|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/uuid.h> | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "locking.h" | 
|  | #include "tree-log.h" | 
|  | #include "inode-map.h" | 
|  | #include "volumes.h" | 
|  | #include "dev-replace.h" | 
|  | #include "qgroup.h" | 
|  |  | 
|  | #define BTRFS_ROOT_TRANS_TAG 0 | 
|  |  | 
|  | static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { | 
|  | [TRANS_STATE_RUNNING]		= 0U, | 
|  | [TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE | | 
|  | __TRANS_START), | 
|  | [TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE | | 
|  | __TRANS_START | | 
|  | __TRANS_ATTACH), | 
|  | [TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE | | 
|  | __TRANS_START | | 
|  | __TRANS_ATTACH | | 
|  | __TRANS_JOIN), | 
|  | [TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE | | 
|  | __TRANS_START | | 
|  | __TRANS_ATTACH | | 
|  | __TRANS_JOIN | | 
|  | __TRANS_JOIN_NOLOCK), | 
|  | [TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE | | 
|  | __TRANS_START | | 
|  | __TRANS_ATTACH | | 
|  | __TRANS_JOIN | | 
|  | __TRANS_JOIN_NOLOCK), | 
|  | }; | 
|  |  | 
|  | void btrfs_put_transaction(struct btrfs_transaction *transaction) | 
|  | { | 
|  | WARN_ON(refcount_read(&transaction->use_count) == 0); | 
|  | if (refcount_dec_and_test(&transaction->use_count)) { | 
|  | BUG_ON(!list_empty(&transaction->list)); | 
|  | WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); | 
|  | if (transaction->delayed_refs.pending_csums) | 
|  | btrfs_err(transaction->fs_info, | 
|  | "pending csums is %llu", | 
|  | transaction->delayed_refs.pending_csums); | 
|  | while (!list_empty(&transaction->pending_chunks)) { | 
|  | struct extent_map *em; | 
|  |  | 
|  | em = list_first_entry(&transaction->pending_chunks, | 
|  | struct extent_map, list); | 
|  | list_del_init(&em->list); | 
|  | free_extent_map(em); | 
|  | } | 
|  | /* | 
|  | * If any block groups are found in ->deleted_bgs then it's | 
|  | * because the transaction was aborted and a commit did not | 
|  | * happen (things failed before writing the new superblock | 
|  | * and calling btrfs_finish_extent_commit()), so we can not | 
|  | * discard the physical locations of the block groups. | 
|  | */ | 
|  | while (!list_empty(&transaction->deleted_bgs)) { | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | cache = list_first_entry(&transaction->deleted_bgs, | 
|  | struct btrfs_block_group_cache, | 
|  | bg_list); | 
|  | list_del_init(&cache->bg_list); | 
|  | btrfs_put_block_group_trimming(cache); | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  | kmem_cache_free(btrfs_transaction_cachep, transaction); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void clear_btree_io_tree(struct extent_io_tree *tree) | 
|  | { | 
|  | spin_lock(&tree->lock); | 
|  | /* | 
|  | * Do a single barrier for the waitqueue_active check here, the state | 
|  | * of the waitqueue should not change once clear_btree_io_tree is | 
|  | * called. | 
|  | */ | 
|  | smp_mb(); | 
|  | while (!RB_EMPTY_ROOT(&tree->state)) { | 
|  | struct rb_node *node; | 
|  | struct extent_state *state; | 
|  |  | 
|  | node = rb_first(&tree->state); | 
|  | state = rb_entry(node, struct extent_state, rb_node); | 
|  | rb_erase(&state->rb_node, &tree->state); | 
|  | RB_CLEAR_NODE(&state->rb_node); | 
|  | /* | 
|  | * btree io trees aren't supposed to have tasks waiting for | 
|  | * changes in the flags of extent states ever. | 
|  | */ | 
|  | ASSERT(!waitqueue_active(&state->wq)); | 
|  | free_extent_state(state); | 
|  |  | 
|  | cond_resched_lock(&tree->lock); | 
|  | } | 
|  | spin_unlock(&tree->lock); | 
|  | } | 
|  |  | 
|  | static noinline void switch_commit_roots(struct btrfs_transaction *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root, *tmp; | 
|  |  | 
|  | down_write(&fs_info->commit_root_sem); | 
|  | list_for_each_entry_safe(root, tmp, &trans->switch_commits, | 
|  | dirty_list) { | 
|  | list_del_init(&root->dirty_list); | 
|  | free_extent_buffer(root->commit_root); | 
|  | root->commit_root = btrfs_root_node(root); | 
|  | if (is_fstree(root->objectid)) | 
|  | btrfs_unpin_free_ino(root); | 
|  | clear_btree_io_tree(&root->dirty_log_pages); | 
|  | } | 
|  |  | 
|  | /* We can free old roots now. */ | 
|  | spin_lock(&trans->dropped_roots_lock); | 
|  | while (!list_empty(&trans->dropped_roots)) { | 
|  | root = list_first_entry(&trans->dropped_roots, | 
|  | struct btrfs_root, root_list); | 
|  | list_del_init(&root->root_list); | 
|  | spin_unlock(&trans->dropped_roots_lock); | 
|  | btrfs_drop_and_free_fs_root(fs_info, root); | 
|  | spin_lock(&trans->dropped_roots_lock); | 
|  | } | 
|  | spin_unlock(&trans->dropped_roots_lock); | 
|  | up_write(&fs_info->commit_root_sem); | 
|  | } | 
|  |  | 
|  | static inline void extwriter_counter_inc(struct btrfs_transaction *trans, | 
|  | unsigned int type) | 
|  | { | 
|  | if (type & TRANS_EXTWRITERS) | 
|  | atomic_inc(&trans->num_extwriters); | 
|  | } | 
|  |  | 
|  | static inline void extwriter_counter_dec(struct btrfs_transaction *trans, | 
|  | unsigned int type) | 
|  | { | 
|  | if (type & TRANS_EXTWRITERS) | 
|  | atomic_dec(&trans->num_extwriters); | 
|  | } | 
|  |  | 
|  | static inline void extwriter_counter_init(struct btrfs_transaction *trans, | 
|  | unsigned int type) | 
|  | { | 
|  | atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); | 
|  | } | 
|  |  | 
|  | static inline int extwriter_counter_read(struct btrfs_transaction *trans) | 
|  | { | 
|  | return atomic_read(&trans->num_extwriters); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * either allocate a new transaction or hop into the existing one | 
|  | */ | 
|  | static noinline int join_transaction(struct btrfs_fs_info *fs_info, | 
|  | unsigned int type) | 
|  | { | 
|  | struct btrfs_transaction *cur_trans; | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | loop: | 
|  | /* The file system has been taken offline. No new transactions. */ | 
|  | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | return -EROFS; | 
|  | } | 
|  |  | 
|  | cur_trans = fs_info->running_transaction; | 
|  | if (cur_trans) { | 
|  | if (cur_trans->aborted) { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | return cur_trans->aborted; | 
|  | } | 
|  | if (btrfs_blocked_trans_types[cur_trans->state] & type) { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | return -EBUSY; | 
|  | } | 
|  | refcount_inc(&cur_trans->use_count); | 
|  | atomic_inc(&cur_trans->num_writers); | 
|  | extwriter_counter_inc(cur_trans, type); | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | return 0; | 
|  | } | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | /* | 
|  | * If we are ATTACH, we just want to catch the current transaction, | 
|  | * and commit it. If there is no transaction, just return ENOENT. | 
|  | */ | 
|  | if (type == TRANS_ATTACH) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* | 
|  | * JOIN_NOLOCK only happens during the transaction commit, so | 
|  | * it is impossible that ->running_transaction is NULL | 
|  | */ | 
|  | BUG_ON(type == TRANS_JOIN_NOLOCK); | 
|  |  | 
|  | cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); | 
|  | if (!cur_trans) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | if (fs_info->running_transaction) { | 
|  | /* | 
|  | * someone started a transaction after we unlocked.  Make sure | 
|  | * to redo the checks above | 
|  | */ | 
|  | kmem_cache_free(btrfs_transaction_cachep, cur_trans); | 
|  | goto loop; | 
|  | } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | kmem_cache_free(btrfs_transaction_cachep, cur_trans); | 
|  | return -EROFS; | 
|  | } | 
|  |  | 
|  | cur_trans->fs_info = fs_info; | 
|  | atomic_set(&cur_trans->num_writers, 1); | 
|  | extwriter_counter_init(cur_trans, type); | 
|  | init_waitqueue_head(&cur_trans->writer_wait); | 
|  | init_waitqueue_head(&cur_trans->commit_wait); | 
|  | init_waitqueue_head(&cur_trans->pending_wait); | 
|  | cur_trans->state = TRANS_STATE_RUNNING; | 
|  | /* | 
|  | * One for this trans handle, one so it will live on until we | 
|  | * commit the transaction. | 
|  | */ | 
|  | refcount_set(&cur_trans->use_count, 2); | 
|  | atomic_set(&cur_trans->pending_ordered, 0); | 
|  | cur_trans->flags = 0; | 
|  | cur_trans->start_time = get_seconds(); | 
|  |  | 
|  | memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); | 
|  |  | 
|  | cur_trans->delayed_refs.href_root = RB_ROOT; | 
|  | cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; | 
|  | atomic_set(&cur_trans->delayed_refs.num_entries, 0); | 
|  |  | 
|  | /* | 
|  | * although the tree mod log is per file system and not per transaction, | 
|  | * the log must never go across transaction boundaries. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (!list_empty(&fs_info->tree_mod_seq_list)) | 
|  | WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); | 
|  | if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) | 
|  | WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); | 
|  | atomic64_set(&fs_info->tree_mod_seq, 0); | 
|  |  | 
|  | spin_lock_init(&cur_trans->delayed_refs.lock); | 
|  |  | 
|  | INIT_LIST_HEAD(&cur_trans->pending_snapshots); | 
|  | INIT_LIST_HEAD(&cur_trans->pending_chunks); | 
|  | INIT_LIST_HEAD(&cur_trans->switch_commits); | 
|  | INIT_LIST_HEAD(&cur_trans->dirty_bgs); | 
|  | INIT_LIST_HEAD(&cur_trans->io_bgs); | 
|  | INIT_LIST_HEAD(&cur_trans->dropped_roots); | 
|  | mutex_init(&cur_trans->cache_write_mutex); | 
|  | cur_trans->num_dirty_bgs = 0; | 
|  | spin_lock_init(&cur_trans->dirty_bgs_lock); | 
|  | INIT_LIST_HEAD(&cur_trans->deleted_bgs); | 
|  | spin_lock_init(&cur_trans->dropped_roots_lock); | 
|  | list_add_tail(&cur_trans->list, &fs_info->trans_list); | 
|  | extent_io_tree_init(&cur_trans->dirty_pages, | 
|  | fs_info->btree_inode->i_mapping); | 
|  | fs_info->generation++; | 
|  | cur_trans->transid = fs_info->generation; | 
|  | fs_info->running_transaction = cur_trans; | 
|  | cur_trans->aborted = 0; | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this does all the record keeping required to make sure that a reference | 
|  | * counted root is properly recorded in a given transaction.  This is required | 
|  | * to make sure the old root from before we joined the transaction is deleted | 
|  | * when the transaction commits | 
|  | */ | 
|  | static int record_root_in_trans(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | int force) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && | 
|  | root->last_trans < trans->transid) || force) { | 
|  | WARN_ON(root == fs_info->extent_root); | 
|  | WARN_ON(root->commit_root != root->node); | 
|  |  | 
|  | /* | 
|  | * see below for IN_TRANS_SETUP usage rules | 
|  | * we have the reloc mutex held now, so there | 
|  | * is only one writer in this function | 
|  | */ | 
|  | set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); | 
|  |  | 
|  | /* make sure readers find IN_TRANS_SETUP before | 
|  | * they find our root->last_trans update | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | if (root->last_trans == trans->transid && !force) { | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | return 0; | 
|  | } | 
|  | radix_tree_tag_set(&fs_info->fs_roots_radix, | 
|  | (unsigned long)root->root_key.objectid, | 
|  | BTRFS_ROOT_TRANS_TAG); | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | root->last_trans = trans->transid; | 
|  |  | 
|  | /* this is pretty tricky.  We don't want to | 
|  | * take the relocation lock in btrfs_record_root_in_trans | 
|  | * unless we're really doing the first setup for this root in | 
|  | * this transaction. | 
|  | * | 
|  | * Normally we'd use root->last_trans as a flag to decide | 
|  | * if we want to take the expensive mutex. | 
|  | * | 
|  | * But, we have to set root->last_trans before we | 
|  | * init the relocation root, otherwise, we trip over warnings | 
|  | * in ctree.c.  The solution used here is to flag ourselves | 
|  | * with root IN_TRANS_SETUP.  When this is 1, we're still | 
|  | * fixing up the reloc trees and everyone must wait. | 
|  | * | 
|  | * When this is zero, they can trust root->last_trans and fly | 
|  | * through btrfs_record_root_in_trans without having to take the | 
|  | * lock.  smp_wmb() makes sure that all the writes above are | 
|  | * done before we pop in the zero below | 
|  | */ | 
|  | btrfs_init_reloc_root(trans, root); | 
|  | smp_mb__before_atomic(); | 
|  | clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_transaction *cur_trans = trans->transaction; | 
|  |  | 
|  | /* Add ourselves to the transaction dropped list */ | 
|  | spin_lock(&cur_trans->dropped_roots_lock); | 
|  | list_add_tail(&root->root_list, &cur_trans->dropped_roots); | 
|  | spin_unlock(&cur_trans->dropped_roots_lock); | 
|  |  | 
|  | /* Make sure we don't try to update the root at commit time */ | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | radix_tree_tag_clear(&fs_info->fs_roots_radix, | 
|  | (unsigned long)root->root_key.objectid, | 
|  | BTRFS_ROOT_TRANS_TAG); | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | } | 
|  |  | 
|  | int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * see record_root_in_trans for comments about IN_TRANS_SETUP usage | 
|  | * and barriers | 
|  | */ | 
|  | smp_rmb(); | 
|  | if (root->last_trans == trans->transid && | 
|  | !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&fs_info->reloc_mutex); | 
|  | record_root_in_trans(trans, root, 0); | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int is_transaction_blocked(struct btrfs_transaction *trans) | 
|  | { | 
|  | return (trans->state >= TRANS_STATE_BLOCKED && | 
|  | trans->state < TRANS_STATE_UNBLOCKED && | 
|  | !trans->aborted); | 
|  | } | 
|  |  | 
|  | /* wait for commit against the current transaction to become unblocked | 
|  | * when this is done, it is safe to start a new transaction, but the current | 
|  | * transaction might not be fully on disk. | 
|  | */ | 
|  | static void wait_current_trans(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_transaction *cur_trans; | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | cur_trans = fs_info->running_transaction; | 
|  | if (cur_trans && is_transaction_blocked(cur_trans)) { | 
|  | refcount_inc(&cur_trans->use_count); | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | wait_event(fs_info->transaction_wait, | 
|  | cur_trans->state >= TRANS_STATE_UNBLOCKED || | 
|  | cur_trans->aborted); | 
|  | btrfs_put_transaction(cur_trans); | 
|  | } else { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) | 
|  | { | 
|  | if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) | 
|  | return 0; | 
|  |  | 
|  | if (type == TRANS_USERSPACE) | 
|  | return 1; | 
|  |  | 
|  | if (type == TRANS_START && | 
|  | !atomic_read(&fs_info->open_ioctl_trans)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool need_reserve_reloc_root(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | if (!fs_info->reloc_ctl || | 
|  | !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || | 
|  | root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || | 
|  | root->reloc_root) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct btrfs_trans_handle * | 
|  | start_transaction(struct btrfs_root *root, unsigned int num_items, | 
|  | unsigned int type, enum btrfs_reserve_flush_enum flush, | 
|  | bool enforce_qgroups) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | struct btrfs_trans_handle *h; | 
|  | struct btrfs_transaction *cur_trans; | 
|  | u64 num_bytes = 0; | 
|  | u64 qgroup_reserved = 0; | 
|  | bool reloc_reserved = false; | 
|  | int ret; | 
|  |  | 
|  | /* Send isn't supposed to start transactions. */ | 
|  | ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); | 
|  |  | 
|  | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) | 
|  | return ERR_PTR(-EROFS); | 
|  |  | 
|  | if (current->journal_info) { | 
|  | WARN_ON(type & TRANS_EXTWRITERS); | 
|  | h = current->journal_info; | 
|  | h->use_count++; | 
|  | WARN_ON(h->use_count > 2); | 
|  | h->orig_rsv = h->block_rsv; | 
|  | h->block_rsv = NULL; | 
|  | goto got_it; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the reservation before we join the transaction so we can do all | 
|  | * the appropriate flushing if need be. | 
|  | */ | 
|  | if (num_items && root != fs_info->chunk_root) { | 
|  | qgroup_reserved = num_items * fs_info->nodesize; | 
|  | ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved, | 
|  | enforce_qgroups); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); | 
|  | /* | 
|  | * Do the reservation for the relocation root creation | 
|  | */ | 
|  | if (need_reserve_reloc_root(root)) { | 
|  | num_bytes += fs_info->nodesize; | 
|  | reloc_reserved = true; | 
|  | } | 
|  |  | 
|  | ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, | 
|  | num_bytes, flush); | 
|  | if (ret) | 
|  | goto reserve_fail; | 
|  | } | 
|  | again: | 
|  | h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); | 
|  | if (!h) { | 
|  | ret = -ENOMEM; | 
|  | goto alloc_fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are JOIN_NOLOCK we're already committing a transaction and | 
|  | * waiting on this guy, so we don't need to do the sb_start_intwrite | 
|  | * because we're already holding a ref.  We need this because we could | 
|  | * have raced in and did an fsync() on a file which can kick a commit | 
|  | * and then we deadlock with somebody doing a freeze. | 
|  | * | 
|  | * If we are ATTACH, it means we just want to catch the current | 
|  | * transaction and commit it, so we needn't do sb_start_intwrite(). | 
|  | */ | 
|  | if (type & __TRANS_FREEZABLE) | 
|  | sb_start_intwrite(fs_info->sb); | 
|  |  | 
|  | if (may_wait_transaction(fs_info, type)) | 
|  | wait_current_trans(fs_info); | 
|  |  | 
|  | do { | 
|  | ret = join_transaction(fs_info, type); | 
|  | if (ret == -EBUSY) { | 
|  | wait_current_trans(fs_info); | 
|  | if (unlikely(type == TRANS_ATTACH)) | 
|  | ret = -ENOENT; | 
|  | } | 
|  | } while (ret == -EBUSY); | 
|  |  | 
|  | if (ret < 0) | 
|  | goto join_fail; | 
|  |  | 
|  | cur_trans = fs_info->running_transaction; | 
|  |  | 
|  | h->transid = cur_trans->transid; | 
|  | h->transaction = cur_trans; | 
|  | h->root = root; | 
|  | h->use_count = 1; | 
|  | h->fs_info = root->fs_info; | 
|  |  | 
|  | h->type = type; | 
|  | h->can_flush_pending_bgs = true; | 
|  | INIT_LIST_HEAD(&h->new_bgs); | 
|  |  | 
|  | smp_mb(); | 
|  | if (cur_trans->state >= TRANS_STATE_BLOCKED && | 
|  | may_wait_transaction(fs_info, type)) { | 
|  | current->journal_info = h; | 
|  | btrfs_commit_transaction(h); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (num_bytes) { | 
|  | trace_btrfs_space_reservation(fs_info, "transaction", | 
|  | h->transid, num_bytes, 1); | 
|  | h->block_rsv = &fs_info->trans_block_rsv; | 
|  | h->bytes_reserved = num_bytes; | 
|  | h->reloc_reserved = reloc_reserved; | 
|  | } | 
|  |  | 
|  | got_it: | 
|  | btrfs_record_root_in_trans(h, root); | 
|  |  | 
|  | if (!current->journal_info && type != TRANS_USERSPACE) | 
|  | current->journal_info = h; | 
|  | return h; | 
|  |  | 
|  | join_fail: | 
|  | if (type & __TRANS_FREEZABLE) | 
|  | sb_end_intwrite(fs_info->sb); | 
|  | kmem_cache_free(btrfs_trans_handle_cachep, h); | 
|  | alloc_fail: | 
|  | if (num_bytes) | 
|  | btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, | 
|  | num_bytes); | 
|  | reserve_fail: | 
|  | btrfs_qgroup_free_meta(root, qgroup_reserved); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, | 
|  | unsigned int num_items) | 
|  | { | 
|  | return start_transaction(root, num_items, TRANS_START, | 
|  | BTRFS_RESERVE_FLUSH_ALL, true); | 
|  | } | 
|  |  | 
|  | struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( | 
|  | struct btrfs_root *root, | 
|  | unsigned int num_items, | 
|  | int min_factor) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 num_bytes; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * We have two callers: unlink and block group removal.  The | 
|  | * former should succeed even if we will temporarily exceed | 
|  | * quota and the latter operates on the extent root so | 
|  | * qgroup enforcement is ignored anyway. | 
|  | */ | 
|  | trans = start_transaction(root, num_items, TRANS_START, | 
|  | BTRFS_RESERVE_FLUSH_ALL, false); | 
|  | if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) | 
|  | return trans; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) | 
|  | return trans; | 
|  |  | 
|  | num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); | 
|  | ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, | 
|  | num_bytes, min_factor); | 
|  | if (ret) { | 
|  | btrfs_end_transaction(trans); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | trans->block_rsv = &fs_info->trans_block_rsv; | 
|  | trans->bytes_reserved = num_bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "transaction", | 
|  | trans->transid, num_bytes, 1); | 
|  |  | 
|  | return trans; | 
|  | } | 
|  |  | 
|  | struct btrfs_trans_handle *btrfs_start_transaction_lflush( | 
|  | struct btrfs_root *root, | 
|  | unsigned int num_items) | 
|  | { | 
|  | return start_transaction(root, num_items, TRANS_START, | 
|  | BTRFS_RESERVE_FLUSH_LIMIT, true); | 
|  | } | 
|  |  | 
|  | struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) | 
|  | { | 
|  | return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, | 
|  | true); | 
|  | } | 
|  |  | 
|  | struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) | 
|  | { | 
|  | return start_transaction(root, 0, TRANS_JOIN_NOLOCK, | 
|  | BTRFS_RESERVE_NO_FLUSH, true); | 
|  | } | 
|  |  | 
|  | struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) | 
|  | { | 
|  | return start_transaction(root, 0, TRANS_USERSPACE, | 
|  | BTRFS_RESERVE_NO_FLUSH, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_attach_transaction() - catch the running transaction | 
|  | * | 
|  | * It is used when we want to commit the current the transaction, but | 
|  | * don't want to start a new one. | 
|  | * | 
|  | * Note: If this function return -ENOENT, it just means there is no | 
|  | * running transaction. But it is possible that the inactive transaction | 
|  | * is still in the memory, not fully on disk. If you hope there is no | 
|  | * inactive transaction in the fs when -ENOENT is returned, you should | 
|  | * invoke | 
|  | *     btrfs_attach_transaction_barrier() | 
|  | */ | 
|  | struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) | 
|  | { | 
|  | return start_transaction(root, 0, TRANS_ATTACH, | 
|  | BTRFS_RESERVE_NO_FLUSH, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_attach_transaction_barrier() - catch the running transaction | 
|  | * | 
|  | * It is similar to the above function, the differentia is this one | 
|  | * will wait for all the inactive transactions until they fully | 
|  | * complete. | 
|  | */ | 
|  | struct btrfs_trans_handle * | 
|  | btrfs_attach_transaction_barrier(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | trans = start_transaction(root, 0, TRANS_ATTACH, | 
|  | BTRFS_RESERVE_NO_FLUSH, true); | 
|  | if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) | 
|  | btrfs_wait_for_commit(root->fs_info, 0); | 
|  |  | 
|  | return trans; | 
|  | } | 
|  |  | 
|  | /* wait for a transaction commit to be fully complete */ | 
|  | static noinline void wait_for_commit(struct btrfs_transaction *commit) | 
|  | { | 
|  | wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); | 
|  | } | 
|  |  | 
|  | int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) | 
|  | { | 
|  | struct btrfs_transaction *cur_trans = NULL, *t; | 
|  | int ret = 0; | 
|  |  | 
|  | if (transid) { | 
|  | if (transid <= fs_info->last_trans_committed) | 
|  | goto out; | 
|  |  | 
|  | /* find specified transaction */ | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | list_for_each_entry(t, &fs_info->trans_list, list) { | 
|  | if (t->transid == transid) { | 
|  | cur_trans = t; | 
|  | refcount_inc(&cur_trans->use_count); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | if (t->transid > transid) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | /* | 
|  | * The specified transaction doesn't exist, or we | 
|  | * raced with btrfs_commit_transaction | 
|  | */ | 
|  | if (!cur_trans) { | 
|  | if (transid > fs_info->last_trans_committed) | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | /* find newest transaction that is committing | committed */ | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | list_for_each_entry_reverse(t, &fs_info->trans_list, | 
|  | list) { | 
|  | if (t->state >= TRANS_STATE_COMMIT_START) { | 
|  | if (t->state == TRANS_STATE_COMPLETED) | 
|  | break; | 
|  | cur_trans = t; | 
|  | refcount_inc(&cur_trans->use_count); | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | if (!cur_trans) | 
|  | goto out;  /* nothing committing|committed */ | 
|  | } | 
|  |  | 
|  | wait_for_commit(cur_trans); | 
|  | btrfs_put_transaction(cur_trans); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_throttle(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | if (!atomic_read(&fs_info->open_ioctl_trans)) | 
|  | wait_current_trans(fs_info); | 
|  | } | 
|  |  | 
|  | static int should_end_transaction(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  |  | 
|  | if (fs_info->global_block_rsv.space_info->full && | 
|  | btrfs_check_space_for_delayed_refs(trans, fs_info)) | 
|  | return 1; | 
|  |  | 
|  | return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); | 
|  | } | 
|  |  | 
|  | int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_transaction *cur_trans = trans->transaction; | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | int updates; | 
|  | int err; | 
|  |  | 
|  | smp_mb(); | 
|  | if (cur_trans->state >= TRANS_STATE_BLOCKED || | 
|  | cur_trans->delayed_refs.flushing) | 
|  | return 1; | 
|  |  | 
|  | updates = trans->delayed_ref_updates; | 
|  | trans->delayed_ref_updates = 0; | 
|  | if (updates) { | 
|  | err = btrfs_run_delayed_refs(trans, fs_info, updates * 2); | 
|  | if (err) /* Error code will also eval true */ | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return should_end_transaction(trans); | 
|  | } | 
|  |  | 
|  | static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, | 
|  | int throttle) | 
|  | { | 
|  | struct btrfs_fs_info *info = trans->fs_info; | 
|  | struct btrfs_transaction *cur_trans = trans->transaction; | 
|  | u64 transid = trans->transid; | 
|  | unsigned long cur = trans->delayed_ref_updates; | 
|  | int lock = (trans->type != TRANS_JOIN_NOLOCK); | 
|  | int err = 0; | 
|  | int must_run_delayed_refs = 0; | 
|  |  | 
|  | if (trans->use_count > 1) { | 
|  | trans->use_count--; | 
|  | trans->block_rsv = trans->orig_rsv; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | btrfs_trans_release_metadata(trans, info); | 
|  | trans->block_rsv = NULL; | 
|  |  | 
|  | if (!list_empty(&trans->new_bgs)) | 
|  | btrfs_create_pending_block_groups(trans, info); | 
|  |  | 
|  | trans->delayed_ref_updates = 0; | 
|  | if (!trans->sync) { | 
|  | must_run_delayed_refs = | 
|  | btrfs_should_throttle_delayed_refs(trans, info); | 
|  | cur = max_t(unsigned long, cur, 32); | 
|  |  | 
|  | /* | 
|  | * don't make the caller wait if they are from a NOLOCK | 
|  | * or ATTACH transaction, it will deadlock with commit | 
|  | */ | 
|  | if (must_run_delayed_refs == 1 && | 
|  | (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) | 
|  | must_run_delayed_refs = 2; | 
|  | } | 
|  |  | 
|  | btrfs_trans_release_metadata(trans, info); | 
|  | trans->block_rsv = NULL; | 
|  |  | 
|  | if (!list_empty(&trans->new_bgs)) | 
|  | btrfs_create_pending_block_groups(trans, info); | 
|  |  | 
|  | btrfs_trans_release_chunk_metadata(trans); | 
|  |  | 
|  | if (lock && !atomic_read(&info->open_ioctl_trans) && | 
|  | should_end_transaction(trans) && | 
|  | READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { | 
|  | spin_lock(&info->trans_lock); | 
|  | if (cur_trans->state == TRANS_STATE_RUNNING) | 
|  | cur_trans->state = TRANS_STATE_BLOCKED; | 
|  | spin_unlock(&info->trans_lock); | 
|  | } | 
|  |  | 
|  | if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { | 
|  | if (throttle) | 
|  | return btrfs_commit_transaction(trans); | 
|  | else | 
|  | wake_up_process(info->transaction_kthread); | 
|  | } | 
|  |  | 
|  | if (trans->type & __TRANS_FREEZABLE) | 
|  | sb_end_intwrite(info->sb); | 
|  |  | 
|  | WARN_ON(cur_trans != info->running_transaction); | 
|  | WARN_ON(atomic_read(&cur_trans->num_writers) < 1); | 
|  | atomic_dec(&cur_trans->num_writers); | 
|  | extwriter_counter_dec(cur_trans, trans->type); | 
|  |  | 
|  | /* | 
|  | * Make sure counter is updated before we wake up waiters. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (waitqueue_active(&cur_trans->writer_wait)) | 
|  | wake_up(&cur_trans->writer_wait); | 
|  | btrfs_put_transaction(cur_trans); | 
|  |  | 
|  | if (current->journal_info == trans) | 
|  | current->journal_info = NULL; | 
|  |  | 
|  | if (throttle) | 
|  | btrfs_run_delayed_iputs(info); | 
|  |  | 
|  | if (trans->aborted || | 
|  | test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { | 
|  | wake_up_process(info->transaction_kthread); | 
|  | err = -EIO; | 
|  | } | 
|  |  | 
|  | kmem_cache_free(btrfs_trans_handle_cachep, trans); | 
|  | if (must_run_delayed_refs) { | 
|  | btrfs_async_run_delayed_refs(info, cur, transid, | 
|  | must_run_delayed_refs == 1); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int btrfs_end_transaction(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | return __btrfs_end_transaction(trans, 0); | 
|  | } | 
|  |  | 
|  | int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | return __btrfs_end_transaction(trans, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when btree blocks are allocated, they have some corresponding bits set for | 
|  | * them in one of two extent_io trees.  This is used to make sure all of | 
|  | * those extents are sent to disk but does not wait on them | 
|  | */ | 
|  | int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, | 
|  | struct extent_io_tree *dirty_pages, int mark) | 
|  | { | 
|  | int err = 0; | 
|  | int werr = 0; | 
|  | struct address_space *mapping = fs_info->btree_inode->i_mapping; | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 start = 0; | 
|  | u64 end; | 
|  |  | 
|  | while (!find_first_extent_bit(dirty_pages, start, &start, &end, | 
|  | mark, &cached_state)) { | 
|  | bool wait_writeback = false; | 
|  |  | 
|  | err = convert_extent_bit(dirty_pages, start, end, | 
|  | EXTENT_NEED_WAIT, | 
|  | mark, &cached_state); | 
|  | /* | 
|  | * convert_extent_bit can return -ENOMEM, which is most of the | 
|  | * time a temporary error. So when it happens, ignore the error | 
|  | * and wait for writeback of this range to finish - because we | 
|  | * failed to set the bit EXTENT_NEED_WAIT for the range, a call | 
|  | * to __btrfs_wait_marked_extents() would not know that | 
|  | * writeback for this range started and therefore wouldn't | 
|  | * wait for it to finish - we don't want to commit a | 
|  | * superblock that points to btree nodes/leafs for which | 
|  | * writeback hasn't finished yet (and without errors). | 
|  | * We cleanup any entries left in the io tree when committing | 
|  | * the transaction (through clear_btree_io_tree()). | 
|  | */ | 
|  | if (err == -ENOMEM) { | 
|  | err = 0; | 
|  | wait_writeback = true; | 
|  | } | 
|  | if (!err) | 
|  | err = filemap_fdatawrite_range(mapping, start, end); | 
|  | if (err) | 
|  | werr = err; | 
|  | else if (wait_writeback) | 
|  | werr = filemap_fdatawait_range(mapping, start, end); | 
|  | free_extent_state(cached_state); | 
|  | cached_state = NULL; | 
|  | cond_resched(); | 
|  | start = end + 1; | 
|  | } | 
|  | return werr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when btree blocks are allocated, they have some corresponding bits set for | 
|  | * them in one of two extent_io trees.  This is used to make sure all of | 
|  | * those extents are on disk for transaction or log commit.  We wait | 
|  | * on all the pages and clear them from the dirty pages state tree | 
|  | */ | 
|  | static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, | 
|  | struct extent_io_tree *dirty_pages) | 
|  | { | 
|  | int err = 0; | 
|  | int werr = 0; | 
|  | struct address_space *mapping = fs_info->btree_inode->i_mapping; | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 start = 0; | 
|  | u64 end; | 
|  |  | 
|  | while (!find_first_extent_bit(dirty_pages, start, &start, &end, | 
|  | EXTENT_NEED_WAIT, &cached_state)) { | 
|  | /* | 
|  | * Ignore -ENOMEM errors returned by clear_extent_bit(). | 
|  | * When committing the transaction, we'll remove any entries | 
|  | * left in the io tree. For a log commit, we don't remove them | 
|  | * after committing the log because the tree can be accessed | 
|  | * concurrently - we do it only at transaction commit time when | 
|  | * it's safe to do it (through clear_btree_io_tree()). | 
|  | */ | 
|  | err = clear_extent_bit(dirty_pages, start, end, | 
|  | EXTENT_NEED_WAIT, | 
|  | 0, 0, &cached_state, GFP_NOFS); | 
|  | if (err == -ENOMEM) | 
|  | err = 0; | 
|  | if (!err) | 
|  | err = filemap_fdatawait_range(mapping, start, end); | 
|  | if (err) | 
|  | werr = err; | 
|  | free_extent_state(cached_state); | 
|  | cached_state = NULL; | 
|  | cond_resched(); | 
|  | start = end + 1; | 
|  | } | 
|  | if (err) | 
|  | werr = err; | 
|  | return werr; | 
|  | } | 
|  |  | 
|  | int btrfs_wait_extents(struct btrfs_fs_info *fs_info, | 
|  | struct extent_io_tree *dirty_pages) | 
|  | { | 
|  | bool errors = false; | 
|  | int err; | 
|  |  | 
|  | err = __btrfs_wait_marked_extents(fs_info, dirty_pages); | 
|  | if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) | 
|  | errors = true; | 
|  |  | 
|  | if (errors && !err) | 
|  | err = -EIO; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = log_root->fs_info; | 
|  | struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; | 
|  | bool errors = false; | 
|  | int err; | 
|  |  | 
|  | ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | err = __btrfs_wait_marked_extents(fs_info, dirty_pages); | 
|  | if ((mark & EXTENT_DIRTY) && | 
|  | test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) | 
|  | errors = true; | 
|  |  | 
|  | if ((mark & EXTENT_NEW) && | 
|  | test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) | 
|  | errors = true; | 
|  |  | 
|  | if (errors && !err) | 
|  | err = -EIO; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when btree blocks are allocated, they have some corresponding bits set for | 
|  | * them in one of two extent_io trees.  This is used to make sure all of | 
|  | * those extents are on disk for transaction or log commit | 
|  | */ | 
|  | static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info, | 
|  | struct extent_io_tree *dirty_pages, int mark) | 
|  | { | 
|  | int ret; | 
|  | int ret2; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark); | 
|  | blk_finish_plug(&plug); | 
|  | ret2 = btrfs_wait_extents(fs_info, dirty_pages); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  | if (ret2) | 
|  | return ret2; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_write_and_wait_marked_extents(fs_info, | 
|  | &trans->transaction->dirty_pages, | 
|  | EXTENT_DIRTY); | 
|  | clear_btree_io_tree(&trans->transaction->dirty_pages); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is used to update the root pointer in the tree of tree roots. | 
|  | * | 
|  | * But, in the case of the extent allocation tree, updating the root | 
|  | * pointer may allocate blocks which may change the root of the extent | 
|  | * allocation tree. | 
|  | * | 
|  | * So, this loops and repeats and makes sure the cowonly root didn't | 
|  | * change while the root pointer was being updated in the metadata. | 
|  | */ | 
|  | static int update_cowonly_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | int ret; | 
|  | u64 old_root_bytenr; | 
|  | u64 old_root_used; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  |  | 
|  | old_root_used = btrfs_root_used(&root->root_item); | 
|  |  | 
|  | while (1) { | 
|  | old_root_bytenr = btrfs_root_bytenr(&root->root_item); | 
|  | if (old_root_bytenr == root->node->start && | 
|  | old_root_used == btrfs_root_used(&root->root_item)) | 
|  | break; | 
|  |  | 
|  | btrfs_set_root_node(&root->root_item, root->node); | 
|  | ret = btrfs_update_root(trans, tree_root, | 
|  | &root->root_key, | 
|  | &root->root_item); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | old_root_used = btrfs_root_used(&root->root_item); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update all the cowonly tree roots on disk | 
|  | * | 
|  | * The error handling in this function may not be obvious. Any of the | 
|  | * failures will cause the file system to go offline. We still need | 
|  | * to clean up the delayed refs. | 
|  | */ | 
|  | static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; | 
|  | struct list_head *io_bgs = &trans->transaction->io_bgs; | 
|  | struct list_head *next; | 
|  | struct extent_buffer *eb; | 
|  | int ret; | 
|  |  | 
|  | eb = btrfs_lock_root_node(fs_info->tree_root); | 
|  | ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, | 
|  | 0, &eb); | 
|  | btrfs_tree_unlock(eb); | 
|  | free_extent_buffer(eb); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_run_dev_stats(trans, fs_info); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = btrfs_run_dev_replace(trans, fs_info); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = btrfs_run_qgroups(trans, fs_info); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_setup_space_cache(trans, fs_info); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* run_qgroups might have added some more refs */ | 
|  | ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1); | 
|  | if (ret) | 
|  | return ret; | 
|  | again: | 
|  | while (!list_empty(&fs_info->dirty_cowonly_roots)) { | 
|  | struct btrfs_root *root; | 
|  | next = fs_info->dirty_cowonly_roots.next; | 
|  | list_del_init(next); | 
|  | root = list_entry(next, struct btrfs_root, dirty_list); | 
|  | clear_bit(BTRFS_ROOT_DIRTY, &root->state); | 
|  |  | 
|  | if (root != fs_info->extent_root) | 
|  | list_add_tail(&root->dirty_list, | 
|  | &trans->transaction->switch_commits); | 
|  | ret = update_cowonly_root(trans, root); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { | 
|  | ret = btrfs_write_dirty_block_groups(trans, fs_info); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!list_empty(&fs_info->dirty_cowonly_roots)) | 
|  | goto again; | 
|  |  | 
|  | list_add_tail(&fs_info->extent_root->dirty_list, | 
|  | &trans->transaction->switch_commits); | 
|  | btrfs_after_dev_replace_commit(fs_info); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dead roots are old snapshots that need to be deleted.  This allocates | 
|  | * a dirty root struct and adds it into the list of dead roots that need to | 
|  | * be deleted | 
|  | */ | 
|  | void btrfs_add_dead_root(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | if (list_empty(&root->root_list)) | 
|  | list_add_tail(&root->root_list, &fs_info->dead_roots); | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update all the cowonly tree roots on disk | 
|  | */ | 
|  | static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *gang[8]; | 
|  | int i; | 
|  | int ret; | 
|  | int err = 0; | 
|  |  | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | while (1) { | 
|  | ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, | 
|  | (void **)gang, 0, | 
|  | ARRAY_SIZE(gang), | 
|  | BTRFS_ROOT_TRANS_TAG); | 
|  | if (ret == 0) | 
|  | break; | 
|  | for (i = 0; i < ret; i++) { | 
|  | struct btrfs_root *root = gang[i]; | 
|  | radix_tree_tag_clear(&fs_info->fs_roots_radix, | 
|  | (unsigned long)root->root_key.objectid, | 
|  | BTRFS_ROOT_TRANS_TAG); | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  |  | 
|  | btrfs_free_log(trans, root); | 
|  | btrfs_update_reloc_root(trans, root); | 
|  | btrfs_orphan_commit_root(trans, root); | 
|  |  | 
|  | btrfs_save_ino_cache(root, trans); | 
|  |  | 
|  | /* see comments in should_cow_block() */ | 
|  | clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); | 
|  | smp_mb__after_atomic(); | 
|  |  | 
|  | if (root->commit_root != root->node) { | 
|  | list_add_tail(&root->dirty_list, | 
|  | &trans->transaction->switch_commits); | 
|  | btrfs_set_root_node(&root->root_item, | 
|  | root->node); | 
|  | } | 
|  |  | 
|  | err = btrfs_update_root(trans, fs_info->tree_root, | 
|  | &root->root_key, | 
|  | &root->root_item); | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | if (err) | 
|  | break; | 
|  | btrfs_qgroup_free_meta_all(root); | 
|  | } | 
|  | } | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * defrag a given btree. | 
|  | * Every leaf in the btree is read and defragged. | 
|  | */ | 
|  | int btrfs_defrag_root(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *info = root->fs_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | int ret; | 
|  |  | 
|  | if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) | 
|  | return 0; | 
|  |  | 
|  | while (1) { | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | ret = btrfs_defrag_leaves(trans, root); | 
|  |  | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(info); | 
|  | cond_resched(); | 
|  |  | 
|  | if (btrfs_fs_closing(info) || ret != -EAGAIN) | 
|  | break; | 
|  |  | 
|  | if (btrfs_defrag_cancelled(info)) { | 
|  | btrfs_debug(info, "defrag_root cancelled"); | 
|  | ret = -EAGAIN; | 
|  | break; | 
|  | } | 
|  | } | 
|  | clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do all special snapshot related qgroup dirty hack. | 
|  | * | 
|  | * Will do all needed qgroup inherit and dirty hack like switch commit | 
|  | * roots inside one transaction and write all btree into disk, to make | 
|  | * qgroup works. | 
|  | */ | 
|  | static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *src, | 
|  | struct btrfs_root *parent, | 
|  | struct btrfs_qgroup_inherit *inherit, | 
|  | u64 dst_objectid) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = src->fs_info; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Save some performance in the case that qgroups are not | 
|  | * enabled. If this check races with the ioctl, rescan will | 
|  | * kick in anyway. | 
|  | */ | 
|  | if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We are going to commit transaction, see btrfs_commit_transaction() | 
|  | * comment for reason locking tree_log_mutex | 
|  | */ | 
|  | mutex_lock(&fs_info->tree_log_mutex); | 
|  |  | 
|  | ret = commit_fs_roots(trans, fs_info); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = btrfs_qgroup_account_extents(trans, fs_info); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* Now qgroup are all updated, we can inherit it to new qgroups */ | 
|  | ret = btrfs_qgroup_inherit(trans, fs_info, | 
|  | src->root_key.objectid, dst_objectid, | 
|  | inherit); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Now we do a simplified commit transaction, which will: | 
|  | * 1) commit all subvolume and extent tree | 
|  | *    To ensure all subvolume and extent tree have a valid | 
|  | *    commit_root to accounting later insert_dir_item() | 
|  | * 2) write all btree blocks onto disk | 
|  | *    This is to make sure later btree modification will be cowed | 
|  | *    Or commit_root can be populated and cause wrong qgroup numbers | 
|  | * In this simplified commit, we don't really care about other trees | 
|  | * like chunk and root tree, as they won't affect qgroup. | 
|  | * And we don't write super to avoid half committed status. | 
|  | */ | 
|  | ret = commit_cowonly_roots(trans, fs_info); | 
|  | if (ret) | 
|  | goto out; | 
|  | switch_commit_roots(trans->transaction, fs_info); | 
|  | ret = btrfs_write_and_wait_transaction(trans, fs_info); | 
|  | if (ret) | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "Error while writing out transaction for qgroup"); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  |  | 
|  | /* | 
|  | * Force parent root to be updated, as we recorded it before so its | 
|  | * last_trans == cur_transid. | 
|  | * Or it won't be committed again onto disk after later | 
|  | * insert_dir_item() | 
|  | */ | 
|  | if (!ret) | 
|  | record_root_in_trans(trans, parent, 1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * new snapshots need to be created at a very specific time in the | 
|  | * transaction commit.  This does the actual creation. | 
|  | * | 
|  | * Note: | 
|  | * If the error which may affect the commitment of the current transaction | 
|  | * happens, we should return the error number. If the error which just affect | 
|  | * the creation of the pending snapshots, just return 0. | 
|  | */ | 
|  | static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_pending_snapshot *pending) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_root_item *new_root_item; | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | struct btrfs_root *root = pending->root; | 
|  | struct btrfs_root *parent_root; | 
|  | struct btrfs_block_rsv *rsv; | 
|  | struct inode *parent_inode; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_dir_item *dir_item; | 
|  | struct dentry *dentry; | 
|  | struct extent_buffer *tmp; | 
|  | struct extent_buffer *old; | 
|  | struct timespec cur_time; | 
|  | int ret = 0; | 
|  | u64 to_reserve = 0; | 
|  | u64 index = 0; | 
|  | u64 objectid; | 
|  | u64 root_flags; | 
|  | uuid_le new_uuid; | 
|  |  | 
|  | ASSERT(pending->path); | 
|  | path = pending->path; | 
|  |  | 
|  | ASSERT(pending->root_item); | 
|  | new_root_item = pending->root_item; | 
|  |  | 
|  | pending->error = btrfs_find_free_objectid(tree_root, &objectid); | 
|  | if (pending->error) | 
|  | goto no_free_objectid; | 
|  |  | 
|  | /* | 
|  | * Make qgroup to skip current new snapshot's qgroupid, as it is | 
|  | * accounted by later btrfs_qgroup_inherit(). | 
|  | */ | 
|  | btrfs_set_skip_qgroup(trans, objectid); | 
|  |  | 
|  | btrfs_reloc_pre_snapshot(pending, &to_reserve); | 
|  |  | 
|  | if (to_reserve > 0) { | 
|  | pending->error = btrfs_block_rsv_add(root, | 
|  | &pending->block_rsv, | 
|  | to_reserve, | 
|  | BTRFS_RESERVE_NO_FLUSH); | 
|  | if (pending->error) | 
|  | goto clear_skip_qgroup; | 
|  | } | 
|  |  | 
|  | key.objectid = objectid; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  |  | 
|  | rsv = trans->block_rsv; | 
|  | trans->block_rsv = &pending->block_rsv; | 
|  | trans->bytes_reserved = trans->block_rsv->reserved; | 
|  | trace_btrfs_space_reservation(fs_info, "transaction", | 
|  | trans->transid, | 
|  | trans->bytes_reserved, 1); | 
|  | dentry = pending->dentry; | 
|  | parent_inode = pending->dir; | 
|  | parent_root = BTRFS_I(parent_inode)->root; | 
|  | record_root_in_trans(trans, parent_root, 0); | 
|  |  | 
|  | cur_time = current_time(parent_inode); | 
|  |  | 
|  | /* | 
|  | * insert the directory item | 
|  | */ | 
|  | ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  |  | 
|  | /* check if there is a file/dir which has the same name. */ | 
|  | dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, | 
|  | btrfs_ino(BTRFS_I(parent_inode)), | 
|  | dentry->d_name.name, | 
|  | dentry->d_name.len, 0); | 
|  | if (dir_item != NULL && !IS_ERR(dir_item)) { | 
|  | pending->error = -EEXIST; | 
|  | goto dir_item_existed; | 
|  | } else if (IS_ERR(dir_item)) { | 
|  | ret = PTR_ERR(dir_item); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * pull in the delayed directory update | 
|  | * and the delayed inode item | 
|  | * otherwise we corrupt the FS during | 
|  | * snapshot | 
|  | */ | 
|  | ret = btrfs_run_delayed_items(trans, fs_info); | 
|  | if (ret) {	/* Transaction aborted */ | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | record_root_in_trans(trans, root, 0); | 
|  | btrfs_set_root_last_snapshot(&root->root_item, trans->transid); | 
|  | memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); | 
|  | btrfs_check_and_init_root_item(new_root_item); | 
|  |  | 
|  | root_flags = btrfs_root_flags(new_root_item); | 
|  | if (pending->readonly) | 
|  | root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; | 
|  | else | 
|  | root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; | 
|  | btrfs_set_root_flags(new_root_item, root_flags); | 
|  |  | 
|  | btrfs_set_root_generation_v2(new_root_item, | 
|  | trans->transid); | 
|  | uuid_le_gen(&new_uuid); | 
|  | memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); | 
|  | memcpy(new_root_item->parent_uuid, root->root_item.uuid, | 
|  | BTRFS_UUID_SIZE); | 
|  | if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { | 
|  | memset(new_root_item->received_uuid, 0, | 
|  | sizeof(new_root_item->received_uuid)); | 
|  | memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); | 
|  | memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); | 
|  | btrfs_set_root_stransid(new_root_item, 0); | 
|  | btrfs_set_root_rtransid(new_root_item, 0); | 
|  | } | 
|  | btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); | 
|  | btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); | 
|  | btrfs_set_root_otransid(new_root_item, trans->transid); | 
|  |  | 
|  | old = btrfs_lock_root_node(root); | 
|  | ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); | 
|  | if (ret) { | 
|  | btrfs_tree_unlock(old); | 
|  | free_extent_buffer(old); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | btrfs_set_lock_blocking(old); | 
|  |  | 
|  | ret = btrfs_copy_root(trans, root, old, &tmp, objectid); | 
|  | /* clean up in any case */ | 
|  | btrfs_tree_unlock(old); | 
|  | free_extent_buffer(old); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  | /* see comments in should_cow_block() */ | 
|  | set_bit(BTRFS_ROOT_FORCE_COW, &root->state); | 
|  | smp_wmb(); | 
|  |  | 
|  | btrfs_set_root_node(new_root_item, tmp); | 
|  | /* record when the snapshot was created in key.offset */ | 
|  | key.offset = trans->transid; | 
|  | ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); | 
|  | btrfs_tree_unlock(tmp); | 
|  | free_extent_buffer(tmp); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * insert root back/forward references | 
|  | */ | 
|  | ret = btrfs_add_root_ref(trans, fs_info, objectid, | 
|  | parent_root->root_key.objectid, | 
|  | btrfs_ino(BTRFS_I(parent_inode)), index, | 
|  | dentry->d_name.name, dentry->d_name.len); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | key.offset = (u64)-1; | 
|  | pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); | 
|  | if (IS_ERR(pending->snap)) { | 
|  | ret = PTR_ERR(pending->snap); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = btrfs_reloc_post_snapshot(trans, pending); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do special qgroup accounting for snapshot, as we do some qgroup | 
|  | * snapshot hack to do fast snapshot. | 
|  | * To co-operate with that hack, we do hack again. | 
|  | * Or snapshot will be greatly slowed down by a subtree qgroup rescan | 
|  | */ | 
|  | ret = qgroup_account_snapshot(trans, root, parent_root, | 
|  | pending->inherit, objectid); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  |  | 
|  | ret = btrfs_insert_dir_item(trans, parent_root, | 
|  | dentry->d_name.name, dentry->d_name.len, | 
|  | BTRFS_I(parent_inode), &key, | 
|  | BTRFS_FT_DIR, index); | 
|  | /* We have check then name at the beginning, so it is impossible. */ | 
|  | BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + | 
|  | dentry->d_name.len * 2); | 
|  | parent_inode->i_mtime = parent_inode->i_ctime = | 
|  | current_time(parent_inode); | 
|  | ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  | ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b, | 
|  | BTRFS_UUID_KEY_SUBVOL, objectid); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  | if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { | 
|  | ret = btrfs_uuid_tree_add(trans, fs_info, | 
|  | new_root_item->received_uuid, | 
|  | BTRFS_UUID_KEY_RECEIVED_SUBVOL, | 
|  | objectid); | 
|  | if (ret && ret != -EEXIST) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | fail: | 
|  | pending->error = ret; | 
|  | dir_item_existed: | 
|  | trans->block_rsv = rsv; | 
|  | trans->bytes_reserved = 0; | 
|  | clear_skip_qgroup: | 
|  | btrfs_clear_skip_qgroup(trans); | 
|  | no_free_objectid: | 
|  | kfree(new_root_item); | 
|  | pending->root_item = NULL; | 
|  | btrfs_free_path(path); | 
|  | pending->path = NULL; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * create all the snapshots we've scheduled for creation | 
|  | */ | 
|  | static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_pending_snapshot *pending, *next; | 
|  | struct list_head *head = &trans->transaction->pending_snapshots; | 
|  | int ret = 0; | 
|  |  | 
|  | list_for_each_entry_safe(pending, next, head, list) { | 
|  | list_del(&pending->list); | 
|  | ret = create_pending_snapshot(trans, fs_info, pending); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void update_super_roots(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root_item *root_item; | 
|  | struct btrfs_super_block *super; | 
|  |  | 
|  | super = fs_info->super_copy; | 
|  |  | 
|  | root_item = &fs_info->chunk_root->root_item; | 
|  | super->chunk_root = root_item->bytenr; | 
|  | super->chunk_root_generation = root_item->generation; | 
|  | super->chunk_root_level = root_item->level; | 
|  |  | 
|  | root_item = &fs_info->tree_root->root_item; | 
|  | super->root = root_item->bytenr; | 
|  | super->generation = root_item->generation; | 
|  | super->root_level = root_item->level; | 
|  | if (btrfs_test_opt(fs_info, SPACE_CACHE)) | 
|  | super->cache_generation = root_item->generation; | 
|  | if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) | 
|  | super->uuid_tree_generation = root_item->generation; | 
|  | } | 
|  |  | 
|  | int btrfs_transaction_in_commit(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_transaction *trans; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&info->trans_lock); | 
|  | trans = info->running_transaction; | 
|  | if (trans) | 
|  | ret = (trans->state >= TRANS_STATE_COMMIT_START); | 
|  | spin_unlock(&info->trans_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_transaction_blocked(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_transaction *trans; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&info->trans_lock); | 
|  | trans = info->running_transaction; | 
|  | if (trans) | 
|  | ret = is_transaction_blocked(trans); | 
|  | spin_unlock(&info->trans_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wait for the current transaction commit to start and block subsequent | 
|  | * transaction joins | 
|  | */ | 
|  | static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_transaction *trans) | 
|  | { | 
|  | wait_event(fs_info->transaction_blocked_wait, | 
|  | trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wait for the current transaction to start and then become unblocked. | 
|  | * caller holds ref. | 
|  | */ | 
|  | static void wait_current_trans_commit_start_and_unblock( | 
|  | struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_transaction *trans) | 
|  | { | 
|  | wait_event(fs_info->transaction_wait, | 
|  | trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * commit transactions asynchronously. once btrfs_commit_transaction_async | 
|  | * returns, any subsequent transaction will not be allowed to join. | 
|  | */ | 
|  | struct btrfs_async_commit { | 
|  | struct btrfs_trans_handle *newtrans; | 
|  | struct work_struct work; | 
|  | }; | 
|  |  | 
|  | static void do_async_commit(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_async_commit *ac = | 
|  | container_of(work, struct btrfs_async_commit, work); | 
|  |  | 
|  | /* | 
|  | * We've got freeze protection passed with the transaction. | 
|  | * Tell lockdep about it. | 
|  | */ | 
|  | if (ac->newtrans->type & __TRANS_FREEZABLE) | 
|  | __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); | 
|  |  | 
|  | current->journal_info = ac->newtrans; | 
|  |  | 
|  | btrfs_commit_transaction(ac->newtrans); | 
|  | kfree(ac); | 
|  | } | 
|  |  | 
|  | int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, | 
|  | int wait_for_unblock) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_async_commit *ac; | 
|  | struct btrfs_transaction *cur_trans; | 
|  |  | 
|  | ac = kmalloc(sizeof(*ac), GFP_NOFS); | 
|  | if (!ac) | 
|  | return -ENOMEM; | 
|  |  | 
|  | INIT_WORK(&ac->work, do_async_commit); | 
|  | ac->newtrans = btrfs_join_transaction(trans->root); | 
|  | if (IS_ERR(ac->newtrans)) { | 
|  | int err = PTR_ERR(ac->newtrans); | 
|  | kfree(ac); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* take transaction reference */ | 
|  | cur_trans = trans->transaction; | 
|  | refcount_inc(&cur_trans->use_count); | 
|  |  | 
|  | btrfs_end_transaction(trans); | 
|  |  | 
|  | /* | 
|  | * Tell lockdep we've released the freeze rwsem, since the | 
|  | * async commit thread will be the one to unlock it. | 
|  | */ | 
|  | if (ac->newtrans->type & __TRANS_FREEZABLE) | 
|  | __sb_writers_release(fs_info->sb, SB_FREEZE_FS); | 
|  |  | 
|  | schedule_work(&ac->work); | 
|  |  | 
|  | /* wait for transaction to start and unblock */ | 
|  | if (wait_for_unblock) | 
|  | wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); | 
|  | else | 
|  | wait_current_trans_commit_start(fs_info, cur_trans); | 
|  |  | 
|  | if (current->journal_info == trans) | 
|  | current->journal_info = NULL; | 
|  |  | 
|  | btrfs_put_transaction(cur_trans); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void cleanup_transaction(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, int err) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_transaction *cur_trans = trans->transaction; | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | WARN_ON(trans->use_count > 1); | 
|  |  | 
|  | btrfs_abort_transaction(trans, err); | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  |  | 
|  | /* | 
|  | * If the transaction is removed from the list, it means this | 
|  | * transaction has been committed successfully, so it is impossible | 
|  | * to call the cleanup function. | 
|  | */ | 
|  | BUG_ON(list_empty(&cur_trans->list)); | 
|  |  | 
|  | list_del_init(&cur_trans->list); | 
|  | if (cur_trans == fs_info->running_transaction) { | 
|  | cur_trans->state = TRANS_STATE_COMMIT_DOING; | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | wait_event(cur_trans->writer_wait, | 
|  | atomic_read(&cur_trans->num_writers) == 1); | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | } | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | btrfs_cleanup_one_transaction(trans->transaction, fs_info); | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | if (cur_trans == fs_info->running_transaction) | 
|  | fs_info->running_transaction = NULL; | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | if (trans->type & __TRANS_FREEZABLE) | 
|  | sb_end_intwrite(fs_info->sb); | 
|  | btrfs_put_transaction(cur_trans); | 
|  | btrfs_put_transaction(cur_trans); | 
|  |  | 
|  | trace_btrfs_transaction_commit(root); | 
|  |  | 
|  | if (current->journal_info == trans) | 
|  | current->journal_info = NULL; | 
|  | btrfs_scrub_cancel(fs_info); | 
|  |  | 
|  | kmem_cache_free(btrfs_trans_handle_cachep, trans); | 
|  | } | 
|  |  | 
|  | static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) | 
|  | return btrfs_start_delalloc_roots(fs_info, 1, -1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) | 
|  | btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) | 
|  | { | 
|  | wait_event(cur_trans->pending_wait, | 
|  | atomic_read(&cur_trans->pending_ordered) == 0); | 
|  | } | 
|  |  | 
|  | int btrfs_commit_transaction(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_transaction *cur_trans = trans->transaction; | 
|  | struct btrfs_transaction *prev_trans = NULL; | 
|  | int ret; | 
|  |  | 
|  | /* Stop the commit early if ->aborted is set */ | 
|  | if (unlikely(READ_ONCE(cur_trans->aborted))) { | 
|  | ret = cur_trans->aborted; | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* make a pass through all the delayed refs we have so far | 
|  | * any runnings procs may add more while we are here | 
|  | */ | 
|  | ret = btrfs_run_delayed_refs(trans, fs_info, 0); | 
|  | if (ret) { | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | btrfs_trans_release_metadata(trans, fs_info); | 
|  | trans->block_rsv = NULL; | 
|  |  | 
|  | cur_trans = trans->transaction; | 
|  |  | 
|  | /* | 
|  | * set the flushing flag so procs in this transaction have to | 
|  | * start sending their work down. | 
|  | */ | 
|  | cur_trans->delayed_refs.flushing = 1; | 
|  | smp_wmb(); | 
|  |  | 
|  | if (!list_empty(&trans->new_bgs)) | 
|  | btrfs_create_pending_block_groups(trans, fs_info); | 
|  |  | 
|  | ret = btrfs_run_delayed_refs(trans, fs_info, 0); | 
|  | if (ret) { | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { | 
|  | int run_it = 0; | 
|  |  | 
|  | /* this mutex is also taken before trying to set | 
|  | * block groups readonly.  We need to make sure | 
|  | * that nobody has set a block group readonly | 
|  | * after a extents from that block group have been | 
|  | * allocated for cache files.  btrfs_set_block_group_ro | 
|  | * will wait for the transaction to commit if it | 
|  | * finds BTRFS_TRANS_DIRTY_BG_RUN set. | 
|  | * | 
|  | * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure | 
|  | * only one process starts all the block group IO.  It wouldn't | 
|  | * hurt to have more than one go through, but there's no | 
|  | * real advantage to it either. | 
|  | */ | 
|  | mutex_lock(&fs_info->ro_block_group_mutex); | 
|  | if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, | 
|  | &cur_trans->flags)) | 
|  | run_it = 1; | 
|  | mutex_unlock(&fs_info->ro_block_group_mutex); | 
|  |  | 
|  | if (run_it) | 
|  | ret = btrfs_start_dirty_block_groups(trans, fs_info); | 
|  | } | 
|  | if (ret) { | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | if (cur_trans->state >= TRANS_STATE_COMMIT_START) { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | refcount_inc(&cur_trans->use_count); | 
|  | ret = btrfs_end_transaction(trans); | 
|  |  | 
|  | wait_for_commit(cur_trans); | 
|  |  | 
|  | if (unlikely(cur_trans->aborted)) | 
|  | ret = cur_trans->aborted; | 
|  |  | 
|  | btrfs_put_transaction(cur_trans); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | cur_trans->state = TRANS_STATE_COMMIT_START; | 
|  | wake_up(&fs_info->transaction_blocked_wait); | 
|  |  | 
|  | if (cur_trans->list.prev != &fs_info->trans_list) { | 
|  | prev_trans = list_entry(cur_trans->list.prev, | 
|  | struct btrfs_transaction, list); | 
|  | if (prev_trans->state != TRANS_STATE_COMPLETED) { | 
|  | refcount_inc(&prev_trans->use_count); | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | wait_for_commit(prev_trans); | 
|  | ret = prev_trans->aborted; | 
|  |  | 
|  | btrfs_put_transaction(prev_trans); | 
|  | if (ret) | 
|  | goto cleanup_transaction; | 
|  | } else { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | } | 
|  | } else { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | } | 
|  |  | 
|  | extwriter_counter_dec(cur_trans, trans->type); | 
|  |  | 
|  | ret = btrfs_start_delalloc_flush(fs_info); | 
|  | if (ret) | 
|  | goto cleanup_transaction; | 
|  |  | 
|  | ret = btrfs_run_delayed_items(trans, fs_info); | 
|  | if (ret) | 
|  | goto cleanup_transaction; | 
|  |  | 
|  | wait_event(cur_trans->writer_wait, | 
|  | extwriter_counter_read(cur_trans) == 0); | 
|  |  | 
|  | /* some pending stuffs might be added after the previous flush. */ | 
|  | ret = btrfs_run_delayed_items(trans, fs_info); | 
|  | if (ret) | 
|  | goto cleanup_transaction; | 
|  |  | 
|  | btrfs_wait_delalloc_flush(fs_info); | 
|  |  | 
|  | btrfs_wait_pending_ordered(cur_trans); | 
|  |  | 
|  | btrfs_scrub_pause(fs_info); | 
|  | /* | 
|  | * Ok now we need to make sure to block out any other joins while we | 
|  | * commit the transaction.  We could have started a join before setting | 
|  | * COMMIT_DOING so make sure to wait for num_writers to == 1 again. | 
|  | */ | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | cur_trans->state = TRANS_STATE_COMMIT_DOING; | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | wait_event(cur_trans->writer_wait, | 
|  | atomic_read(&cur_trans->num_writers) == 1); | 
|  |  | 
|  | /* ->aborted might be set after the previous check, so check it */ | 
|  | if (unlikely(READ_ONCE(cur_trans->aborted))) { | 
|  | ret = cur_trans->aborted; | 
|  | goto scrub_continue; | 
|  | } | 
|  | /* | 
|  | * the reloc mutex makes sure that we stop | 
|  | * the balancing code from coming in and moving | 
|  | * extents around in the middle of the commit | 
|  | */ | 
|  | mutex_lock(&fs_info->reloc_mutex); | 
|  |  | 
|  | /* | 
|  | * We needn't worry about the delayed items because we will | 
|  | * deal with them in create_pending_snapshot(), which is the | 
|  | * core function of the snapshot creation. | 
|  | */ | 
|  | ret = create_pending_snapshots(trans, fs_info); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | goto scrub_continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We insert the dir indexes of the snapshots and update the inode | 
|  | * of the snapshots' parents after the snapshot creation, so there | 
|  | * are some delayed items which are not dealt with. Now deal with | 
|  | * them. | 
|  | * | 
|  | * We needn't worry that this operation will corrupt the snapshots, | 
|  | * because all the tree which are snapshoted will be forced to COW | 
|  | * the nodes and leaves. | 
|  | */ | 
|  | ret = btrfs_run_delayed_items(trans, fs_info); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | goto scrub_continue; | 
|  | } | 
|  |  | 
|  | ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | goto scrub_continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make sure none of the code above managed to slip in a | 
|  | * delayed item | 
|  | */ | 
|  | btrfs_assert_delayed_root_empty(fs_info); | 
|  |  | 
|  | WARN_ON(cur_trans != trans->transaction); | 
|  |  | 
|  | /* btrfs_commit_tree_roots is responsible for getting the | 
|  | * various roots consistent with each other.  Every pointer | 
|  | * in the tree of tree roots has to point to the most up to date | 
|  | * root for every subvolume and other tree.  So, we have to keep | 
|  | * the tree logging code from jumping in and changing any | 
|  | * of the trees. | 
|  | * | 
|  | * At this point in the commit, there can't be any tree-log | 
|  | * writers, but a little lower down we drop the trans mutex | 
|  | * and let new people in.  By holding the tree_log_mutex | 
|  | * from now until after the super is written, we avoid races | 
|  | * with the tree-log code. | 
|  | */ | 
|  | mutex_lock(&fs_info->tree_log_mutex); | 
|  |  | 
|  | ret = commit_fs_roots(trans, fs_info); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | goto scrub_continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since the transaction is done, we can apply the pending changes | 
|  | * before the next transaction. | 
|  | */ | 
|  | btrfs_apply_pending_changes(fs_info); | 
|  |  | 
|  | /* commit_fs_roots gets rid of all the tree log roots, it is now | 
|  | * safe to free the root of tree log roots | 
|  | */ | 
|  | btrfs_free_log_root_tree(trans, fs_info); | 
|  |  | 
|  | /* | 
|  | * commit_fs_roots() can call btrfs_save_ino_cache(), which generates | 
|  | * new delayed refs. Must handle them or qgroup can be wrong. | 
|  | */ | 
|  | ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | goto scrub_continue; | 
|  | } | 
|  |  | 
|  | ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | goto scrub_continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since fs roots are all committed, we can get a quite accurate | 
|  | * new_roots. So let's do quota accounting. | 
|  | */ | 
|  | ret = btrfs_qgroup_account_extents(trans, fs_info); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | goto scrub_continue; | 
|  | } | 
|  |  | 
|  | ret = commit_cowonly_roots(trans, fs_info); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | goto scrub_continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The tasks which save the space cache and inode cache may also | 
|  | * update ->aborted, check it. | 
|  | */ | 
|  | if (unlikely(READ_ONCE(cur_trans->aborted))) { | 
|  | ret = cur_trans->aborted; | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  | goto scrub_continue; | 
|  | } | 
|  |  | 
|  | btrfs_prepare_extent_commit(fs_info); | 
|  |  | 
|  | cur_trans = fs_info->running_transaction; | 
|  |  | 
|  | btrfs_set_root_node(&fs_info->tree_root->root_item, | 
|  | fs_info->tree_root->node); | 
|  | list_add_tail(&fs_info->tree_root->dirty_list, | 
|  | &cur_trans->switch_commits); | 
|  |  | 
|  | btrfs_set_root_node(&fs_info->chunk_root->root_item, | 
|  | fs_info->chunk_root->node); | 
|  | list_add_tail(&fs_info->chunk_root->dirty_list, | 
|  | &cur_trans->switch_commits); | 
|  |  | 
|  | switch_commit_roots(cur_trans, fs_info); | 
|  |  | 
|  | ASSERT(list_empty(&cur_trans->dirty_bgs)); | 
|  | ASSERT(list_empty(&cur_trans->io_bgs)); | 
|  | update_super_roots(fs_info); | 
|  |  | 
|  | btrfs_set_super_log_root(fs_info->super_copy, 0); | 
|  | btrfs_set_super_log_root_level(fs_info->super_copy, 0); | 
|  | memcpy(fs_info->super_for_commit, fs_info->super_copy, | 
|  | sizeof(*fs_info->super_copy)); | 
|  |  | 
|  | btrfs_update_commit_device_size(fs_info); | 
|  | btrfs_update_commit_device_bytes_used(fs_info, cur_trans); | 
|  |  | 
|  | clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); | 
|  | clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); | 
|  |  | 
|  | btrfs_trans_release_chunk_metadata(trans); | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | cur_trans->state = TRANS_STATE_UNBLOCKED; | 
|  | fs_info->running_transaction = NULL; | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | mutex_unlock(&fs_info->reloc_mutex); | 
|  |  | 
|  | wake_up(&fs_info->transaction_wait); | 
|  |  | 
|  | ret = btrfs_write_and_wait_transaction(trans, fs_info); | 
|  | if (ret) { | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "Error while writing out transaction"); | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  | goto scrub_continue; | 
|  | } | 
|  |  | 
|  | ret = write_all_supers(fs_info, 0); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  | goto scrub_continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the super is written, we can safely allow the tree-loggers | 
|  | * to go about their business | 
|  | */ | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  |  | 
|  | btrfs_finish_extent_commit(trans, fs_info); | 
|  |  | 
|  | if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) | 
|  | btrfs_clear_space_info_full(fs_info); | 
|  |  | 
|  | fs_info->last_trans_committed = cur_trans->transid; | 
|  | /* | 
|  | * We needn't acquire the lock here because there is no other task | 
|  | * which can change it. | 
|  | */ | 
|  | cur_trans->state = TRANS_STATE_COMPLETED; | 
|  | wake_up(&cur_trans->commit_wait); | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | list_del_init(&cur_trans->list); | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | btrfs_put_transaction(cur_trans); | 
|  | btrfs_put_transaction(cur_trans); | 
|  |  | 
|  | if (trans->type & __TRANS_FREEZABLE) | 
|  | sb_end_intwrite(fs_info->sb); | 
|  |  | 
|  | trace_btrfs_transaction_commit(trans->root); | 
|  |  | 
|  | btrfs_scrub_continue(fs_info); | 
|  |  | 
|  | if (current->journal_info == trans) | 
|  | current->journal_info = NULL; | 
|  |  | 
|  | kmem_cache_free(btrfs_trans_handle_cachep, trans); | 
|  |  | 
|  | /* | 
|  | * If fs has been frozen, we can not handle delayed iputs, otherwise | 
|  | * it'll result in deadlock about SB_FREEZE_FS. | 
|  | */ | 
|  | if (current != fs_info->transaction_kthread && | 
|  | current != fs_info->cleaner_kthread && !fs_info->fs_frozen) | 
|  | btrfs_run_delayed_iputs(fs_info); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | scrub_continue: | 
|  | btrfs_scrub_continue(fs_info); | 
|  | cleanup_transaction: | 
|  | btrfs_trans_release_metadata(trans, fs_info); | 
|  | btrfs_trans_release_chunk_metadata(trans); | 
|  | trans->block_rsv = NULL; | 
|  | btrfs_warn(fs_info, "Skipping commit of aborted transaction."); | 
|  | if (current->journal_info == trans) | 
|  | current->journal_info = NULL; | 
|  | cleanup_transaction(trans, trans->root, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return < 0 if error | 
|  | * 0 if there are no more dead_roots at the time of call | 
|  | * 1 there are more to be processed, call me again | 
|  | * | 
|  | * The return value indicates there are certainly more snapshots to delete, but | 
|  | * if there comes a new one during processing, it may return 0. We don't mind, | 
|  | * because btrfs_commit_super will poke cleaner thread and it will process it a | 
|  | * few seconds later. | 
|  | */ | 
|  | int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | if (list_empty(&fs_info->dead_roots)) { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | return 0; | 
|  | } | 
|  | root = list_first_entry(&fs_info->dead_roots, | 
|  | struct btrfs_root, root_list); | 
|  | list_del_init(&root->root_list); | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | btrfs_debug(fs_info, "cleaner removing %llu", root->objectid); | 
|  |  | 
|  | btrfs_kill_all_delayed_nodes(root); | 
|  |  | 
|  | if (btrfs_header_backref_rev(root->node) < | 
|  | BTRFS_MIXED_BACKREF_REV) | 
|  | ret = btrfs_drop_snapshot(root, NULL, 0, 0); | 
|  | else | 
|  | ret = btrfs_drop_snapshot(root, NULL, 1, 0); | 
|  |  | 
|  | return (ret < 0) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | unsigned long prev; | 
|  | unsigned long bit; | 
|  |  | 
|  | prev = xchg(&fs_info->pending_changes, 0); | 
|  | if (!prev) | 
|  | return; | 
|  |  | 
|  | bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; | 
|  | if (prev & bit) | 
|  | btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); | 
|  | prev &= ~bit; | 
|  |  | 
|  | bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; | 
|  | if (prev & bit) | 
|  | btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); | 
|  | prev &= ~bit; | 
|  |  | 
|  | bit = 1 << BTRFS_PENDING_COMMIT; | 
|  | if (prev & bit) | 
|  | btrfs_debug(fs_info, "pending commit done"); | 
|  | prev &= ~bit; | 
|  |  | 
|  | if (prev) | 
|  | btrfs_warn(fs_info, | 
|  | "unknown pending changes left 0x%lx, ignoring", prev); | 
|  | } |