blob: c4c2ed8d52319f4f1ded483a3cb5bf4d03965da7 [file] [log] [blame]
package cap
import "errors"
// GetFlag determines if the requested Value is enabled in the
// specified Flag of the capability Set.
func (c *Set) GetFlag(vec Flag, val Value) (bool, error) {
if err := c.good(); err != nil {
// Checked this first, because otherwise we are sure
// cInit has been called.
return false, err
}
offset, mask, err := bitOf(vec, val)
if err != nil {
return false, err
}
c.mu.RLock()
defer c.mu.RUnlock()
return c.flat[offset][vec]&mask != 0, nil
}
// SetFlag sets the requested bits to the indicated enable state. This
// function does not perform any security checks, so values can be set
// out-of-order. Only when the Set is used to SetProc() etc., will the
// bits be checked for validity and permission by the kernel. If the
// function returns an error, the Set will not be modified.
func (c *Set) SetFlag(vec Flag, enable bool, val ...Value) error {
if err := c.good(); err != nil {
// Checked this first, because otherwise we are sure
// cInit has been called.
return err
}
c.mu.Lock()
defer c.mu.Unlock()
// Make a backup.
replace := make([]uint32, words)
for i := range replace {
replace[i] = c.flat[i][vec]
}
var err error
for _, v := range val {
offset, mask, err2 := bitOf(vec, v)
if err2 != nil {
err = err2
break
}
if enable {
c.flat[offset][vec] |= mask
} else {
c.flat[offset][vec] &= ^mask
}
}
if err == nil {
return nil
}
// Clean up.
for i, bits := range replace {
c.flat[i][vec] = bits
}
return err
}
// Clear fully clears a capability set.
func (c *Set) Clear() error {
if err := c.good(); err != nil {
return err
}
// startUp.Do(cInit) is not called here because c cannot be
// initialized except via this package and doing that will
// perform that call at least once (sic).
c.mu.Lock()
defer c.mu.Unlock()
c.flat = make([]data, words)
c.nsRoot = 0
return nil
}
// FillFlag copies the from flag values of ref into the to flag of
// c. With this function, you can raise all of the permitted values in
// the c Set from those in ref with c.Fill(cap.Permitted, ref,
// cap.Permitted).
func (c *Set) FillFlag(to Flag, ref *Set, from Flag) error {
if err := c.good(); err != nil {
return err
}
if err := ref.good(); err != nil {
return err
}
if to > Inheritable || from > Inheritable {
return ErrBadValue
}
// Avoid deadlock by using a copy.
if c != ref {
var err error
ref, err = ref.Dup()
if err != nil {
return err
}
}
c.mu.Lock()
defer c.mu.Unlock()
for i := range c.flat {
c.flat[i][to] = ref.flat[i][from]
}
return nil
}
// Fill copies the from flag values into the to flag. With this
// function, you can raise all of the permitted values in the
// effective flag with c.Fill(cap.Effective, cap.Permitted).
func (c *Set) Fill(to, from Flag) error {
return c.FillFlag(to, c, from)
}
// ErrBadValue indicates a bad capability value was specified.
var ErrBadValue = errors.New("bad capability value")
// bitOf converts from a Value into the offset and mask for a specific
// Value bit in the compressed (kernel ABI) representation of a
// capabilities. If the requested bit is unsupported, an error is
// returned.
func bitOf(vec Flag, val Value) (uint, uint32, error) {
if vec > Inheritable || val > Value(words*32) {
return 0, 0, ErrBadValue
}
u := uint(val)
return u / 32, uint32(1) << (u % 32), nil
}
// allMask returns the mask of valid bits in the all mask for index.
func allMask(index uint) (mask uint32) {
if maxValues == 0 {
panic("uninitialized package")
}
base := 32 * uint(index)
if maxValues <= base {
return
}
if maxValues >= 32+base {
mask = ^mask
return
}
mask = uint32((uint64(1) << (maxValues % 32)) - 1)
return
}
// forceFlag sets 'all' capability values (supported by the kernel) of
// a specified Flag to enable.
func (c *Set) forceFlag(vec Flag, enable bool) error {
if err := c.good(); err != nil {
return err
}
if vec > Inheritable {
return ErrBadSet
}
m := uint32(0)
if enable {
m = ^m
}
c.mu.Lock()
defer c.mu.Unlock()
for i := range c.flat {
c.flat[i][vec] = m & allMask(uint(i))
}
return nil
}
// ClearFlag clears all the Values associated with the specified Flag.
func (c *Set) ClearFlag(vec Flag) error {
return c.forceFlag(vec, false)
}
// Cf returns 0 if c and d are identical. A non-zero Diff value
// captures a simple macroscopic summary of how they differ. The
// (Diff).Has() function can be used to determine how the two
// capability sets differ.
func (c *Set) Cf(d *Set) (Diff, error) {
if err := c.good(); err != nil {
return 0, err
}
if c == d {
return 0, nil
}
d, err := d.Dup()
if err != nil {
return 0, err
}
c.mu.RLock()
defer c.mu.RUnlock()
var cf Diff
for i := 0; i < words; i++ {
if c.flat[i][Effective]^d.flat[i][Effective] != 0 {
cf |= effectiveDiff
}
if c.flat[i][Permitted]^d.flat[i][Permitted] != 0 {
cf |= permittedDiff
}
if c.flat[i][Inheritable]^d.flat[i][Inheritable] != 0 {
cf |= inheritableDiff
}
}
return cf, nil
}
// Compare returns 0 if c and d are identical in content.
//
// Deprecated: Replace with (*Set).Cf().
//
// Example, replace this:
//
// diff, err := a.Compare(b)
// if err != nil {
// return err
// }
// if diff == 0 {
// return nil
// }
// if diff & (1 << Effective) {
// log.Print("a and b difference includes Effective values")
// }
//
// with this:
//
// diff, err := a.Cf(b)
// if err != nil {
// return err
// }
// if diff == 0 {
// return nil
// }
// if diff.Has(Effective) {
// log.Print("a and b difference includes Effective values")
// }
func (c *Set) Compare(d *Set) (uint, error) {
u, err := c.Cf(d)
return uint(u), err
}
// Differs processes the result of Compare and determines if the
// Flag's components were different.
//
// Deprecated: Replace with (Diff).Has().
//
// Example, replace this:
//
// diff, err := a.Compare(b)
// ...
// if diff & (1 << Effective) {
// ... different effective capabilities ...
// }
//
// with this:
//
// diff, err := a.Cf(b)
// ...
// if diff.Has(Effective) {
// ... different effective capabilities ...
// }
func Differs(cf uint, vec Flag) bool {
return cf&(1<<vec) != 0
}
// Has processes the Diff result of (*Set).Cf() and determines if the
// Flag's components were different in that result.
func (cf Diff) Has(vec Flag) bool {
return uint(cf)&(1<<vec) != 0
}