invalid input |
| /// assert_eq!(kstrtobool(c"invalid"), Err(EINVAL)); |
| /// assert_eq!(kstrtobool(c"2"), Err(EINVAL)); |
| /// ``` |
| pub fn kstrtobool(string: &CStr) -> Result<bool> { |
| // SAFETY: |
| // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be |
| // null terminated. |
| // - `string` is live and thus the string is valid for read. |
| unsafe { kstrtobool_raw(string.as_char_ptr()) } |
| } |
| |
| /// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`]. |
| /// |
| /// Only considers at most the first two bytes of `bytes`. |
| pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> { |
| // `ktostrbool` only considers the first two bytes of the input. |
| let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0]; |
| // SAFETY: `stack_string` is null terminated and it is live on the stack so |
| // it is valid for read. |
| unsafe { kstrtobool_raw(stack_string.as_ptr()) } |
| } |
| |
| /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. |
| /// |
| /// Used for interoperability with kernel APIs that take C strings. |
| /// |
| /// # Invariants |
| /// |
| /// The string is always `NUL`-terminated and contains no other `NUL` bytes. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::{str::CString, prelude::fmt}; |
| /// |
| /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?; |
| /// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes()); |
| /// |
| /// let tmp = "testing"; |
| /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?; |
| /// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes()); |
| /// |
| /// // This fails because it has an embedded `NUL` byte. |
| /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); |
| /// assert_eq!(s.is_ok(), false); |
| /// # Ok::<(), kernel::error::Error>(()) |
| /// ``` |
| pub struct CString { |
| buf: KVec<u8>, |
| } |
| |
| impl CString { |
| /// Creates an instance of [`CString`] from the given formatted arguments. |
| pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> { |
| // Calculate the size needed (formatted string plus `NUL` terminator). |
| let mut f = RawFormatter::new(); |
| f.write_fmt(args)?; |
| f.write_str("\0")?; |
| let size = f.bytes_written(); |
| |
| // Allocate a vector with the required number of bytes, and write to it. |
| let mut buf = KVec::with_capacity(size, GFP_KERNEL)?; |
| // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. |
| let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; |
| f.write_fmt(args)?; |
| f.write_str("\0")?; |
| |
| // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is |
| // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. |
| unsafe { buf.inc_len(f.bytes_written()) }; |
| |
| // Check that there are no `NUL` bytes before the end. |
| // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` |
| // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) |
| // so `f.bytes_written() - 1` doesn't underflow. |
| let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) }; |
| if !ptr.is_null() { |
| return Err(EINVAL); |
| } |
| |
| // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes |
| // exist in the buffer. |
| Ok(Self { buf }) |
| } |
| } |
| |
| impl Deref for CString { |
| type Target = CStr; |
| |
| fn deref(&self) -> &Self::Target { |
| // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no |
| // other `NUL` bytes exist. |
| unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } |
| } |
| } |
| |
| impl DerefMut for CString { |
| fn deref_mut(&mut self) -> &mut Self::Target { |
| // SAFETY: A `CString` is always NUL-terminated and contains no other |
| // NUL bytes. |
| unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) } |
| } |
| } |
| |
| impl<'a> TryFrom<&'a CStr> for CString { |
| type Error = AllocError; |
| |
| fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> { |
| let mut buf = KVec::new(); |
| |
| buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?; |
| |
| // INVARIANT: The `CStr` and `CString` types have the same invariants for |
| // the string data, and we copied it over without changes. |
| Ok(CString { buf }) |
| } |
| } |
| |
| impl fmt::Debug for CString { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Debug::fmt(&**self, f) |
| } |
| } |