blob: fc8b9f65e4e41db5cbeb69a55a6cdda3c5d1b7da [file] [log] [blame]
/*
* Copyright (c) 2005 Topspin Communications. All rights reserved.
* Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#if HAVE_CONFIG_H
# include <config.h>
#endif /* HAVE_CONFIG_H */
#include <stdio.h>
#include <netinet/in.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <linux/ip.h>
#include <dirent.h>
#include "ibverbs.h"
#ifndef NRESOLVE_NEIGH
#include <net/if.h>
#include <net/if_arp.h>
#include "neigh.h"
#endif
int ibv_rate_to_mult(enum ibv_rate rate)
{
switch (rate) {
case IBV_RATE_2_5_GBPS: return 1;
case IBV_RATE_5_GBPS: return 2;
case IBV_RATE_10_GBPS: return 4;
case IBV_RATE_20_GBPS: return 8;
case IBV_RATE_30_GBPS: return 12;
case IBV_RATE_40_GBPS: return 16;
case IBV_RATE_60_GBPS: return 24;
case IBV_RATE_80_GBPS: return 32;
case IBV_RATE_120_GBPS: return 48;
default: return -1;
}
}
enum ibv_rate mult_to_ibv_rate(int mult)
{
switch (mult) {
case 1: return IBV_RATE_2_5_GBPS;
case 2: return IBV_RATE_5_GBPS;
case 4: return IBV_RATE_10_GBPS;
case 8: return IBV_RATE_20_GBPS;
case 12: return IBV_RATE_30_GBPS;
case 16: return IBV_RATE_40_GBPS;
case 24: return IBV_RATE_60_GBPS;
case 32: return IBV_RATE_80_GBPS;
case 48: return IBV_RATE_120_GBPS;
default: return IBV_RATE_MAX;
}
}
int ibv_rate_to_mbps(enum ibv_rate rate)
{
switch (rate) {
case IBV_RATE_2_5_GBPS: return 2500;
case IBV_RATE_5_GBPS: return 5000;
case IBV_RATE_10_GBPS: return 10000;
case IBV_RATE_20_GBPS: return 20000;
case IBV_RATE_30_GBPS: return 30000;
case IBV_RATE_40_GBPS: return 40000;
case IBV_RATE_60_GBPS: return 60000;
case IBV_RATE_80_GBPS: return 80000;
case IBV_RATE_120_GBPS: return 120000;
case IBV_RATE_14_GBPS: return 14062;
case IBV_RATE_56_GBPS: return 56250;
case IBV_RATE_112_GBPS: return 112500;
case IBV_RATE_168_GBPS: return 168750;
case IBV_RATE_25_GBPS: return 25781;
case IBV_RATE_100_GBPS: return 103125;
case IBV_RATE_200_GBPS: return 206250;
case IBV_RATE_300_GBPS: return 309375;
default: return -1;
}
}
enum ibv_rate mbps_to_ibv_rate(int mbps)
{
switch (mbps) {
case 2500: return IBV_RATE_2_5_GBPS;
case 5000: return IBV_RATE_5_GBPS;
case 10000: return IBV_RATE_10_GBPS;
case 20000: return IBV_RATE_20_GBPS;
case 30000: return IBV_RATE_30_GBPS;
case 40000: return IBV_RATE_40_GBPS;
case 60000: return IBV_RATE_60_GBPS;
case 80000: return IBV_RATE_80_GBPS;
case 120000: return IBV_RATE_120_GBPS;
case 14062: return IBV_RATE_14_GBPS;
case 56250: return IBV_RATE_56_GBPS;
case 112500: return IBV_RATE_112_GBPS;
case 168750: return IBV_RATE_168_GBPS;
case 25781: return IBV_RATE_25_GBPS;
case 103125: return IBV_RATE_100_GBPS;
case 206250: return IBV_RATE_200_GBPS;
case 309375: return IBV_RATE_300_GBPS;
default: return IBV_RATE_MAX;
}
}
int __ibv_query_device(struct ibv_context *context,
struct ibv_device_attr *device_attr)
{
return context->ops.query_device(context, device_attr);
}
default_symver(__ibv_query_device, ibv_query_device);
int __ibv_query_port(struct ibv_context *context, uint8_t port_num,
struct ibv_port_attr *port_attr)
{
return context->ops.query_port(context, port_num, port_attr);
}
default_symver(__ibv_query_port, ibv_query_port);
int __ibv_query_gid(struct ibv_context *context, uint8_t port_num,
int index, union ibv_gid *gid)
{
char name[24];
char attr[41];
uint16_t val;
int i;
snprintf(name, sizeof name, "ports/%d/gids/%d", port_num, index);
if (ibv_read_sysfs_file(context->device->ibdev_path, name,
attr, sizeof attr) < 0)
return -1;
for (i = 0; i < 8; ++i) {
if (sscanf(attr + i * 5, "%hx", &val) != 1)
return -1;
gid->raw[i * 2 ] = val >> 8;
gid->raw[i * 2 + 1] = val & 0xff;
}
return 0;
}
default_symver(__ibv_query_gid, ibv_query_gid);
int __ibv_query_pkey(struct ibv_context *context, uint8_t port_num,
int index, uint16_t *pkey)
{
char name[24];
char attr[8];
uint16_t val;
snprintf(name, sizeof name, "ports/%d/pkeys/%d", port_num, index);
if (ibv_read_sysfs_file(context->device->ibdev_path, name,
attr, sizeof attr) < 0)
return -1;
if (sscanf(attr, "%hx", &val) != 1)
return -1;
*pkey = htons(val);
return 0;
}
default_symver(__ibv_query_pkey, ibv_query_pkey);
struct ibv_pd *__ibv_alloc_pd(struct ibv_context *context)
{
struct ibv_pd *pd;
pd = context->ops.alloc_pd(context);
if (pd)
pd->context = context;
return pd;
}
default_symver(__ibv_alloc_pd, ibv_alloc_pd);
int __ibv_dealloc_pd(struct ibv_pd *pd)
{
return pd->context->ops.dealloc_pd(pd);
}
default_symver(__ibv_dealloc_pd, ibv_dealloc_pd);
struct ibv_mr *__ibv_reg_mr(struct ibv_pd *pd, void *addr,
size_t length, int access)
{
struct ibv_mr *mr;
if (ibv_dontfork_range(addr, length))
return NULL;
mr = pd->context->ops.reg_mr(pd, addr, length, access);
if (mr) {
mr->context = pd->context;
mr->pd = pd;
mr->addr = addr;
mr->length = length;
} else
ibv_dofork_range(addr, length);
return mr;
}
default_symver(__ibv_reg_mr, ibv_reg_mr);
int __ibv_rereg_mr(struct ibv_mr *mr, int flags,
struct ibv_pd *pd, void *addr,
size_t length, int access)
{
int dofork_onfail = 0;
int err;
void *old_addr;
size_t old_len;
if (flags & ~IBV_REREG_MR_FLAGS_SUPPORTED) {
errno = EINVAL;
return IBV_REREG_MR_ERR_INPUT;
}
if ((flags & IBV_REREG_MR_CHANGE_TRANSLATION) &&
(!length || !addr)) {
errno = EINVAL;
return IBV_REREG_MR_ERR_INPUT;
}
if (access && !(flags & IBV_REREG_MR_CHANGE_ACCESS)) {
errno = EINVAL;
return IBV_REREG_MR_ERR_INPUT;
}
if (!mr->context->ops.rereg_mr) {
errno = ENOSYS;
return IBV_REREG_MR_ERR_INPUT;
}
if (flags & IBV_REREG_MR_CHANGE_TRANSLATION) {
err = ibv_dontfork_range(addr, length);
if (err)
return IBV_REREG_MR_ERR_DONT_FORK_NEW;
dofork_onfail = 1;
}
old_addr = mr->addr;
old_len = mr->length;
err = mr->context->ops.rereg_mr(mr, flags, pd, addr, length, access);
if (!err) {
if (flags & IBV_REREG_MR_CHANGE_PD)
mr->pd = pd;
if (flags & IBV_REREG_MR_CHANGE_TRANSLATION) {
mr->addr = addr;
mr->length = length;
err = ibv_dofork_range(old_addr, old_len);
if (err)
return IBV_REREG_MR_ERR_DO_FORK_OLD;
}
} else {
err = IBV_REREG_MR_ERR_CMD;
if (dofork_onfail) {
if (ibv_dofork_range(addr, length))
err = IBV_REREG_MR_ERR_CMD_AND_DO_FORK_NEW;
}
}
return err;
}
default_symver(__ibv_rereg_mr, ibv_rereg_mr);
int __ibv_dereg_mr(struct ibv_mr *mr)
{
int ret;
void *addr = mr->addr;
size_t length = mr->length;
ret = mr->context->ops.dereg_mr(mr);
if (!ret)
ibv_dofork_range(addr, length);
return ret;
}
default_symver(__ibv_dereg_mr, ibv_dereg_mr);
static struct ibv_comp_channel *ibv_create_comp_channel_v2(struct ibv_context *context)
{
struct ibv_abi_compat_v2 *t = context->abi_compat;
static int warned;
if (!pthread_mutex_trylock(&t->in_use))
return &t->channel;
if (!warned) {
fprintf(stderr, PFX "Warning: kernel's ABI version %d limits capacity.\n"
" Only one completion channel can be created per context.\n",
abi_ver);
++warned;
}
return NULL;
}
struct ibv_comp_channel *ibv_create_comp_channel(struct ibv_context *context)
{
struct ibv_comp_channel *channel;
struct ibv_create_comp_channel cmd;
struct ibv_create_comp_channel_resp resp;
if (abi_ver <= 2)
return ibv_create_comp_channel_v2(context);
channel = malloc(sizeof *channel);
if (!channel)
return NULL;
IBV_INIT_CMD_RESP(&cmd, sizeof cmd, CREATE_COMP_CHANNEL, &resp, sizeof resp);
if (write(context->cmd_fd, &cmd, sizeof cmd) != sizeof cmd) {
free(channel);
return NULL;
}
(void) VALGRIND_MAKE_MEM_DEFINED(&resp, sizeof resp);
channel->context = context;
channel->fd = resp.fd;
channel->refcnt = 0;
return channel;
}
static int ibv_destroy_comp_channel_v2(struct ibv_comp_channel *channel)
{
struct ibv_abi_compat_v2 *t = (struct ibv_abi_compat_v2 *) channel;
pthread_mutex_unlock(&t->in_use);
return 0;
}
int ibv_destroy_comp_channel(struct ibv_comp_channel *channel)
{
struct ibv_context *context;
int ret;
context = channel->context;
pthread_mutex_lock(&context->mutex);
if (channel->refcnt) {
ret = EBUSY;
goto out;
}
if (abi_ver <= 2) {
ret = ibv_destroy_comp_channel_v2(channel);
goto out;
}
close(channel->fd);
free(channel);
ret = 0;
out:
pthread_mutex_unlock(&context->mutex);
return ret;
}
struct ibv_cq *__ibv_create_cq(struct ibv_context *context, int cqe, void *cq_context,
struct ibv_comp_channel *channel, int comp_vector)
{
struct ibv_cq *cq;
pthread_mutex_lock(&context->mutex);
cq = context->ops.create_cq(context, cqe, channel, comp_vector);
if (cq) {
cq->context = context;
cq->channel = channel;
if (channel)
++channel->refcnt;
cq->cq_context = cq_context;
cq->comp_events_completed = 0;
cq->async_events_completed = 0;
pthread_mutex_init(&cq->mutex, NULL);
pthread_cond_init(&cq->cond, NULL);
}
pthread_mutex_unlock(&context->mutex);
return cq;
}
default_symver(__ibv_create_cq, ibv_create_cq);
int __ibv_resize_cq(struct ibv_cq *cq, int cqe)
{
if (!cq->context->ops.resize_cq)
return ENOSYS;
return cq->context->ops.resize_cq(cq, cqe);
}
default_symver(__ibv_resize_cq, ibv_resize_cq);
int __ibv_destroy_cq(struct ibv_cq *cq)
{
struct ibv_comp_channel *channel = cq->channel;
int ret;
if (channel)
pthread_mutex_lock(&channel->context->mutex);
ret = cq->context->ops.destroy_cq(cq);
if (channel) {
if (!ret)
--channel->refcnt;
pthread_mutex_unlock(&channel->context->mutex);
}
return ret;
}
default_symver(__ibv_destroy_cq, ibv_destroy_cq);
int __ibv_get_cq_event(struct ibv_comp_channel *channel,
struct ibv_cq **cq, void **cq_context)
{
struct ibv_comp_event ev;
if (read(channel->fd, &ev, sizeof ev) != sizeof ev)
return -1;
*cq = (struct ibv_cq *) (uintptr_t) ev.cq_handle;
*cq_context = (*cq)->cq_context;
if ((*cq)->context->ops.cq_event)
(*cq)->context->ops.cq_event(*cq);
return 0;
}
default_symver(__ibv_get_cq_event, ibv_get_cq_event);
void __ibv_ack_cq_events(struct ibv_cq *cq, unsigned int nevents)
{
pthread_mutex_lock(&cq->mutex);
cq->comp_events_completed += nevents;
pthread_cond_signal(&cq->cond);
pthread_mutex_unlock(&cq->mutex);
}
default_symver(__ibv_ack_cq_events, ibv_ack_cq_events);
struct ibv_srq *__ibv_create_srq(struct ibv_pd *pd,
struct ibv_srq_init_attr *srq_init_attr)
{
struct ibv_srq *srq;
if (!pd->context->ops.create_srq)
return NULL;
srq = pd->context->ops.create_srq(pd, srq_init_attr);
if (srq) {
srq->context = pd->context;
srq->srq_context = srq_init_attr->srq_context;
srq->pd = pd;
srq->events_completed = 0;
pthread_mutex_init(&srq->mutex, NULL);
pthread_cond_init(&srq->cond, NULL);
}
return srq;
}
default_symver(__ibv_create_srq, ibv_create_srq);
int __ibv_modify_srq(struct ibv_srq *srq,
struct ibv_srq_attr *srq_attr,
int srq_attr_mask)
{
return srq->context->ops.modify_srq(srq, srq_attr, srq_attr_mask);
}
default_symver(__ibv_modify_srq, ibv_modify_srq);
int __ibv_query_srq(struct ibv_srq *srq, struct ibv_srq_attr *srq_attr)
{
return srq->context->ops.query_srq(srq, srq_attr);
}
default_symver(__ibv_query_srq, ibv_query_srq);
int __ibv_destroy_srq(struct ibv_srq *srq)
{
return srq->context->ops.destroy_srq(srq);
}
default_symver(__ibv_destroy_srq, ibv_destroy_srq);
struct ibv_qp *__ibv_create_qp(struct ibv_pd *pd,
struct ibv_qp_init_attr *qp_init_attr)
{
struct ibv_qp *qp = pd->context->ops.create_qp(pd, qp_init_attr);
if (qp) {
qp->context = pd->context;
qp->qp_context = qp_init_attr->qp_context;
qp->pd = pd;
qp->send_cq = qp_init_attr->send_cq;
qp->recv_cq = qp_init_attr->recv_cq;
qp->srq = qp_init_attr->srq;
qp->qp_type = qp_init_attr->qp_type;
qp->state = IBV_QPS_RESET;
qp->events_completed = 0;
pthread_mutex_init(&qp->mutex, NULL);
pthread_cond_init(&qp->cond, NULL);
}
return qp;
}
default_symver(__ibv_create_qp, ibv_create_qp);
int __ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr,
int attr_mask,
struct ibv_qp_init_attr *init_attr)
{
int ret;
ret = qp->context->ops.query_qp(qp, attr, attr_mask, init_attr);
if (ret)
return ret;
if (attr_mask & IBV_QP_STATE)
qp->state = attr->qp_state;
return 0;
}
default_symver(__ibv_query_qp, ibv_query_qp);
int __ibv_modify_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr,
int attr_mask)
{
int ret;
ret = qp->context->ops.modify_qp(qp, attr, attr_mask);
if (ret)
return ret;
if (attr_mask & IBV_QP_STATE)
qp->state = attr->qp_state;
return 0;
}
default_symver(__ibv_modify_qp, ibv_modify_qp);
int __ibv_destroy_qp(struct ibv_qp *qp)
{
return qp->context->ops.destroy_qp(qp);
}
default_symver(__ibv_destroy_qp, ibv_destroy_qp);
struct ibv_ah *__ibv_create_ah(struct ibv_pd *pd, struct ibv_ah_attr *attr)
{
struct ibv_ah *ah = pd->context->ops.create_ah(pd, attr);
if (ah) {
ah->context = pd->context;
ah->pd = pd;
}
return ah;
}
default_symver(__ibv_create_ah, ibv_create_ah);
/* GID types as appear in sysfs, no change is expected as of ABI
* compatibility.
*/
#define V1_TYPE "IB/RoCE v1"
#define V2_TYPE "RoCE v2"
int ibv_query_gid_type(struct ibv_context *context, uint8_t port_num,
unsigned int index, enum ibv_gid_type *type)
{
char name[32];
char buff[11];
snprintf(name, sizeof(name), "ports/%d/gid_attrs/types/%d", port_num,
index);
/* Reset errno so that we can rely on its value upon any error flow in
* ibv_read_sysfs_file.
*/
errno = 0;
if (ibv_read_sysfs_file(context->device->ibdev_path, name, buff,
sizeof(buff)) <= 0) {
char *dir_path;
DIR *dir;
if (errno == EINVAL) {
/* In IB, this file doesn't exist and the kernel sets
* errno to -EINVAL.
*/
*type = IBV_GID_TYPE_IB_ROCE_V1;
return 0;
}
if (asprintf(&dir_path, "%s/%s/%d/%s/",
context->device->ibdev_path, "ports", port_num,
"gid_attrs") < 0)
return -1;
dir = opendir(dir_path);
free(dir_path);
if (!dir) {
if (errno == ENOENT)
/* Assuming that if gid_attrs doesn't exist,
* we have an old kernel and all GIDs are
* IB/RoCE v1
*/
*type = IBV_GID_TYPE_IB_ROCE_V1;
else
return -1;
} else {
closedir(dir);
errno = EFAULT;
return -1;
}
} else {
if (!strcmp(buff, V1_TYPE)) {
*type = IBV_GID_TYPE_IB_ROCE_V1;
} else if (!strcmp(buff, V2_TYPE)) {
*type = IBV_GID_TYPE_ROCE_V2;
} else {
errno = ENOTSUP;
return -1;
}
}
return 0;
}
static int ibv_find_gid_index(struct ibv_context *context, uint8_t port_num,
union ibv_gid *gid, enum ibv_gid_type gid_type)
{
enum ibv_gid_type sgid_type = 0;
union ibv_gid sgid;
int i = 0, ret;
do {
ret = ibv_query_gid(context, port_num, i, &sgid);
if (!ret) {
ret = ibv_query_gid_type(context, port_num, i,
&sgid_type);
}
i++;
} while (!ret && (memcmp(&sgid, gid, sizeof(*gid)) ||
(gid_type != sgid_type)));
return ret ? ret : i - 1;
}
static inline void map_ipv4_addr_to_ipv6(__be32 ipv4, struct in6_addr *ipv6)
{
ipv6->s6_addr32[0] = 0;
ipv6->s6_addr32[1] = 0;
ipv6->s6_addr32[2] = htonl(0x0000FFFF);
ipv6->s6_addr32[3] = ipv4;
}
static inline uint16_t ipv4_calc_hdr_csum(uint16_t *data, unsigned int num_hwords)
{
unsigned int i = 0;
uint32_t sum = 0;
for (i = 0; i < num_hwords; i++)
sum += *(data++);
sum = (sum & 0xffff) + (sum >> 16);
return ~sum;
}
static inline int get_grh_header_version(struct ibv_grh *grh)
{
int ip6h_version = (ntohl(grh->version_tclass_flow) >> 28) & 0xf;
struct iphdr *ip4h = (struct iphdr *)((void *)grh + 20);
struct iphdr ip4h_checked;
if (ip6h_version != 6) {
if (ip4h->version == 4)
return 4;
errno = EPROTONOSUPPORT;
return -1;
}
/* version may be 6 or 4 */
if (ip4h->ihl != 5) /* IPv4 header length must be 5 for RoCE v2. */
return 6;
/*
* Verify checksum.
* We can't write on scattered buffers so we have to copy to temp
* buffer.
*/
memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
/* Need to set the checksum field (check) to 0 before re-calculating
* the checksum.
*/
ip4h_checked.check = 0;
ip4h_checked.check = ipv4_calc_hdr_csum((uint16_t *)&ip4h_checked, 10);
/* if IPv4 header checksum is OK, believe it */
if (ip4h->check == ip4h_checked.check)
return 4;
return 6;
}
static inline void set_ah_attr_generic_fields(struct ibv_ah_attr *ah_attr,
struct ibv_wc *wc,
struct ibv_grh *grh,
uint8_t port_num)
{
uint32_t flow_class;
flow_class = ntohl(grh->version_tclass_flow);
ah_attr->grh.flow_label = flow_class & 0xFFFFF;
ah_attr->dlid = wc->slid;
ah_attr->sl = wc->sl;
ah_attr->src_path_bits = wc->dlid_path_bits;
ah_attr->port_num = port_num;
}
static inline int set_ah_attr_by_ipv4(struct ibv_context *context,
struct ibv_ah_attr *ah_attr,
struct iphdr *ip4h, uint8_t port_num)
{
union ibv_gid sgid;
int ret;
/* No point searching multicast GIDs in GID table */
if (IN_CLASSD(ntohl(ip4h->daddr))) {
errno = EINVAL;
return -1;
}
map_ipv4_addr_to_ipv6(ip4h->daddr, (struct in6_addr *)&sgid);
ret = ibv_find_gid_index(context, port_num, &sgid,
IBV_GID_TYPE_ROCE_V2);
if (ret < 0)
return ret;
map_ipv4_addr_to_ipv6(ip4h->saddr,
(struct in6_addr *)&ah_attr->grh.dgid);
ah_attr->grh.sgid_index = (uint8_t) ret;
ah_attr->grh.hop_limit = ip4h->ttl;
ah_attr->grh.traffic_class = ip4h->tos;
return 0;
}
#define IB_NEXT_HDR 0x1b
static inline int set_ah_attr_by_ipv6(struct ibv_context *context,
struct ibv_ah_attr *ah_attr,
struct ibv_grh *grh, uint8_t port_num)
{
uint32_t flow_class;
uint32_t sgid_type;
int ret;
/* No point searching multicast GIDs in GID table */
if (grh->dgid.raw[0] == 0xFF) {
errno = EINVAL;
return -1;
}
ah_attr->grh.dgid = grh->sgid;
if (grh->next_hdr == IPPROTO_UDP) {
sgid_type = IBV_GID_TYPE_ROCE_V2;
} else if (grh->next_hdr == IB_NEXT_HDR) {
sgid_type = IBV_GID_TYPE_IB_ROCE_V1;
} else {
errno = EPROTONOSUPPORT;
return -1;
}
ret = ibv_find_gid_index(context, port_num, &grh->dgid,
sgid_type);
if (ret < 0)
return ret;
ah_attr->grh.sgid_index = (uint8_t) ret;
flow_class = ntohl(grh->version_tclass_flow);
ah_attr->grh.hop_limit = grh->hop_limit;
ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
return 0;
}
int ibv_init_ah_from_wc(struct ibv_context *context, uint8_t port_num,
struct ibv_wc *wc, struct ibv_grh *grh,
struct ibv_ah_attr *ah_attr)
{
int version;
int ret = 0;
memset(ah_attr, 0, sizeof *ah_attr);
set_ah_attr_generic_fields(ah_attr, wc, grh, port_num);
if (wc->wc_flags & IBV_WC_GRH) {
ah_attr->is_global = 1;
version = get_grh_header_version(grh);
if (version == 4)
ret = set_ah_attr_by_ipv4(context, ah_attr,
(struct iphdr *)((void *)grh + 20),
port_num);
else if (version == 6)
ret = set_ah_attr_by_ipv6(context, ah_attr, grh,
port_num);
else
ret = -1;
}
return ret;
}
struct ibv_ah *ibv_create_ah_from_wc(struct ibv_pd *pd, struct ibv_wc *wc,
struct ibv_grh *grh, uint8_t port_num)
{
struct ibv_ah_attr ah_attr;
int ret;
ret = ibv_init_ah_from_wc(pd->context, port_num, wc, grh, &ah_attr);
if (ret)
return NULL;
return ibv_create_ah(pd, &ah_attr);
}
int __ibv_destroy_ah(struct ibv_ah *ah)
{
return ah->context->ops.destroy_ah(ah);
}
default_symver(__ibv_destroy_ah, ibv_destroy_ah);
int __ibv_attach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid)
{
return qp->context->ops.attach_mcast(qp, gid, lid);
}
default_symver(__ibv_attach_mcast, ibv_attach_mcast);
int __ibv_detach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid)
{
return qp->context->ops.detach_mcast(qp, gid, lid);
}
default_symver(__ibv_detach_mcast, ibv_detach_mcast);
static inline int ipv6_addr_v4mapped(const struct in6_addr *a)
{
return IN6_IS_ADDR_V4MAPPED(&a->s6_addr32) ||
/* IPv4 encoded multicast addresses */
(a->s6_addr32[0] == htonl(0xff0e0000) &&
((a->s6_addr32[1] |
(a->s6_addr32[2] ^ htonl(0x0000ffff))) == 0UL));
}
struct peer_address {
void *address;
uint32_t size;
};
static inline int create_peer_from_gid(int family, void *raw_gid,
struct peer_address *peer_address)
{
switch (family) {
case AF_INET:
peer_address->address = raw_gid + 12;
peer_address->size = 4;
break;
case AF_INET6:
peer_address->address = raw_gid;
peer_address->size = 16;
break;
default:
return -1;
}
return 0;
}
#define NEIGH_GET_DEFAULT_TIMEOUT_MS 3000
int ibv_resolve_eth_l2_from_gid(struct ibv_context *context,
struct ibv_ah_attr *attr,
uint8_t eth_mac[ETHERNET_LL_SIZE],
uint16_t *vid)
{
#ifndef NRESOLVE_NEIGH
int dst_family;
int src_family;
int oif;
struct get_neigh_handler neigh_handler;
union ibv_gid sgid;
int ether_len;
struct peer_address src;
struct peer_address dst;
uint16_t ret_vid;
int ret = -EINVAL;
int err;
err = ibv_query_gid(context, attr->port_num,
attr->grh.sgid_index, &sgid);
if (err)
return err;
err = neigh_init_resources(&neigh_handler,
NEIGH_GET_DEFAULT_TIMEOUT_MS);
if (err)
return err;
dst_family = ipv6_addr_v4mapped((struct in6_addr *)attr->grh.dgid.raw) ?
AF_INET : AF_INET6;
src_family = ipv6_addr_v4mapped((struct in6_addr *)sgid.raw) ?
AF_INET : AF_INET6;
if (create_peer_from_gid(dst_family, attr->grh.dgid.raw, &dst))
goto free_resources;
if (create_peer_from_gid(src_family, &sgid.raw, &src))
goto free_resources;
if (neigh_set_dst(&neigh_handler, dst_family, dst.address,
dst.size))
goto free_resources;
if (neigh_set_src(&neigh_handler, src_family, src.address,
src.size))
goto free_resources;
oif = neigh_get_oif_from_src(&neigh_handler);
if (oif > 0)
neigh_set_oif(&neigh_handler, oif);
else
goto free_resources;
ret = -EHOSTUNREACH;
/* blocking call */
if (process_get_neigh(&neigh_handler))
goto free_resources;
ret_vid = neigh_get_vlan_id_from_dev(&neigh_handler);
if (ret_vid <= 0xfff)
neigh_set_vlan_id(&neigh_handler, ret_vid);
/* We are using only Ethernet here */
ether_len = neigh_get_ll(&neigh_handler,
eth_mac,
sizeof(uint8_t) * ETHERNET_LL_SIZE);
if (ether_len <= 0)
goto free_resources;
*vid = ret_vid;
ret = 0;
free_resources:
neigh_free_resources(&neigh_handler);
return ret;
#else
return -ENOSYS;
#endif
}