| // SPDX-License-Identifier: GPL-2.0 |
| |
| //! Atomic primitives. |
| //! |
| //! These primitives have the same semantics as their C counterparts: and the precise definitions of |
| //! semantics can be found at [`LKMM`]. Note that Linux Kernel Memory (Consistency) Model is the |
| //! only model for Rust code in kernel, and Rust's own atomics should be avoided. |
| //! |
| //! # Data races |
| //! |
| //! [`LKMM`] atomics have different rules regarding data races: |
| //! |
| //! - A normal write from C side is treated as an atomic write if |
| //! CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=y. |
| //! - Mixed-size atomic accesses don't cause data races. |
| //! |
| //! [`LKMM`]: srctree/tools/memory-model/ |
| |
| mod internal; |
| pub mod ordering; |
| mod predefine; |
| |
| pub use internal::AtomicImpl; |
| pub use ordering::{Acquire, Full, Relaxed, Release}; |
| |
| pub(crate) use internal::{AtomicArithmeticOps, AtomicBasicOps, AtomicExchangeOps}; |
| |
| use crate::build_error; |
| use internal::AtomicRepr; |
| use ordering::OrderingType; |
| |
| /// A memory location which can be safely modified from multiple execution contexts. |
| /// |
| /// This has the same size, alignment and bit validity as the underlying type `T`. And it disables |
| /// niche optimization for the same reason as [`UnsafeCell`]. |
| /// |
| /// The atomic operations are implemented in a way that is fully compatible with the [Linux Kernel |
| /// Memory (Consistency) Model][LKMM], hence they should be modeled as the corresponding |
| /// [`LKMM`][LKMM] atomic primitives. With the help of [`Atomic::from_ptr()`] and |
| /// [`Atomic::as_ptr()`], this provides a way to interact with [C-side atomic operations] |
| /// (including those without the `atomic` prefix, e.g. `READ_ONCE()`, `WRITE_ONCE()`, |
| /// `smp_load_acquire()` and `smp_store_release()`). |
| /// |
| /// # Invariants |
| /// |
| /// `self.0` is a valid `T`. |
| /// |
| /// [`UnsafeCell`]: core::cell::UnsafeCell |
| /// [LKMM]: srctree/tools/memory-model/ |
| /// [C-side atomic operations]: srctree/Documentation/atomic_t.txt |
| #[repr(transparent)] |
| pub struct Atomic<T: AtomicType>(AtomicRepr<T::Repr>); |
| |
| // SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic. |
| unsafe impl<T: AtomicType> Sync for Atomic<T> {} |
| |
| /// Types that support basic atomic operations. |
| /// |
| /// # Round-trip transmutability |
| /// |
| /// `T` is round-trip transmutable to `U` if and only if both of these properties hold: |
| /// |
| /// - Any valid bit pattern for `T` is also a valid bit pattern for `U`. |
| /// - Transmuting (e.g. using [`transmute()`]) a value of type `T` to `U` and then to `T` again |
| /// yields a value that is in all aspects equivalent to the original value. |
| /// |
| /// # Safety |
| /// |
| /// - [`Self`] must have the same size and alignment as [`Self::Repr`]. |
| /// - [`Self`] must be [round-trip transmutable] to [`Self::Repr`]. |
| /// |
| /// Note that this is more relaxed than requiring the bi-directional transmutability (i.e. |
| /// [`transmute()`] is always sound between `U` and `T`) because of the support for atomic |
| /// variables over unit-only enums, see [Examples]. |
| /// |
| /// # Limitations |
| /// |
| /// Because C primitives are used to implement the atomic operations, and a C function requires a |
| /// valid object of a type to operate on (i.e. no `MaybeUninit<_>`), hence at the Rust <-> C |
| /// surface, only types with all the bits initialized can be passed. As a result, types like `(u8, |
| /// u16)` (padding bytes are uninitialized) are currently not supported. |
| /// |
| /// # Examples |
| /// |
| /// A unit-only enum that implements [`AtomicType`]: |
| /// |
| /// ``` |
| /// use kernel::sync::atomic::{AtomicType, Atomic, Relaxed}; |
| /// |
| /// #[derive(Clone, Copy, PartialEq, Eq)] |
| /// #[repr(i32)] |
| /// enum State { |
| /// Uninit = 0, |
| /// Working = 1, |
| /// Done = 2, |
| /// }; |
| /// |
| /// // SAFETY: `State` and `i32` has the same size and alignment, and it's round-trip |
| /// // transmutable to `i32`. |
| /// unsafe impl AtomicType for State { |
| /// type Repr = i32; |
| /// } |
| /// |
| /// let s = Atomic::new(State::Uninit); |
| /// |
| /// assert_eq!(State::Uninit, s.load(Relaxed)); |
| /// ``` |
| /// [`transmute()`]: core::mem::transmute |
| /// [round-trip transmutable]: AtomicType#round-trip-transmutability |
| /// [Examples]: AtomicType#examples |
| pub unsafe trait AtomicType: Sized + Send + Copy { |
| /// The backing atomic implementation type. |
| type Repr: AtomicImpl; |
| } |
| |
| /// Types that support atomic add operations. |
| /// |
| /// # Safety |
| /// |
| // TODO: Properly defines `wrapping_add` in the following comment. |
| /// `wrapping_add` any value of type `Self::Repr::Delta` obtained by [`Self::rhs_into_delta()`] to |
| /// any value of type `Self::Repr` obtained through transmuting a value of type `Self` to must |
| /// yield a value with a bit pattern also valid for `Self`. |
| pub unsafe trait AtomicAdd<Rhs = Self>: AtomicType { |
| /// Converts `Rhs` into the `Delta` type of the atomic implementation. |
| fn rhs_into_delta(rhs: Rhs) -> <Self::Repr as AtomicImpl>::Delta; |
| } |
| |
| #[inline(always)] |
| const fn into_repr<T: AtomicType>(v: T) -> T::Repr { |
| // SAFETY: Per the safety requirement of `AtomicType`, `T` is round-trip transmutable to |
| // `T::Repr`, therefore the transmute operation is sound. |
| unsafe { core::mem::transmute_copy(&v) } |
| } |
| |
| /// # Safety |
| /// |
| /// `r` must be a valid bit pattern of `T`. |
| #[inline(always)] |
| const unsafe fn from_repr<T: AtomicType>(r: T::Repr) -> T { |
| // SAFETY: Per the safety requirement of the function, the transmute operation is sound. |
| unsafe { core::mem::transmute_copy(&r) } |
| } |
| |
| impl<T: AtomicType> Atomic<T> { |
| /// Creates a new atomic `T`. |
| pub const fn new(v: T) -> Self { |
| // INVARIANT: Per the safety requirement of `AtomicType`, `into_repr(v)` is a valid `T`. |
| Self(AtomicRepr::new(into_repr(v))) |
| } |
| |
| /// Creates a reference to an atomic `T` from a pointer of `T`. |
| /// |
| /// This usually is used when communicating with C side or manipulating a C struct, see |
| /// examples below. |
| /// |
| /// # Safety |
| /// |
| /// - `ptr` is aligned to `align_of::<T>()`. |
| /// - `ptr` is valid for reads and writes for `'a`. |
| /// - For the duration of `'a`, other accesses to `*ptr` must not cause data races (defined |
| /// by [`LKMM`]) against atomic operations on the returned reference. Note that if all other |
| /// accesses are atomic, then this safety requirement is trivially fulfilled. |
| /// |
| /// [`LKMM`]: srctree/tools/memory-model |
| /// |
| /// # Examples |
| /// |
| /// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can |
| /// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or |
| /// `WRITE_ONCE()`/`smp_store_release()` in C side: |
| /// |
| /// ``` |
| /// # use kernel::types::Opaque; |
| /// use kernel::sync::atomic::{Atomic, Relaxed, Release}; |
| /// |
| /// // Assume there is a C struct `foo`. |
| /// mod cbindings { |
| /// #[repr(C)] |
| /// pub(crate) struct foo { |
| /// pub(crate) a: i32, |
| /// pub(crate) b: i32 |
| /// } |
| /// } |
| /// |
| /// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2 }); |
| /// |
| /// // struct foo *foo_ptr = ..; |
| /// let foo_ptr = tmp.get(); |
| /// |
| /// // SAFETY: `foo_ptr` is valid, and `.a` is in bounds. |
| /// let foo_a_ptr = unsafe { &raw mut (*foo_ptr).a }; |
| /// |
| /// // a = READ_ONCE(foo_ptr->a); |
| /// // |
| /// // SAFETY: `foo_a_ptr` is valid for read, and all other accesses on it is atomic, so no |
| /// // data race. |
| /// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed); |
| /// # assert_eq!(a, 1); |
| /// |
| /// // smp_store_release(&foo_ptr->a, 2); |
| /// // |
| /// // SAFETY: `foo_a_ptr` is valid for writes, and all other accesses on it is atomic, so |
| /// // no data race. |
| /// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release); |
| /// ``` |
| pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self |
| where |
| T: Sync, |
| { |
| // CAST: `T` and `Atomic<T>` have the same size, alignment and bit validity. |
| // SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will |
| // live long enough. It's safe to return a `&Atomic<T>` because function safety requirement |
| // guarantees other accesses won't cause data races. |
| unsafe { &*ptr.cast::<Self>() } |
| } |
| |
| /// Returns a pointer to the underlying atomic `T`. |
| /// |
| /// Note that use of the return pointer must not cause data races defined by [`LKMM`]. |
| /// |
| /// # Guarantees |
| /// |
| /// The returned pointer is valid and properly aligned (i.e. aligned to [`align_of::<T>()`]). |
| /// |
| /// [`LKMM`]: srctree/tools/memory-model |
| /// [`align_of::<T>()`]: core::mem::align_of |
| pub const fn as_ptr(&self) -> *mut T { |
| // GUARANTEE: Per the function guarantee of `AtomicRepr::as_ptr()`, the `self.0.as_ptr()` |
| // must be a valid and properly aligned pointer for `T::Repr`, and per the safety guarantee |
| // of `AtomicType`, it's a valid and properly aligned pointer of `T`. |
| self.0.as_ptr().cast() |
| } |
| |
| /// Returns a mutable reference to the underlying atomic `T`. |
| /// |
| /// This is safe because the mutable reference of the atomic `T` guarantees exclusive access. |
| pub fn get_mut(&mut self) -> &mut T { |
| // CAST: `T` and `T::Repr` has the same size and alignment per the safety requirement of |
| // `AtomicType`, and per the type invariants `self.0` is a valid `T`, therefore the casting |
| // result is a valid pointer of `T`. |
| // SAFETY: The pointer is valid per the CAST comment above, and the mutable reference |
| // guarantees exclusive access. |
| unsafe { &mut *self.0.as_ptr().cast() } |
| } |
| } |
| |
| impl<T: AtomicType> Atomic<T> |
| where |
| T::Repr: AtomicBasicOps, |
| { |
| /// Loads the value from the atomic `T`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::sync::atomic::{Atomic, Relaxed}; |
| /// |
| /// let x = Atomic::new(42i32); |
| /// |
| /// assert_eq!(42, x.load(Relaxed)); |
| /// |
| /// let x = Atomic::new(42i64); |
| /// |
| /// assert_eq!(42, x.load(Relaxed)); |
| /// ``` |
| #[doc(alias("atomic_read", "atomic64_read"))] |
| #[inline(always)] |
| pub fn load<Ordering: ordering::AcquireOrRelaxed>(&self, _: Ordering) -> T { |
| let v = { |
| match Ordering::TYPE { |
| OrderingType::Relaxed => T::Repr::atomic_read(&self.0), |
| OrderingType::Acquire => T::Repr::atomic_read_acquire(&self.0), |
| _ => build_error!("Wrong ordering"), |
| } |
| }; |
| |
| // SAFETY: `v` comes from reading `self.0`, which is a valid `T` per the type invariants. |
| unsafe { from_repr(v) } |
| } |
| |
| /// Stores a value to the atomic `T`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::sync::atomic::{Atomic, Relaxed}; |
| /// |
| /// let x = Atomic::new(42i32); |
| /// |
| /// assert_eq!(42, x.load(Relaxed)); |
| /// |
| /// x.store(43, Relaxed); |
| /// |
| /// assert_eq!(43, x.load(Relaxed)); |
| /// ``` |
| #[doc(alias("atomic_set", "atomic64_set"))] |
| #[inline(always)] |
| pub fn store<Ordering: ordering::ReleaseOrRelaxed>(&self, v: T, _: Ordering) { |
| let v = into_repr(v); |
| |
| // INVARIANT: `v` is a valid `T`, and is stored to `self.0` by `atomic_set*()`. |
| match Ordering::TYPE { |
| OrderingType::Relaxed => T::Repr::atomic_set(&self.0, v), |
| OrderingType::Release => T::Repr::atomic_set_release(&self.0, v), |
| _ => build_error!("Wrong ordering"), |
| } |
| } |
| } |
| |
| impl<T: AtomicType + core::fmt::Debug> core::fmt::Debug for Atomic<T> |
| where |
| T::Repr: AtomicBasicOps, |
| { |
| fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| core::fmt::Debug::fmt(&self.load(Relaxed), f) |
| } |
| } |
| |
| impl<T: AtomicType> Atomic<T> |
| where |
| T::Repr: AtomicExchangeOps, |
| { |
| /// Atomic exchange. |
| /// |
| /// Atomically updates `*self` to `v` and returns the old value of `*self`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::sync::atomic::{Atomic, Acquire, Relaxed}; |
| /// |
| /// let x = Atomic::new(42); |
| /// |
| /// assert_eq!(42, x.xchg(52, Acquire)); |
| /// assert_eq!(52, x.load(Relaxed)); |
| /// ``` |
| #[doc(alias("atomic_xchg", "atomic64_xchg", "swap"))] |
| #[inline(always)] |
| pub fn xchg<Ordering: ordering::Ordering>(&self, v: T, _: Ordering) -> T { |
| let v = into_repr(v); |
| |
| // INVARIANT: `self.0` is a valid `T` after `atomic_xchg*()` because `v` is transmutable to |
| // `T`. |
| let ret = { |
| match Ordering::TYPE { |
| OrderingType::Full => T::Repr::atomic_xchg(&self.0, v), |
| OrderingType::Acquire => T::Repr::atomic_xchg_acquire(&self.0, v), |
| OrderingType::Release => T::Repr::atomic_xchg_release(&self.0, v), |
| OrderingType::Relaxed => T::Repr::atomic_xchg_relaxed(&self.0, v), |
| } |
| }; |
| |
| // SAFETY: `ret` comes from reading `*self`, which is a valid `T` per type invariants. |
| unsafe { from_repr(ret) } |
| } |
| |
| /// Atomic compare and exchange. |
| /// |
| /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not |
| /// modified. |
| /// |
| /// Compare: The comparison is done via the byte level comparison between `*self` and `old`. |
| /// |
| /// Ordering: When succeeds, provides the corresponding ordering as the `Ordering` type |
| /// parameter indicates, and a failed one doesn't provide any ordering, the load part of a |
| /// failed cmpxchg is a [`Relaxed`] load. |
| /// |
| /// Returns `Ok(value)` if cmpxchg succeeds, and `value` is guaranteed to be equal to `old`, |
| /// otherwise returns `Err(value)`, and `value` is the current value of `*self`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::sync::atomic::{Atomic, Full, Relaxed}; |
| /// |
| /// let x = Atomic::new(42); |
| /// |
| /// // Checks whether cmpxchg succeeded. |
| /// let success = x.cmpxchg(52, 64, Relaxed).is_ok(); |
| /// # assert!(!success); |
| /// |
| /// // Checks whether cmpxchg failed. |
| /// let failure = x.cmpxchg(52, 64, Relaxed).is_err(); |
| /// # assert!(failure); |
| /// |
| /// // Uses the old value if failed, probably re-try cmpxchg. |
| /// match x.cmpxchg(52, 64, Relaxed) { |
| /// Ok(_) => { }, |
| /// Err(old) => { |
| /// // do something with `old`. |
| /// # assert_eq!(old, 42); |
| /// } |
| /// } |
| /// |
| /// // Uses the latest value regardlessly, same as atomic_cmpxchg() in C. |
| /// let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old); |
| /// # assert_eq!(42, latest); |
| /// assert_eq!(64, x.load(Relaxed)); |
| /// ``` |
| /// |
| /// [`Relaxed`]: ordering::Relaxed |
| #[doc(alias( |
| "atomic_cmpxchg", |
| "atomic64_cmpxchg", |
| "atomic_try_cmpxchg", |
| "atomic64_try_cmpxchg", |
| "compare_exchange" |
| ))] |
| #[inline(always)] |
| pub fn cmpxchg<Ordering: ordering::Ordering>( |
| &self, |
| mut old: T, |
| new: T, |
| o: Ordering, |
| ) -> Result<T, T> { |
| // Note on code generation: |
| // |
| // try_cmpxchg() is used to implement cmpxchg(), and if the helper functions are inlined, |
| // the compiler is able to figure out that branch is not needed if the users don't care |
| // about whether the operation succeeds or not. One exception is on x86, due to commit |
| // 44fe84459faf ("locking/atomic: Fix atomic_try_cmpxchg() semantics"), the |
| // atomic_try_cmpxchg() on x86 has a branch even if the caller doesn't care about the |
| // success of cmpxchg and only wants to use the old value. For example, for code like: |
| // |
| // let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old); |
| // |
| // It will still generate code: |
| // |
| // movl $0x40, %ecx |
| // movl $0x34, %eax |
| // lock |
| // cmpxchgl %ecx, 0x4(%rsp) |
| // jne 1f |
| // 2: |
| // ... |
| // 1: movl %eax, %ecx |
| // jmp 2b |
| // |
| // This might be "fixed" by introducing a try_cmpxchg_exclusive() that knows the "*old" |
| // location in the C function is always safe to write. |
| if self.try_cmpxchg(&mut old, new, o) { |
| Ok(old) |
| } else { |
| Err(old) |
| } |
| } |
| |
| /// Atomic compare and exchange and returns whether the operation succeeds. |
| /// |
| /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not |
| /// modified, `*old` is updated to the current value of `*self`. |
| /// |
| /// "Compare" and "Ordering" part are the same as [`Atomic::cmpxchg()`]. |
| /// |
| /// Returns `true` means the cmpxchg succeeds otherwise returns `false`. |
| #[inline(always)] |
| fn try_cmpxchg<Ordering: ordering::Ordering>(&self, old: &mut T, new: T, _: Ordering) -> bool { |
| let mut tmp = into_repr(*old); |
| let new = into_repr(new); |
| |
| // INVARIANT: `self.0` is a valid `T` after `atomic_try_cmpxchg*()` because `new` is |
| // transmutable to `T`. |
| let ret = { |
| match Ordering::TYPE { |
| OrderingType::Full => T::Repr::atomic_try_cmpxchg(&self.0, &mut tmp, new), |
| OrderingType::Acquire => { |
| T::Repr::atomic_try_cmpxchg_acquire(&self.0, &mut tmp, new) |
| } |
| OrderingType::Release => { |
| T::Repr::atomic_try_cmpxchg_release(&self.0, &mut tmp, new) |
| } |
| OrderingType::Relaxed => { |
| T::Repr::atomic_try_cmpxchg_relaxed(&self.0, &mut tmp, new) |
| } |
| } |
| }; |
| |
| // SAFETY: `tmp` comes from reading `*self`, which is a valid `T` per type invariants. |
| *old = unsafe { from_repr(tmp) }; |
| |
| ret |
| } |
| } |
| |
| impl<T: AtomicType> Atomic<T> |
| where |
| T::Repr: AtomicArithmeticOps, |
| { |
| /// Atomic add. |
| /// |
| /// Atomically updates `*self` to `(*self).wrapping_add(v)`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::sync::atomic::{Atomic, Relaxed}; |
| /// |
| /// let x = Atomic::new(42); |
| /// |
| /// assert_eq!(42, x.load(Relaxed)); |
| /// |
| /// x.add(12, Relaxed); |
| /// |
| /// assert_eq!(54, x.load(Relaxed)); |
| /// ``` |
| #[inline(always)] |
| pub fn add<Rhs>(&self, v: Rhs, _: ordering::Relaxed) |
| where |
| T: AtomicAdd<Rhs>, |
| { |
| let v = T::rhs_into_delta(v); |
| |
| // INVARIANT: `self.0` is a valid `T` after `atomic_add()` due to safety requirement of |
| // `AtomicAdd`. |
| T::Repr::atomic_add(&self.0, v); |
| } |
| |
| /// Atomic fetch and add. |
| /// |
| /// Atomically updates `*self` to `(*self).wrapping_add(v)`, and returns the value of `*self` |
| /// before the update. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::sync::atomic::{Atomic, Acquire, Full, Relaxed}; |
| /// |
| /// let x = Atomic::new(42); |
| /// |
| /// assert_eq!(42, x.load(Relaxed)); |
| /// |
| /// assert_eq!(54, { x.fetch_add(12, Acquire); x.load(Relaxed) }); |
| /// |
| /// let x = Atomic::new(42); |
| /// |
| /// assert_eq!(42, x.load(Relaxed)); |
| /// |
| /// assert_eq!(54, { x.fetch_add(12, Full); x.load(Relaxed) } ); |
| /// ``` |
| #[inline(always)] |
| pub fn fetch_add<Rhs, Ordering: ordering::Ordering>(&self, v: Rhs, _: Ordering) -> T |
| where |
| T: AtomicAdd<Rhs>, |
| { |
| let v = T::rhs_into_delta(v); |
| |
| // INVARIANT: `self.0` is a valid `T` after `atomic_fetch_add*()` due to safety requirement |
| // of `AtomicAdd`. |
| let ret = { |
| match Ordering::TYPE { |
| OrderingType::Full => T::Repr::atomic_fetch_add(&self.0, v), |
| OrderingType::Acquire => T::Repr::atomic_fetch_add_acquire(&self.0, v), |
| OrderingType::Release => T::Repr::atomic_fetch_add_release(&self.0, v), |
| OrderingType::Relaxed => T::Repr::atomic_fetch_add_relaxed(&self.0, v), |
| } |
| }; |
| |
| // SAFETY: `ret` comes from reading `self.0`, which is a valid `T` per type invariants. |
| unsafe { from_repr(ret) } |
| } |
| } |